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Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver 
disorders of varying severity, ultimately leading to fibrosis. This spectrum 
primarily consists of NAFL and non-alcoholic steatohepatitis. The pathogenesis of 
NAFLD is closely associated with disturbances in the gut micr-obiota and 
impairment of the intestinal barrier. Non-gut commensal flora, particularly 
bacteria, play a pivotal role in the progression of NAFLD. Notably, Porphyromonas 
gingivalis, a principal bacterium involved in periodontitis, is known to facilitate 
lipid accumulation, augment immune responses, and induce insulin resistance, 
thereby exacerbating fibrosis in cases of periodontitis-associated NAFLD. The 
influence of oral microbiota on NAFLD via the “oral-gut-liver” axis is gaining 
recognition, offering a novel perspective for NAFLD management through 
microbial imbalance correction. This review endeavors to encapsulate the intricate 
roles of oral bacteria in NAFLD and explore underlying mechanisms, 
emphasizing microbial control strategies as a viable therapeutic avenue for 
NAFLD.
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Core Tip: Non-alcoholic fatty liver disease (NAFLD) is a significant concern within the realm of chronic liver diseases, 
notably affecting economic health. The disruption of intestinal flora balance by oral bacteria accelerates the progression of 
NAFLD. Moreover, through the inflamed oral mucosa, these bacteria and their virulence factors may enter the bloodstream, 
leading to systemic inflammation. Therefore, an innovative therapeutic approach for NAFLD involves strategic adjustments 
to the microbial balance within the oral cavity and gastrointestinal tract. This review succinctly delineates the roles and 
mechanisms of oral bacteria in NAFLD, providing a foundational framework for future therapeutic strategies.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) covers a spectrum of liver disorders, varying in severity from fatty liver to 
advanced fibrosis, including NAFL and non-alcoholic steatohepatitis (NASH). In the United States, the prevalence of 
NAFLD was reported at 83.1 million cases in 2015, approximately 25% of the population, and is projected to rise to 100.9 
million by 2030[1]. In China, current prevalence rates hover around 30%[2]. Within a timeframe of 2-3 years, 15%-20% of 
NAFL cases and 10%-20% of NASH cases may advance to cirrhosis[3]. NAFLD is a critical factor in the progression to 
end-stage liver disease and hepatocellular carcinoma[4], with those affected exhibiting a 65% heightened risk of 
cardiovascular diseases compared to the general populace[5]. The global recognition of NAFLD as a leading cause of 
chronic liver disease underscores its escalating prevalence and the significant economic challenge it poses.

The human oral cavity ranks as one of the most microbially diverse regions within the body, harboring around 776 
unique bacterial species. According to the Human Oral micro-biome Database (https: www.ehomd.org/), 58% of these 
species are identified, 16% remain unnamed yet cultivated, and 26% are known solely as uncultivated phylotypes. 
Disruptions in the balance of the oral microbiota can precipitate a variety of oral health issues, such as periodontitis and 
dental caries, while also exerting wider systemic impacts. Increasingly, evidence suggests that oral bacteria influence the 
gut microbial ecology and liver metabolism through both the bloodstream and direct ingestion.

The oral-gut axis demonstrates a substantial correlation with NAFLD, including the translocation of bacteria from the 
oral cavity to the gastrointestinal tract and the interplay between oral and gut microbiomes[6]. Bacterial migration occurs 
via three primary pathways: The enteral route, the hematogenous route, and immune cell migration[7]. Notable 
periodontal pathogens, such as Porphyromonas gingivalis (P. gingivalis), Fusobacterium nucleatum, and Aggregatibacter actino-
mycetemcomitans (A. actinomycetemcomitans), significantly affect the gut microbiota[8-10]. Conversely, by altering the gut 
ecosystem, oral dysbiosis may intensify chronic liver diseases, such as NAFLD. Furthermore, oral dysbiosis could mirror 
the intestinal dysbiosis induced by hepatic diseases[11].

This review delves into the interactions between oral bacteria and NAFLD, scrutinizing potential mechanisms and 
exploring prospective therapeutic strategies for NAFLD.

EPIDEMIOLOGY, ETIOLOGY, AND CLINICAL DIAGNOSIS OF NAFLD
NAFLD epidemiology
Among chronic liver diseases globally, NAFLD boasts the highest prevalence, with rates varying from 13.5% in Africa to 
31.8% in the Middle East[12]. This variability can be attributed to numerous factors including dietary caloric intake, levels 
of physical activity, distribution of body fat, socioeconomic status, and genetic factors. Notably, the African-American 
population exhibits the lowest incidence of NAFLD, while the Hispanic demographic shows a higher prevalence of 
NASH[13]. A significant correlation exists between NAFLD and metabolic syndrome, with high prevalence rates in 
individuals manifesting type 2 diabetes, central obesity, dyslipidemia, and metabolic syndrome-affecting 47.3%-63.7% of 
patients with type 2 diabetes and up to 80% of obese individuals[14,15]. Importantly, NAFLD can also develop in 
individuals with healthy body mass indices (BMIs), often classified as non-obese or lean NAFLD[16], which typically 
presents with central obesity or other metabolic risk factors[17].

NAFLD etiology
Day et al[18] initially proposed the “two-hit” theory for the pathogenesis of NAFLD, suggesting a two-step process 
involving lipid accumulation in hepatocytes in 1998. However, this theory has since been considered oversimplified, with 
current understanding acknowledging the complexity of NAFLD pathogenesis through multifaceted interactions across 
various stages. The disease is primarily driven by ectopic fat accumulation due to macrophage infiltration of visceral 
adipose tissue. Lipid metabolic imbalances lead to the generation of lipotoxic lipids, which trigger cellular stress 
(oxidative and endoplasmic reticulum stress), inflammasome activation, cellular death, tissue regeneration, and fibrosis
[19,20]. Furthermore, NAFLD is associated with metabolic dysregulation and inflammation, influenced by interactions 
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between the liver and both the intestinal and oral microbiota. Epidemiological evidence suggests periodontitis as an 
independent risk factor for NAFLD progression[21], supported by findings of hepatic lipid deposition in mice with P. 
gingivalis-induced periodontitis and altered gut microbial compositions in NAFLD patients[22], highlighting a potential 
pathogenic mechanism of the disease and NAFLD patients have altered gut microbial compositions[23,24].

NAFLD clinical diagnosis
The diagnosis of NAFLD involves identifying steatosis in the absence of secondary causes such as alcoholic hepatitis, 
followed by stratifying the risk for NASH and fibrosis[25]. Abdominal ultrasonography, which shows a bright hepatic 
echo texture and blurred hepatic vasculature[26], is the most commonly used method to detect steatosis. However, its 
sensitivity for detecting mild steatosis is limited, necessitating additional magnetic resonance imaging evaluations[27]. 
Risk stratification based on the presence of significant fibrosis is crucial for all NAFLD patients, given its critical role in 
prognosis. Non-invasive methods include the enhanced liver fibrosis score[28], serum aspartate aminotransferase (AST) 
to alanine aminotransferase (ALT) ratio[27], and ultrasonic imaging[29]. While these methods are notable, limitations 
exist in early diagnosis, making liver biopsy the gold standard for fibrosis assessment in NAFLD patients.

MICROBIAL DISORDERS IN INTESTINAL EPITHELIUM
In addition to the skin, the intestinal epithelium constitutes the body’s second largest physical barrier[30]. It functions 
selectively, facilitating nutrient absorption, obstructing pathogenic invasions, limiting water and electrolyte depletion, 
and promoting waste elimination[31]. The epithelium, comprising intestinal epithelial cells, features tall villi interspersed 
with specialized cells such as paneth cells, goblet cells, enteroendocrine cells, and M cells. Paneth cells protect stem cells 
by releasing antimicrobial peptides (AMPs), including α-defensins, lysozyme C, and phospholipases[32]. Goblet cells are 
integral to mucin secretion, critical for forming a mucous layer that lubricates and shields epithelial cells, and aids in 
antigen presentation alongside M cells[33]. Enteroendocrine cells discharge various hormones, and tuft cells specialize in 
chemosensation[34]. The intestinal epithelium is increasingly recognized as a pivotal element of mucosal immunity, 
housing about 70% of the body’s lymphocyte population and establishing itself as the largest immune organ[35]. A key 
feature of intestinal mucosal immunity is the presence of mucosa-associated lymphoid tissue, encapsulated by follicle-
associated epithelium, which underpins the intestinal response to external antigens, especially those from ingested 
bacteria[36]. Ultimately, the barrier function of the intestinal epithelium is multifaceted, encompassing epithelial cells, the 
mucous layer, the lamina propria, blood circulation, and the microbiota, working collectively to maintain intestinal 
equilibrium and prevent the entry of harmful substances and microbes.

Dysregulation of symbiotic microbiota and consequent mucosal immune imbalances serve as a common patho-
physiological feature in oral inflammatory diseases, especially periodontitis and NAFLD (Figure 1). Extensive research 
highlights the close link between the development of human NAFLD and gut microbiota imbalances[37,38]. Germ-free 
(GF) animal models are routinely used to explore the effects of an absent gut microbiota on host physiological functions
[39]. Under various dietary conditions, GF animals show resistance to obesity, a phenomenon connected to activity in 
specific genes and enzymes[40,41]. Microbiota transplantation studies have confirmed the relationship between gut 
microbiota, obesity, and energy intake[42,43]. Regarding liver conditions, gut microbiota alters specific hepatic gene 
expressions and metabolism, potentially affecting NAFLD progression[44-46]. In summary, GF conditions influence 
metabolism, obesity, and NAFLD-related phenotypes. Microbiota transplantation experiments reinforce the causal link 
between microbiota composition and NAFLD vulnerability[47]. Whole-genome sequencing has identified differences in 
gut microbiota composition between patients with mild/moderate NAFLD and those with severe fibrosis[24]. Numerous 
clinical trials indicate that microbial dysbiosis correlates with the severity of NAFLD outcomes, with patients showing 
increased Bacteroides and reduced Phylum Firmicutes facing worse results[48-51]. The progression from NAFLD to NASH 
may also involve gut microbiota[52]. Regarding bacterial species, specific strains (e.g., Dorea, Lactobacillus, Roseburia, and 
Robinsoniella) are linked to an increased risk or presence of NAFLD[53-55]. Studies also report increased bacterial ethanol 
production in the intestines of NASH patients[56]. The various mechanisms by which gut bacterial imbalances drive 
NAFLD progression will be discussed later, but it is clear that microbial dysbiosis plays a significant role in NAFLD 
development through diverse pathways.

MICROBIAL DISORDERS IN ORAL EPITHELIUM
As a critical mucosal barrier, the oral mucosa prevents pathogenic invasions and maintains homeostasis. It is composed of 
stratified squamous epithelium, divided into masticatory, lining, and specialized mucosae[57]. The masticatory mucosa, 
found in areas such as the gums and hard palate, is adapted to endure frequent mechanical stress. In contrast, the 
specialized mucosa, located primarily on the tongue’s dorsal surface, contains nerve endings sensitive to taste and 
general sensations. The rest of the oral cavity, including the inner surfaces of the lips, cheek mucosa, soft palate, and 
mouth floor, is lined by mucosa that may be partially keratinized or non-keratinized, depending on the area and its 
exposure to physical stimuli. Unlike the intestinal epithelium, the oral epithelium generally lacks chemosensory cells, 
hormone, or mucin-producing cells, and harbors a more diverse microbial community. Oral epithelial cells display 
unique keratin expression patterns, enhancing immune tolerance in the oral mucosa[58]. Nevertheless, this tolerance is 
not absolute, as the junctional epithelium and tonsillar crypt epithelium are particularly susceptible sites. The junctional 
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Figure 1 Disruption of intestinal mucosal barriers by pathogenic microorganisms. Pathogenic microorganisms elevate levels of pathogen-associated 
molecular patterns, lipopolysaccharide, ethanol, and secondary bile acids in the intestinal mucosa, leading to a decrease in protective intestinal mucus and short-
chain fatty acids. This exacerbates local inflammation and enhances intestinal permeability. As a result, pathogenic microorganisms and their virulence factors are 
transported to the liver via the portal venous system, facilitating the progression of non-alcoholic fatty liver disease. PAMP: Pathogen-associated molecular; LPS: 
Lipopolysaccharide; NASH: Non-alcoholic steatohepatitis; TNF-α: Tumour necrosis factor alpha; INF: Interferon; SCFAs: Short-chain fatty acids.

epithelium, connecting teeth and subgingival tissues, is only 3-4 cell layers thick and lies near dental plaque biofilms. The 
tonsillar crypt epithelium, part of Waldeyer’s ring, contains M cells that present antigens to stimulate adaptive immune 
responses, thus providing structural pathways for pathogens to invade from the mouth[57,59,60].

The oral microbiota is diverse and dynamic[61], with complex microbial communities in the mouth influencing the 
induction, training, and function of mucosal immunity by forming micron-scale microbial habitats and niches[62]. 
Microbial imbalances are pathogenic factors for common oral diseases like periodontitis[63] and oral candidiasis[64], 
where the IL-17/Th17-dependent pathway plays a central role in controlling oral mucosal infections and inflammation. 
Microbial dysbiosis results in the aggregation of IL-6, IL-23-dependent Th17 cells in the gingival sulcus, leading to 
neutrophil recruitment and subsequent alveolar bone loss[59]. A delicate ecological balance, maintained by the interplay 
between the microbiota and the immune system, is crucial. Disruption of this balance results in mucosal immune 
imbalances and pathological changes. Certain periodontal pathogens, including A. actinomycetemcomitans, P. gingivalis, T. 
forsythia, and T. denticola, can induce inflammatory responses and disrupt intercellular junctions[65,66]. Bacteria 
possessing virulence factors proliferate in inflamed states and can enter the bloodstream through compromised oral 
mucosa, thereby exerting deleterious effects on NAFLD (Figure 2).

PERIODONTITIS IS A RISK FACTOR FOR NAFLD
Epidemiological studies have indicated a connection between periodontitis and NAFLD, with genome-wide association 
studies suggesting a positive causal relationship between the two conditions[67]. Periodontitis and elevated serum ALT 
levels were found to be significantly correlated in the study by Furuta et al[68]. In research conducted by Kim et al[69], the 
fatty liver index and periodontal disease were associated, with a greater correlation observed in females. Furthermore, 
NAFLD and the number of missing teeth are significantly correlated in males, according to the study by Qiao et al[70].

Periodontitis is a bacterial oral disease in which P. gingivalis, a non-fermentative Gram-negative anaerobic rod, emerges 
as a crucial periodontal pathogen. A latent connection between P. gingivalis and NAFLD has been discovered. Patients 
with NAFLD exhibit higher levels of P. gingivalis and its DNA in the oral cavity or liver compared to controls[71,72]. 
Furthermore, those infected with P. gingivalis and suffering from NASH show more severe fibrosis[71]. Additionally, 
evidence from numerous in vivo experiments suggests that P. gingivalis infection can promote lipid accumulation, 
intensify immune responses, and induce insulin resistance, highlighting its significant role in NAFLD/NASH progression
[73]. Translocated oral microbes, such as P. gingivalis, disrupt the balance of gut microbiota, which can exacerbate NAFLD 
through various mechanisms[74-76]. These include altering intestinal permeability, modulating energy absorption 
evidenced by increased dietary fat intake promoting hepatic fat deposition[41,77-79], regulating bile acid metabolism as 
seen in changes in bile acid composition due to gut microbiota dysbiosis[80-82], and increasing endogenous ethanol 
production[56,83].
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Figure 2 Disruption of oral mucosal barriers by pathogenic microorganisms. Pathogenic microorganisms enhance Th17 cell secretion of interleukin 
(IL)-17 through stimulating factors, including IL-6 and IL-23, which leads to neutrophil aggregation and activation. Concurrently, oral epithelial cells reduce the 
expression of Claudin-1, Claudin-4, and E-cadherin, thereby increasing barrier permeability. This alteration elevates the risk of pathogenic microorganisms entering 
the bloodstream and reaching the liver. IL: Interleukin.

ASSOCIATION BETWEEN ORAL BACTERIAL AND NAFLD
Oral microbiota is implicated in various oral diseases such as periodontitis and dental caries. Recent research has 
highlighted an increasingly clear link between these microbiota-related oral conditions and NAFLD. The multifaceted 
interaction among oral microbiota, the intestinal barrier, the immune system, and the liver is susceptible to disruption by 
environmental and genetic factors, potentially leading to systemic diseases. A significant physiological relationship exists 
among the oral cavity, intestine, and liver, forming the “oral-gut-liver” axis. In this context, the balance of gut microbiota 
plays a critical role in NAFLD progression[84]. Additionally, dysbiosis of oral microbiota has been associated with 
imbalances in gut microbiota[85-87]. The connection between the oral cavity and the liver could be mediated through 
bacterial translocation, inflammatory responses, bacterial virulence factor toxicity, and disruptions in lipid metabolism 
(Figures 3 and 4).

Oral microbial translocation
The translocation of oral bacteria to the gut is a pathogenic step in the development of NAFLD, occurring chiefly through 
hematogenous routes and direct swallowing. Micro-ulcerations within periodontal pockets facilitate systemic bacterial, 
endotoxin, and inflammatory mediator dissemination, enabling their access to the liver via the hepatic artery. In contrast, 
healthy gingival epithelium in periodontal tissue acts as a protective barrier against harmful biofilm components[88]. 
However, inflammation in diseased tissues increases capillary permeability[89], enhances gingival epithelium perm-
eability, and triggers micro-ulceration formation, thus allowing toxic substances and microbes to invade the circulatory 
system through periodontal tissues. Dental procedures or poor oral hygiene can lead to transient bacteremia, with a noted 
increase in lipopolysaccharide (LPS) content in circulating bacteria among individuals with periodontal disease compared 
to healthy ones[90-92]. Studies by Furusho et al[71] showed that approximately 53% of NAFLD patients had liver biopsy 
samples containing P. gingivalis, with those suffering from periodontitis displaying higher liver fibrosis scores. Takeuchi 
et al[93] found that hyperglycemia facilitates the movement of P. gingivalis from the oral cavity to the liver, suggesting 
that oral bacteria might influence NAFLD through the bloodstream.

Another potential pathway for communication between oral bacteria and NAFLD involves the ingestion of oral 
bacteria via saliva, which may subsequently impact the gut microbiota and, consequently, NAFLD. An individual 
swallows up to 1.5 liters of saliva daily, containing approximately 1.5 × 1012 oral bacteria[94]. Animal research suggests 
that consuming oral bacteria associated with periodontal disease, such as P. gingivalis and Actinomyces, can lead to gut 
microbiota changes. These changes disrupt metabolic pathways related to glucose and lipid metabolism, resulting in 
insulin resistance and hepatic lipid accumulation[95]. It is important to note that the causal relationship between oral 
bacterial colonization and the development of intestinal dysbiosis is still debated. Although the acidic gastric 
environment is fatal for most bacteria, oral microbes are often found in the intestines of healthy individuals; a reduced 
gut microbiota diversity is observed in patients with periodontal disease[96,97]. Alternatively, some studies suggest that 
oral bacterial colonization in the gut may depend on the disruption of the intestinal milieu, potentially associated with 
excessive antibiotic and proton pump inhibitor use, poor dietary choices, and high levels of psychological stress[98,99].
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Figure 3 The connection between oral microbiota and non-alcoholic fatty liver disease. Oral microbiota plays a significant role in advancing liver fat 
deposition, inflammatory responses, and fibrosis, thus expediting the progression from non-alcoholic steatohepatitis to non-alcoholic fatty liver disease. This effect is 
mediated through four principal mechanisms: Translocation of oral microbes, inflammatory responses, virulence factors of oral microbes, and disruptions in lipid 
metabolism. OMV: Outer membrane vesicles; LPS: Lipopolysaccharide; INF-α: Interferon alpha; IL: Interleukin; VLDL: Very-low-density lipoprotein; NAFLD: Non-
alcoholic fatty liver disease.

Inflammatory responses
In the oral and intestinal regions, the symbiotic relationship between the immune system, epithelial cells, and microbiota 
is essential for maintaining tissue function and systemic homeostasis. The immune response to periodontitis and 
intestinal inflammatory diseases facilitates the growth of pathogenic bacteria. Yao et al[100] identified that Porphyromonas 
gingivalis disturbs the Th17/Treg cell balance in the liver and spleen, leading to hepatocyte ferroptosis and increased 
hepatic inflammation, with the nuclear factor κB (NF-κB) signaling pathway playing a critical role[101]. Kitamoto et al
[102] found that periodontal disease promotes growth of oral pathogens like Klebsiella and Enterobacter, which can 
exacerbate intestinal inflammation when they colonize the gut. In mouse models of colitis, heightened intestinal nitrate 
levels led to a dominance of nitrate-respiring Enterobacteriaceae over anaerobic commensals, exacerbating the disease
[103]. Oral microbes are key players in nitrate reduction due to their nitrate reductase activity[104,105]. The TH17 inflam-
matory pathway also contributes to the progression of intestinal inflammation linked to periodontitis[63,106-108]. Studies 
have shown that oral TH17 cells can migrate to the gut and stimulate inflammatory reactions there, highlighting the oral-
intestinal interconnection in mucosal inflammation[102]. Zhao et al[109] demonstrated that topical administration of AMP 
Mastoparan X alleviates intestinal inflammation induced by Escherichia coli and helps restore balance to the gut mic-
robiota.

Oral microbiota can induce systemic inflammatory cytokines and oxidative stress, affecting inflammation. In period-
ontitis, levels of pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-α) and interleukin (IL)-6[110], as 
well as serum pro-inflammatory adipokines (e.g., leptin, visfatin, and resistin), are increased[111,112], whereas the anti-
inflammatory adipokine adiponectin decreases, potentially exacerbating inflammatory responses and lipid accumulation. 
Tomofuji et al[113] observed that periodontitis was linked to oxidative DNA damage in the liver. Matthews et al[114] 
reported that peripheral neutrophils from individuals with chronic periodontitis exhibited an increased in vitro 
production and release of reactive oxygen species. Önder et al[115] discovered that clinical interventions in periodontal 
treatment reduced serum reactive oxygen species and lipid peroxide levels in periodontitis patients, indicating that 
systemic oxidative stress associated with periodontitis may lead to hepatic oxidative damage.

Oral microbial virulence factors
P. gingivalis, a Gram-negative anaerobic bacterium found in the oral cavity, can colonize oral epithelial cells[116]. It 
possesses numerous virulence factors such as fimbriae, LPS (including LPS-induced endotoxemia), gingipains, and outer 
membrane vesicles (OMV). These factors are pivotal in the bacterium’s survival, dissemination, and pathogenicity[117,
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Figure 4 Microbial control strategies for treating non-alcoholic fatty liver disease. The management of non-alcoholic fatty liver disease (NAFLD) 
through microbial control includes the use of antibiotics, prebiotics, probiotics, synbiotics, and fecal microbiota suppression to regulate oral and gut microbiomes, 
maintain microbial balance, and protect mucosal barriers, ultimately reducing the bacterial influence on NAFLD.

118].
FimA, a specific fimbria found in P. gingivalis, is associated with the onset of NAFLD[119]. FimA can interact with 

various host receptors, activating adhesion and immune-inflammatory pathways, thereby promoting bacterial 
colonization and triggering host cell inflammation[120-122]. FimA binds to Toll-like receptor 2 (TLR2), triggering the 
activation of the NF-κB system and leading to the production of inflammatory cytokines[123]. Furthermore, through its 
interaction with complement receptor 3, FimA activates the innate immune system, thereby stimulating macrophages/
monocytes. This enhances the persistence and survival of P. gingivalis[124].

Gingipains are primary virulence factors linked to the pathogenicity of P. gingivalis[125]. They play a crucial role in 
biofilm formation and elicit immune-inflammatory responses by activating various immune cellss[124,126]. Gingipains 
may evade the host’s adaptive immune system by modulating T-cell immunity[127]. Furthermore, gingipains could be 
implicated in glucose metabolic damage and insulin resistance, meriting additional research.

Biofilms and OMVs represent two crucial structures produced by microbes, which play essential roles in bacterial 
survival, dissemination, and pathogenicity[128,129]. The OMV of P. gingivalis have the capability to transport virulence 
factors, including gingipains and LPS. These vesicles can release these virulence factors into the environment, cont-
ributing to P. gingivalis’s involvement in diseases associated with bacteria[130,131]. OMVs may also play a role in the 
development of NAFLD by adversely affecting glucose metabolism and insulin sensitivity[132]. In summary, the 
virulence components of P. gingivalis contribute to bacterial defense, activating various risk factors for NAFLD and 
influencing its pathogenicity.

LPS, a component of the outer membrane of Gram-negative bacteria, is vital for microbial pathogenicity[133,134]. Its 
active component, lipid A, is known for its pyrogenic, pro-inflammatory, and toxic effects on humans and animals. To 
mitigate these effects, the human innate immune system harbors cells that express LPS receptors, such as TLR4 and CD14, 
which elicit a strong inflammatory response to LPS[135]. In NAFLD, increased gut-derived endotoxemia, marked by 
elevated blood LPS levels due to higher gut permeability, is a crucial factor driving disease advance[136-138]. This leads 
to systemic inflammatory reactions, including raised levels of C-reactive protein, IL-6, and TNF-α[139]. LPS significantly 
contributes to the activation of host inflammatory responses through Toll-like receptor (TLR) activation[140]. Studies 
have shown that P. gingivalis LPS’s impact on NAFLD may involve higher expression of TLR2, mRNA levels of inflam-
masomes, and increased production of pro-inflammatory cytokines[71]. Specifically, in the context of a fatty liver, there is 
an enhanced sensitivity to LPS, likely due to Kupffer cell proliferation and augmented expression of Toll-like receptors
[141,142].

Disruptions in lipid metabolism
NAFLD is recognized as the hepatic manifestation of metabolic syndrome, characterized by obesity, insulin resistance, 
hypertension, and dyslipidemia, common to both conditions[143]. Insulin resistance, leading to hepatic fat accumulation, 
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initiates NAFLD, triggering inflammatory responses that may result in liver fibrosis[144]. The oral microbiota contributes 
to NAFLD progression by promoting insulin resistance, leading to metabolic syndrome. In animal models with ligature-
induced periodontitis, increased inflammatory factors, total cholesterol, and triglycerides altered liver glucose and fat 
metabolism, evidenced by increased liver cell lipid droplets and enlarged mitochondria[145-147]. Obesity and diabetes, 
components of metabolic syndrome, are significant risk factors for periodontal disease, suggesting NAFLD may indirectly 
influence periodontal disease pathophysiology through the shared pathway of metabolic syndrome.

The intracellular mechanisms activated by P. gingivalis primarily result in the inhibition of hepatic glycogen synthesis, 
which leads to fat deposition and the promotion of fibrosis. In the context of hepatic glycogen synthesis, Ishikawa et al
[148] documented the internalization of P. gingivalis into HepG2 human liver cells. This process is linked to the inhibition 
of glycogen synthesis, affecting the phosphorylation of insulin receptor-1, serine/threonine kinase, and glycogen syn-
thase kinase 3β (GSK3β). Another investigation on P. gingivalis showed that its gingipains might be transported to mouse 
liver via OMVs, impairing the Akt/GSK3β signaling pathway[149]. This disruption leads to hindered hepatic glycogen 
synthesis, thereby affecting insulin response. Zaitsu et al[150], employing an in vitro model of NAFLD, discovered that P. 
gingivalis could inhibit lipid droplets in liver cells by modifying lysosome formation and autophagy. Concerning fibrosis, 
Nagasaki et al[11] identified that gingipains from P. gingivalis could prompt the production of TGF-β2, subsequently 
upregulating Smad and extracellular signal-regulated kinase phosphorylation, which activates hepatic stellate cells. These 
pathways may be exacerbated in fatty liver due to the increased receptor expression related to hepatic fat accumulation.

ORAL AND GUT MICROBIOME-TARGETED THERAPY: A NEW POTENTIAL TREATMENT OF NAFLD
Dietary habits are widely recognized as a crucial factor influencing NAFLD, with the management of caloric intake and 
the incorporation of appropriate physical activity serving as a key non-pharmacological therapeutic strategy for NAFLD
[151]. Recent research has underscored the beneficial effects of addressing periodontal disease in individuals with 
NAFLD, as demonstrated by the reduction in AST and ALT levels, improvement in serum inflammatory mediators, and 
decrease in endotoxins[152,153]. The newly established “oral-gut-liver” axis reveals innovative strategies for the 
prevention and treatment of NAFLD, particularly through the reduction of oral pathogens and correction of gut micr-
obiota imbalance.

Oral microbiota control
Owing to periodontal disease’s substantial impact on NAFLD, enhancement of oral hygiene and strategic management of 
pathogenic oral bacteria represent effective interventions for NAFLD associated with bacterial infection. As noted earlier, 
P. gingivalis plays an essential role in the interplay between oral bacteria and NAFLD, thus targeting it is an emerging 
approach. Strategies include employing AMPs to obstruct P. gingivalis adherence to host cells[154], deploying anti-CR3 
receptor agents to diminish bacterial attachment[155], utilizing gingipain inhibitors to alleviate periodontitis and related 
systemic conditions[156], and regulating OMV production to impede biofilm development[133]. However, current 
research on these agents in the context of NAFLD related to pathogenic oral bacteria like P. gingivalis is preliminary and 
warrants further investigation.

Improve gut microbiota dysbiosis
Numerous methods exist to manipulate the gut microbiota, which include the use of antibiotics, prebiotics, probiotics, or 
a combination thereof termed synbiotics. These agents can influence the development of NAFLD through anti-inflam-
matory effects, enhancement of epithelial barrier function, reduction in ethanol production by gut microbiota, and 
modulation of bile acid and choline metabolism[157-159].

Appropriate antibiotic therapy
While the widespread use of antibiotics necessitates caution due to their potential to eliminate essential microbial species 
and foster antibiotic-resistant strains, their impact on NAFLD has been explored in various studies. For instance, 
alternating the administration of norfloxacin and neomycin has been effective in reducing small intestinal bacterial 
overgrowth and improving liver function in individuals with cirrhosis[160]. Additionally, long-term oral antibiotic 
treatment in animal models has been effective in suppressing gut bacteria, lowering portal secondary bile acids, and 
mitigating hepatic inflammation and fibrosis[161]. Concurrent administration of neomycin, bacitracin, and streptomycin 
has also been associated with decreases in hepatic triglycerides, lipid accumulation, and serum ceramide production in 
murine models[162]. Thus, while antibiotics can alter the gut microbiota and potentially slow the progression of liver 
diseases, their therapeutic use is limited due to the risk of developing antibiotic resistance.

Prebiotics, probiotics, and synbiotics
Prebiotics, non-digestible food components, foster the growth of beneficial gut microbiota[163]. They stimulate gut-
mediated metabolic alterations, including the reduction of bacterial hepatotoxins, fortification of the intestinal epithelial 
barrier, and reduction in inflammation, potentially aiding in the mitigation of NAFLD. Prebiotics enhance bacterial 
synthesis of short-chain fatty acids, encouraging the proliferation of Bifidobacteria and Lactobacilli[164]. Probiotics, 
consisting of live bacteria or yeast, have been thoroughly researched, with many studies demonstrating their effectiveness 
in improving NAFLD. For instance, Lactobacillus rhamnosus GG supplementation has been linked with decreased ALT 
levels and anti-peptidoglycan-polysaccharide antibodies, offering benefits to NAFLD patients[165]. AMPs from Lactoba-
cillus, such as lactococcin, exhibit antibacterial properties against pathogens with a lower propensity for fostering 
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antibiotic resistance[166,167]. Probiotic supplementation may also increase GLP-1 levels, contributing to ameliorations in 
fatty liver and BMI[168]. Synbiotics, which combine probiotics and prebiotics, are proposed to yield synergistic effects in 
NAFLD treatment[169].

Fecal microbiota transplantation
Fecal microbiota transplantation (FMT) entails transferring fecal matter from a healthy donor to a patient, with the goal of 
restoring gut microbiota balance. FMT has demonstrated efficacy in combating Clostridium difficile infections and is 
viewed as potentially applicable to a range of non-gastrointestinal diseases[170].

CONCLUSION
In summary, a growing compendium of clinical and fundamental research corroborates the association between oral 
bacteria and NAFLD, particularly among individuals with diabetes and metabolic syndrome. P. gingivalis emerges as a 
principal agent in fostering hepatic lipid accumulation and inflammation. Oral bacteria precipitate NAFLD via multiple 
pathways, including bacterial translocation, induction of inflammatory responses, secretion of toxic factors into the 
bloodstream, and perturbation of liver lipid metabolism. Furthermore, these microorganisms may alter the equilibrium of 
the gut microbiota through mechanisms such as hematogenous dissemination and direct ingestion. In this context, a 
dysbiotic gut micro-biome may produce deleterious substances (e.g., LPSs and ethanol), compromising the intestinal 
barrier and adversely affecting liver health. However, elucidating the precise mechanisms through which oral bacteria 
impact NAFLD remains challenging, hindered by the complexity of in vitro culturing of oral bacteria and the individual 
variability in the “oral-gut-liver” axis, influenced by dietary habits. Additionally, the synergistic interactions between oral 
and gut microbiota and their contribution to insulin resistance in the context of periodontitis, diabetes, metabolic 
syndrome, and NAFLD warrant further investigation.
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