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Summary

Background: Weight control programs for children monitor BMI changes using BMI z-scores 

that adjust BMI for the sex and age of the child. It is, however, uncertain if BMIz is the best metric 

for assessing BMI change.

Objective: To identify which of 6 BMI metrics is optimal for assessing change. We considered a 

metric to be optimal if its short-term variability was consistent across the entire BMI distribution.
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Subjects: 285 643 2- to 17-year-olds with BMI measured 3 times over a 10- to 14-month period.

Methods: We summarized each metric’s variability using the within-child standard deviation.

Results: Most metrics’ initial or mean value correlated with short-term variability (jrj~ 0.3 to 

0.5). The metric for which the within-child variability was largely independent (r = 0.13) of the 

metric’s initial or mean value was the percentage of the 50th expressed on a log scale. However, 

changes in this metric between the first and last visits were highly (r ≥ 0.97) correlated with 

changes in %95th and %50th.

Conclusions: Log %50 was the metric for which the short-term variability was largely 

independent of a child’s BMI. Changes in log %50th, %95th, and %50th are strongly correlated.

1 | INTRODUCTION

About 14% of 2- to 5-year-olds and 20% of 6- to 19-year-olds in the US have obesity,1 

and many preventive and intervention programs have been developed for children and 

adolescents.2 In these intervention studies, it is necessary to analyse short-term BMI changes 

in growing children. For example, investigators may wish to assess BMI changes in a 

12-month intervention among children with obesity or to examine the outcome of an obesity 

prevention program.

Change in BMI-for-age z-score (BMIz), based on the CDC growth charts, has typically 

been the outcome in short-term intervention studies.2 However, this BMI metric has many 

limitations for assessing BMI change.3–6 The relation of BMI to BMIz is curvilinear and 

approaches a maximum value that varies by sex and age (Figure 1). If a child has a relatively 

low BMI, a small BMI change (x-axis) can result in a large BMIz change. Conversely, the 

same BMI change will result in a much smaller BMIz change for a child with a high BMI. 

For example, a 10% decrease in the BMI of a 12-year-old boy with an initial BMI of 18 

would result in a BMIz reduction of about 0.9 SDs. In contrast, the same 10% decrease for a 

boy with a BMI of 35 would decrease BMIz by only 0.15 SDs. A scale in which the amount 

of change depends upon the initial value, such as BMIz, is problematic because changes 

cannot be compared among children with different BMIs. Further, for children with very 

high BMIs, even a successful intervention could result in only a small BMIz change that 

could be considered to be clinically unimportant.

One aspect of a good BMI metric for assessing change, therefore, is that the metric’s 

short-term changes should be similar whatever the child’s initial BMI. To evaluate the 

most appropriate scale for measuring BMI change, it is essential to know how BMI varies 

over time in growing children. Based on small samples or restricted age ranges, several 

BMI metrics have been proposed for assessing change. These include the distance from the 

child’s sex- and age-specific median in the growth charts,3 % of the median on an arithmetic 

scale (%50th) or a logarithmic scale (log %50th),3,5 and BMI itself.4

We examined short-term changes, as assessed by the within-child SD over a 10- to 14-month 

period, among 285 643 children for 6 BMI metrics: BMI, BMIz, extended BMIz, % of the 

50th percentile on either an arithmetic scale (%50th) or a logarithmic scale (log %50th), and 
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% of the 95th percentile (%95th). We assess the stability of the within-child SD of each 

metric over the entire BMI distribution.

2 | SUBJECTS AND METHODS

2.1 | Study sample

PEDSnet (pedsnet.org) is a multi-institutional clinical research network that aggregates EHR 

data from some of the nation’s largest children’s health systems.7,8 PEDSnet standardizes 

EHR data across institutions to the PEDSnet common data model, an expanded version 

of the Observational Medical Outcomes Partnership (OMOP) common data model.7,9 

PEDSnet has accrued data from 2009 to 2021 for over 7.5 million children from inpatient 

and outpatient clinical settings.7,10 The states with the greatest concentration of PEDSnet 

patients are CO, DE, FL, IL, IN, KY, MO, NJ, OH, PA, and WA.

The PEDSnet data shared with CDC contained data from 5.3 million subjects (age < 25 

years) with at least 1 weight or height measurement and were examined before June 2019 

(Version 3.3 of PEDSnet). Seven PEDSnet sites contributed data. Although these children 

are not representative of children in the US, BMI levels and the prevalences of obesity 

and severe obesity are fairly comparable to those in the National Health and Nutrition 

Examination Survey (NHANES) (see Discussion).

2.2 | Data management

Using EHR data from clinical care for research requires assessing the data’s quality.11,12 

PEDSnet implements a data quality assessment workflow that includes >1000 checks to 

determine completeness, plausibility, value conformance, and relational conformance of the 

data.13,14 When this process identifies issues, they are remediated by member institutions.

The data for the current study consisted of 33.0 million weights and 20.3 million heights 

from 4.35 million 2- to 19-year-olds at an in-person clinical encounter at PEDSnet member 

institution. These in-person encounters included inpatient hospital stays, outpatient specialty 

and primary care visits, emergency department visits, and observation stay. We refer to these 

encounters as ‘visits’ throughout the text.

We identified weights and heights that were likely to be errors using Daymont’s algorithm 

for the longitudinal detection of outliers.15,16 This method focuses on inconsistencies in the 

longitudinal measurements for a child and identifies several classes of possible mistakes, 

several of which are based on the distance of a weight or height modified z-score from its 

weighted moving average.17 Other categories of potential errors include unexpected height 

decreases, values that appear to be carried forward from a previous visit, and multiple 

measurements on the same day. We excluded all weights and heights identified as potential 

errors, resulting in a dataset of 28 million weights and 18 million heights. Because of the 

larger number of weights than heights, we allowed heights without a same-day weight to 

match the closest weight within 30 days. This resulted in 19.4 million records with weight 

and height from 3.5 million children. Ninety-two percent of these records were obtained at 

outpatient visits.
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For the current analyses, we restricted the data to 2- to 18-year-olds examined from 2014 to 

2018 and who had 3 BMI measurements within a 10- to 14-month interval. In addition, we 

required consecutive BMI measurements to be at least 1 month apart. Finally, for children 

with more than 1 set of 3 measurements, we selected the set for which the time interval 

between the 1st and 3rd measurements was closest to 365 days. Thus, if a child had 3 BMIs 

over 10 months starting at age 8 years and another 3 BMIs over 13 months starting at age 12 

years, only the latter would be included in the analyses. This resulted in a dataset of 285 643 

children.

We conducted sensitivity analyses based on 1) children having 2 (n = 214 384) or 4 (n 
= 265 679) BMI measurements within an approximately 1-year period, and 2) children 

who did not have a chronic condition at any visit based on the Pediatric Medical 

Complexity Algorithm.18 Because most children had a chronic disease recorded at 1 or 

more examinations, the latter analysis included only 96 598 children.

BMI was calculated as kg/m2, and extreme values (52 348, 0.24%) of weight, height, and 

BMI were identified and excluded based on their modified z-scores.17 About 75% of these 

records were excluded because of a very low height, possibly because their height was 

reported in inches rather than in cm. Overweight was classified as a baseline BMI between 

the 85th and 94th percentiles of the CDC growth charts, and obesity as a BMI ≥95th 

percentile.19 Severe obesity20 was dichotomized into 2 categories: 120% to 139% of the 

95th percentile and ≥ 140% of the 95th percentile. BMI z-scores and centiles for sex and age 

were derived from the 2000 CDC growth charts.21

2.3 | BMI metrics

In addition to BMI and CDC BMIz, we examined several alternative BMI metrics. A 

description of these metrics and their calculations are shown in Data S1. Briefly, we 

considered 1) BMI itself, 2) BMIz, 3) extended BMIz,22 4) BMI expressed as a percentage 

of the CDC 50th percentile (%50th), 5) BMI expressed as a percentage of the 95th percentile 

(%95th), and 6) BMI expressed as a percentage of the 50th percentile on the natural log 

scale (log %50th). Extended BMIz is a metric that recalculates BMI percentiles and z-scores 

for children with obesity based on data from children in the growth charts and in more recent 

NHANES surveys that were modelled as a half-normal distribution.22 This metric alleviates 

the compression of very high BMIs into a narrow range of z-scores that is the case for BMIz. 

For BMIs below the 95th percentile, BMIz and extended BMIz values are identical. We 

did not include BMI distance from the median because analyses indicated that this metric 

behaved very similarly to BMI.

One advantage of expressing %50th on a log scale,23–26 which is 100 × loge(BMI CDC 

median), is that percentage increases and decreases are equivalent on a log scale. For 

example, if a child’s BMI decreased by 20% from 25 to 20 kg/m2, a 25% increase (5 / 

20) would be necessary to attain the original BMI. In contrast, on a log scale, the decrease 

(100*log[20/25] = −22.3%) and increase (100*(log [25/20] = +22.3%) are symmetrical.
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2.4 | Statistical methods

To quantify within-child variability over the approximately 1-year period, we calculated the 

within-child SDs over the 3 measurements for each BMI metric. These within-child SDs 

differ from the more widely used between-child SDs as they reflect the BMI variability of 

the child’s values across the 3 visits. For example, a child whose BMI is at the CDC 85th 

percentile at ages 8, 8.5, and 9 years would have BMIs of 18.0, 18.3, and 18.6 kg/m2. For 

this child, the within-child SD is the square root of [(0.32 + 0 + 0.32) 2] = 0.3 kg/m2. The 

mean within-child SD is the average of these within-child SDs across all children.

We present descriptive characteristics of the sample and then examine differences in the 

within-child variability across 5 BMI categories. We estimate the within-child SD across the 

entire BMI distribution using lowess, a type of locally weighted regression that does not 

make assumptions about the shape of the relation.27 We also examine the relation of each 

BMI metric’s initial or mean value to the within-child SD. If the within-child SD did not 

differ across the distribution, there would be little association between a child’s value of the 

metric and the metric’s within-child SD.

Finally, we assessed the similarity of changes in the BMI metrics by comparing the 

differences in each metric between the first and last visit using Pearson correlation 

coefficients. These correlation coefficients are presented as a correlogram,28,29 with the 

metrics ordered according to the first 2 principal components30 of the 8 metrics. In this 

display, a pie chart is used to display the bottom half of the correlation matrix, with the 

shading indicating the magnitude of the correlation.

3 | RESULTS

Table 1 shows the descriptive characteristics of the sample. Mean BMI levels differed 

by about 6.5 kg/m2 across the 3 age groups, and mean levels of most of the other BMI 

metrics also increased with age. However, mean levels of %95th decreased with age because 

the 95th percentile in the CDC growth charts increases more rapidly with age than lower 

percentiles. The prevalence of obesity ranged from 11% to 18% across the 3 age groups, 

while the prevalence of severe obesity ranged from 1.6% to 6.9%.

We then examined the within-child variability across BMI groups based on the BMI at the 

initial examination (Table 2). Differences in this variability were most evident for BMIz, 

with the mean within-child SD decreasing from 0.27 to 0.06 across the 5 BMI groups. The 

within-child variability of several of the other metrics differed by about 2-fold across BMI 

categories. However, the within-child variability of log %50th differed by only about 30% 

(3.85 vs. 3.05).

Figure 2 further illustrates the relation of each metric’s mean value over the 3 visits (x-axis) 

to the within-child variability. Each panel shows the smoothed relation (blue line) among 

all children, with data from 5000 randomly selected children also displayed to illustrate a 

subset of the actual data. As was seen in Table 2, BMI, %50th and % 95th showed positive 

associations between the value of the metric and its within-child SD. In contrast, there was 
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an inverse association for BMIz and a U-shaped association with extended BMIz. The metric 

for which the within-child SD was most constant was log %50th.

Table 3 quantifies the associations shown in Figure 2 by examining the correlation between 

the mean level of each metric and its within-child variability. Overall, there were moderately 

positive associations (r = 0.31 to 0.47) for BMI, %50th and %95th, and inverse associations 

with BMIz and extended BMIz (r = −0.32 to −0.37). In contrast, the association for log 

%50th was much weaker (r = 0.13). The magnitude of these associations varied somewhat 

across age groups, but the weakest correlations were consistently seen for log %50th. 

Additional analyses indicated that these results did not differ substantially across categories 

based on initial BMI status, sex, race-ethnicity, or chronic disease status (data not shown).

We then examined the correlations among changes in each metric from the 1st to 3rd 

visits (Figure 3). (The metrics are arranged so that, in general, the strongest correlations 

are close to each other.) As indicated by the correlation coefficients (upper right) and 

fullness of the pie charts (lower left), changes in log %50th, %50th, and %95th were 

strongly intercorrelated (r ≥ 0.97). In addition, the correlation between changes in BMIz and 

extended BMIz was r = 0.99, as these 2 metrics are identical for most children. Additional 

analyses (not shown) indicated that among children with severe obesity, changes in log 

%50th were more strongly correlated with changes in extended BMIz than with BMIz (r = 

0.91 vs. 0.72).

4 | DISCUSSION

We found that among children 2 years to <18 years, values of most BMI metrics were 

moderately correlated with their within-child variability over an approximately 1-year 

period. Several of the metrics (BMI, %50th, and %95th) showed positive associations (r 

~ 0.31 to 0.45), while others (BMIz and extended BMIz) showed inverse associations (r ~ 

−0.35). The metric for which the within-child short-term variability was largely independent 

(r = 0.13) of the metric’s value was log %50th. Similar results were seen across categories 

based on age, initial BMI status, sex, race-ethnicity, or chronic disease status.

The better performance of log %50th is likely because percentage changes on a log scale 

are symmetrical and additive.23,26 For example, if a child has %50th values of 130%, 90%, 

and 130% over time, the initial percentage decrease on an arithmetic scale would be −31% 

(1–90 / 130), and the subsequent increase would be +44% (130 / 90). When expressed on a 

log scale, however, the magnitude of the initial decline (loge[90 / 130]) = −37% equals that 

of the subsequent increase (loge(130/90) = +37%. Another advantage of using log % 50th as 

a metric is that for children with high BMIs, changes in log %50th more closely align with 

percentage changes in BMI than do changes in %50th. For example, a 10% decrease in the 

BMI of a 16-year-old girl whose BMI (34.7 kg/m2) is 120% of the 95th percentile would 

result in a log %50th decrease of 10.5%. In contrast, the decrease in %50th on the arithmetic 

scale would be 21%.

Several investigators3–5 have shown BMIz to be an inferior metric for analysing change. At 

high levels of BMIz, the within-child variability approaches 0 (Table 2 and Figure 2). This 
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is a function of z-scores and estimation of the L, M, and S parameters31 in the CDC growth 

charts.6,32,33 Some of the null results of intervention studies among children may result from 

focusing on BMIz as the primary outcome. For example, a short-term intervention study 

among 71 children with BMIs ≥ CDC 98th percentile found that improvements in blood 

pressure and sedentary activity showed little association with the amount of BMIz change.6 

As shown in Figure 1, a focus on BMIz change among children with severe obesity can 

obscure large decreases in BMI for children with very high BMIs.

However, in contrast to some previous studies of BMI change,3,4 preliminary analyses 

showed that BMI distance from the sex- and age-specific 50th CDC percentile showed a 

moderate association (r = 0.43) with the within-child SD (data not shown). The within-child 

variability for this metric behaved very similarly to BMI itself. As the value of BMI 

increased so did the within-child SD (r = 0.47), so that children with higher BMIs showed 

more variability. Our findings may, in part, be due to differences in BMIs between the 2 

studies. Whereas the mean BMIz in the Cole et al. study was approximately 0.25 SDs, 

similarly aged children in our study were heavier with a mean BMIz of 0.42 SDs.

Previous studies3,5 have also found that the short-term variability in log %50th is largely 

unrelated to its initial level. We also found that this metric showed the weakest associations 

between the mean (or initial) value and its short-term variability. Therefore, of the metrics 

we examined, this may be the most appropriate metric for assessing BMI change among 

children. However, we also observed (Figure 3) that changes in log %50th were strongly 

correlated (r ≥ 0.97) with changes in %50th and %95th, suggesting that the use of any of 

either metric would likely result in very similar conclusions concerning an intervention.

A few studies have also examined changes in levels of body fatness and various BMI metrics 

and body fatness. A 2020 study of 1-year changes in body fatness (based on bioelectrical 

impedance) among 339 relatively heavy 2- to 12-year-olds34 found that changes in %body 

fat were more strongly correlated with changes in %50th, % 95th, and BMI (R2s of 0.53 

to 0.55) than with changes in BMIz (R2 = 0.38). Another study of 2-year changes in 

DXA-calculated body fatness among 557 8- to 10-year-olds with a mean BMIz of 0.60 SDs 

found that changes in the fat mass index (fat mass height2) were more strongly correlated 

with changes in BMI and log %50th than with CDC BMIz.35

A 2-year follow-up of 59 children with severe obesity36 also found that changes in DXA-

calculated %body fat correlated more strongly with changes in BMI and % of the BMI 

cut points in the International Obesity Task Force corresponding to a BMI of 25 kg/m2 

(IOTF-25) at age 18 years37 than with changes in BMIz. Although there are differences by 

age, expressing a child’s BMI as %IOTF-25 roughly corresponds to expressing BMIs as 

a percentage of the 88th (boys) or 96th (girls) CDC percentile. It should also be realized 

that identifying the ‘best’ BMI metric based on associations with adiposity may depend on 

whether body fatness is expressed as %body fat, fat mass index, or fat mass adjusted for sex 

and height through regression.35

Although the tracking of BMI in EHR data38,39 agrees well with the results of research 

studies, there are several limitations in the secondary use of EHR data. First, the analysis 
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depends on the accuracy of data generated in the context of clinical care. Although 

PEDSnet implements a comprehensive data quality assessment workflow to characterize 

and maximize data quality,13 height and weight errors will persist. However, these errors are 

mitigated by the repeated measurements40 and the use of the Daymont algorithm.16 Second, 

as the data are obtained during clinical care, they reflect practice patterns. For example, 

the data’s larger number of weights than heights reflects expected outpatient practice.40 

Third, the population of children receiving care at PEDSnet member institutions may over-

represent children with various medical conditions. Fourth, although the PEDSnet data 

reflect a reasonably broad geographic distribution of the United States, there are gaps, and 

children in rural areas are underrepresented. Fifth, imposing data sufficiency requirements, 

follow-up time, or the number of measurements could further increase bias in analyses of 

EHR databases.41 Sixth, about 4% of the children in the entire PEDSnet dataset may have 

received care at multiple institutions and appear as separate individuals from each site.

Despite these limitations, we found that mean BMIz levels among children in the current 

study were fairly similar to those in NHANES 2013 through 2018.42 Whereas the mean 

BMIz in the current study was 0.45 SDs, the weighted mean BMIz in NHANES was 0.53 

SDs. In addition, analyses within age groups and race-ethnicity groups indicated that the 

largest difference between mean BMIz levels in the current study and NHANES was 0.08 

SDs for white children. Although a number of children in the current analyses likely gained 

a large amount of weight over the approximately 1-year period, given the similarity of BMI 

levels with those in NHANES, we feel that it is unlikely that this proportion is substantially 

greater than that in the general population.

We also conducted several sensitivity analyses. Analyses based on children having either 2 

or 4 examinations within a 10- to 14-month interval yielded similar results to our primary 

analyses. Similar results were also obtained in analyses that 1) excluded children who had 

a chronic condition based on the Paediatric Medical Complexity Algorithm,18 and 2) were 

stratified by race-ethnicity or sex. As seen in the primary analyses, log %50th was the metric 

that showed the weakest association between the mean (or initial) value and the within-child 

variability.

These results have implications for the analysis of intervention studies. If BMIz were the 

outcome of a study focused on children with severe obesity, one would not expect to see 

a sizeable BMIz decrease even for an effective intervention. For example, if the BMI of a 

10-year-old boy with a BMI of 50 decreased by 10% over 6 months, the BMIz decrease 

would be only 0.07 SDs.38 When assessing BMI change, it would be optimal to use a 

metric for which the within-child variability was not related to the initial value, such as log 

%50th. However, as changes in log %50th were highly correlated (r ≥ 0.97) with those for 

%95th and %50th, similar results would likely be obtained with any of these metrics. As 

emphasized by other investigators, the assessment of BMI change in intervention studies 

should avoid using the current CDC BMI z-scores.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Relation of BMI to CDC BMIz among boys (left panel) and girls (right panel) at ages 6, 12, 

and 18 years
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FIGURE 2. 
Smoothed relation, for each BMI metric, of each child’s mean value to the within-child SD. 

The smoothed, blue lines were estimated with lowess using data from all 285 643 children. 

The points represent 5000 randomly selected children

Freedman et al. Page 13

Pediatr Obes. Author manuscript; available in PMC 2024 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Correlogram representing the correlation among changes (3rd visit – 1st visit) for the 6 BMI 

metrics. The metrics’ names are along the main diagonal. Metrics are arranged according 

to their first 2 principal components so that the strongest correlations are near the diagonal. 

The lower left panel represents the correlations as pie charts: the stronger the correlation, the 

fuller is the circle
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TABLE 1

Descriptive characteristics of the 285 643 children. Values are mean ± SD or percentagea

Age Group (year)

2 to <6 6 to <12 12 to <18

N 92 927 109 633 83 083

Age (year) 3.6 ± 1.2 8.9 ± 1.7 14.2 ± 1.3

% Girls 44% 44% 54%

BMI (kg/m2) 16.4 ± 1.9 18.5 ± 4.3 22.9 ± 6.0

CDC BMIz 0.34 ± 1.1 0.45 ± 1.1 0.52 ± 1.1

Extended BMIz 0.33 ± 1.1 0.46 ± 1.2 0.53 ± 1.2

%50th 109.4 ± 25 115.5 ± 30 117.8 ± 31

%95th 89.0 ± 11 85.0 ± 18 83.5 ± 21

Log %50th 4.3 ± 11 9.9 ± 20 13.3 ± 23

Obesity (%) 10.6% 16.7% 18.3%

Severe obesity (%) 1.6% 5.4% 6.9%

a
Values are based on a child’s initial examination.
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TABLE 2

Within-child variability for each metric according to initial BMI

Initial BMI

Severe Obesity

Initial BMI <85th Percentile
(n = 180 433)

85th to <95th 
Percentiles
(n = 40 919)

100 to <120% of 
95th
(n = 29 663)

120 to <140% of 
95th
(n = 10 207)

≥140% of 95th
(n = 4896)

Ratio of highest 
to lowest 
within-child 
SDs

BMI 0.58a 0.85 1.05 1.24 1.46 2.5

BMIz 0.27 0.20 0.15 0.08 0.06 4.5

Extended BMIz 0.27 0.19 0.14 0.16 0.21 1.9

%50th 4.23 5.71 6.91 7.06 8.07 1.9

%95th 2.43 3.35 4.04 4.39 5.07 2.1

Log %50th 3.05 3.60 3.85 3.56 3.36 1.3

a
Except for the final column, all values represent the mean within-child SD within the specified BMI category.
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TABLE 3

Correlations between each metric’s mean value and its within-child SD over 10 to 14 months

Age Group (year)a

Overall 2 to <6 6 to <12 12 to <18

N: 285643 92 927 109 633 83 083

BMI 0.47 0.37 0.49 0.40

BMIz −0.37 −0.31 −0.41 −0.45

Extended BMIz −0.32 −0.31 −0.32 −0.35

%50th 0.31 0.32 0.38 0.39

%95th 0.35 0.30 0.35 0.38

Log %50th 0.13 0.17 0.16 0.10

a
Based on age at first exam.
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