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Abstract

Generating pangenomic datasets is becoming increasingly common but there are still few tools 

able to handle them and even fewer accessible to non-specialists. Building compressed suffix trees 

(CSTs) for pangenomic datasets is still a major challenge but could be enormously beneficial to 

the community. In this paper, we present a method, which we refer to as RePFP-CST, for building 

CSTs in a manner that is scalable. To accomplish this, we show how to build a CST directly 

from VCF files without decompressing them, and to prune from the prefix-free parse (PFP) phrase 

boundaries whose removal reduces the total size of the dictionary and the parse. We show that 

these improvements reduce the time and space required for the construction of the CST, and the 

memory footprint of the finished CST, enabling us to build a CST for a terabyte of DNA for the 

first time in the literature.

1. Introduction

High-throughput sequencing technologies have allowed many fields—from plant biology 

[17] to human genetics [16]—to generate pangenomic datasets, which could bring enormous 

benefits. However, researchers must be able to process terabytes of DNA efficiently for 

those benefits to be realized, and there are few tools that work well at that scale. Hence, 

computation is now the bottleneck in pangenomics and we need powerful, general-purpose 

compressed data structures to catch up with sequencing. Compressed suffix trees (CSTs) 

could satisfy this need since they offer the same functionality as conventional suffix trees

—which have been a standard data structure for nearly 50 years and are used in myriad 

algorithms and applications (see, e.g., [9,12,13])—but have so far been unable to handle a 

terabyte of data. Nonetheless, a few CST implementations have recently been proposed for 

pangenomics—notably Gagie et al.’s [7] based on the r-index and string attractors; Cáceres 

and Navarro’s [4], based on block trees; and Boucher et al.’s [2] based on prefix-free parsing 

(PFP), which we refer to as PFP-CST. PFP takes as input a string S and parses S into 

substrings by sliding a window of length w over the dataset, and introducing a phrase break 

whenever the hash of the contents of the window are congruent to 0 modulo a parameter p. 

We refer to such substrings of length w as trigger strings and include them both as a suffix 

of the preceding phrase and as a prefix of the next phrase. This means that no phrase-suffix 
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of length greater than w is a proper prefix of any other phrase-suffix, giving the parsing its 

name and allowing us to build a BWT directly from the dictionary of distinct phrases [3]. It 

was initially developed to build the r-index [3,10], it was later also used to build the XBWT 

[6] and the eBWT [1].

We present a scalable CST construction algorithm that also uses PFP but with two 

innovations. First, we develop a method to build the PFP directly from Variant Call Format 

(VCF) data, which is a compressed form of pangenomics data. A VCF file is obtained 

by aligning the sequence reads or other genomes to the reference genome and storing 

the deviations from the reference [5]. This allows for the distribution of the data in a 

more space-efficient manner, i.e., the 1000 Genomes Project data requires 21GB of space 

using VCF but requires 6TB when stored uncompressed as FASTA files [16]. Currently, 

PFP-CST—as well as other current CST implementations—takes as input a set of sequences 

and, thus, requires decompressing the VCF data before construction. Our first contribution 

eliminates this.

Next, we develop a method to optimize the dictionary and parse built by PFP. Our algorithm 

is inspired by Larsson and Moffat’s RePair [11] which repeatedly finds the most common 

pair of characters in a string and replaces all occurrences of that pair by a new character. 

Here, we remove trigger strings rather than pairs of characters. Removing a trigger string 

requires us to remove from the dictionary any phrases for which it is a suffix or prefix, add 

to the dictionary the concatenation of any pair of phrases such that the first phrase ends with 

the trigger string and the second starts with it and which appear consecutively in the parse, 

and merge the phrases in the parse that are separated by the trigger string. This can reduce 

the total size of the dictionary and parse when the trigger string occurs often in the dataset 

but only separating a few distinct pairs of phrases. For example, if a common trigger string 

is the suffix of only one distinct phrase and the prefix of only one other distinct phrase, then 

it serves no purpose and just makes the parse bigger. We keep a list of trigger strings sorted 

by how much their removal would change the total size of the dictionary and the parse, and 

auxiliary data structures that let us update efficiently after removing a trigger string. Our 

experiments demonstrate that this removal of trigger strings can reduce the combined size of 

the dictionary and parse substantially.

We refer to our resulting method as REPFP-CST, and demonstrate that it enables us to build 

a CST for significantly larger datasets than we could before: the largest dataset Boucher 

et al. considered consisted of 1000 haplotypes of chromosome 19 of the human genome, 

occupying 60GB in uncompressed FASTA format, for which they built a 20GB PFP-CST 

in 1 hour using 51GB of peak memory. For comparison, Gagie et al.’s CST based on the 

r-index and string attractors has never been implemented; Cáceres and Navarro’s CST based 

on block trees was not able to handle more than 8 haplotypes of chromosome 19; and 

the CST implementation available in SDSL 2.0 required more than 16 hours and 1TB of 

memory for only 512 haplotypes of chromosome 19.

In this paper we consider a dataset consisting of chromosomes 17, 18 and 19 from 5000 

human haplotypes, for which the FASTA files occupy just over 1TB, and try to build a 

PFP-CST for it using Boucher et al.’s construction and with REPFP-CST. The files are 
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available for download only in VCF and even just extracting the FASTA files to run Boucher 

et al.’s construction takes over 3 weeks of CPU time; eventually we gave up and built the 

PFP from the VCF to test the rest of Boucher et al.’s construction, as well as REPFP-CST. 

Building the PFP-CST from the unoptimized PFP took 14 hours of CPU time and 900GB 

of memory and the final CST was 439GB. Optimizing the PFP by removing trigger strings 

took 5.5 hours of CPU time and 152GB of memory, but then building the REPFP-CST took 

7.5 hours of CPU time and 643GB of memory and the final size of the CST was 328GB. 

As far as we know, no one has built a CST for a terabyte of data before. Our executable and 

source code is publicly available at: https://github.com/marco-oliva/pfp.

2. Preliminaries

Basic definitions.

A string S is a finite sequence of characters S = S[1..n] = S[1] … S[n] over an alphabet Σ = 

{c1, …, cσ}. We denote by ε the empty string, and the length of S as |S|. We denote by S[i..j] 
the substring S[i] … S[j] of S starting in position i and ending in position j, with S[i..j] = ε if 

i > j. For a string S and 1 ≤ i ≤ n, S[1..i] is called the i-th prefix of S, and S[i..n] is called the 

i-th suffix of S. We call a prefix S[1..i] of S a proper prefix if 1 ≤ i < n. Similarly, we call a 

suffix S[i..n] of S a proper suffix if 1 < i ≤ n. Lastly, given two strings S = S[1] … S[n] and T 
= T[1] … T[m] we define as S + T the string obtaining concatenating all the characters from 

T to S, i.e the string S[1] … S[n]T[1] … T[m].

VCF.

VCF is a widely used text-based file format for distributing and storing pangenomics data, 

e.g., 1000 Genome Project [16], and 1001 Arabidopsis Project [17]. A VCF file is built 

by aligning all sequence reads from an individual to the standard reference genome of the 

species of interest, and the genetic variants and locations of the variants are stored. The 

FASTA file containing the genome corresponding to the VCF can easily be created by 

copying the reference genome and replacing each location where there is the variation with 

the one specified in the VCF.

Review of PFP.

PFP takes as input a string S of length n, and two integers greater than one, which we denote 

as w and p. It produces a parse of S into overlapping phrases, where each unique phrase 

is stored in a dictionary. We denote the dictionary as D and the parse as P. As the name 

suggests, the parse produced by PFP has the property that no suffix of length greater than 

w of any string in D is a proper prefix of any other suffix in D. The first step of PFP is to 

append w copies of # to S, where # is a special symbols lexicographically smaller that any 

element in the Σ and S does not contain w copies of #. For the sake of the explanation we 

consider the string S′ = #wS#w1.

Next, we characterize the set of trigger strings which define the parse of S. Given a 

parameter p, we construct the set of trigger strings by computing the Karp-Rabin hash, 

1We note that this definition of PFP is equivalent to original definition that considers the string S″ = S#w to be circular
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g(t), of substrings of length w, sliding a window of length w over S′ = #wS#w, and letting T 
be the set of substrings t = S′[s..s + w − 1] where g(t) ≡ 0 (mod p) or t = #w. This set T will 

be used to parse #wS#w. Next, we formally define the dictionary D of PFP.

Given a string S and a set of trigger strings T, we define the dictionary D = {D1, …, D|D|} 

to be the set of substrings of #wS#w such that the following holds for each Di: exactly 

one proper prefix of Di is contained in T, exactly one proper suffix of Di is contained in 

T, and no other substring of Di is in T. We can build D by scanning #wS#w to find all 

occurrences of the trigger strings in T and adding to D each substring of #wS#w that starts at 

the beginning of one occurrence and ends at the end of the next one. Lastly, the dictionary is 

sorted lexicographically.

Given the dictionary D and input string S, we can easily parse S into phrases from D, 

with consecutive phrases overlapping by w characters. This defines the parse P as a 

sequence of indices of the phrases in D. We note that S can then be reconstructed from 

D and P alone. We illustrate PFP using a small example: given w = 2 and #2S#2 = 

##GATTACAT#GATACAT#GATTAGATA##, we suppose there exists a Karp-Rabin hash that 

define the set of trigger strings T to be {AC, AG, T#,##}. It follows that the dictionary D is 

equal to {##GATTAC, ACAT#, AGATA##, T#GATAC, T#GATTAG} and the parse P to be 1, 2, 4, 

2, 5, 3.

3. Methods

Here, we describe the algorithmic contributions behind REPFP-CST, namely performing 

PFP directly from VCF files and filtering trigger strings to compress PFP.

3.1 VCF to PFP

Here we assume to be working on a string S that corresponds to a reference genome, and on 

a VCF file containing the variations belonging to m sequences S1, …, Sm. This can easily be 

generalized to the case where we have multiple references and multiple VCF files. A more 

detailed explanation will be available in the full version of the paper. The objective here is to 

obtain the PFP of S, S1, …, Sm while avoiding parsing phrases of Si aligned to equal phrases 

in S (that is, those which do not contain a variation) and only parse those which are different 

(that is, those which do).

For each sequence Si, we store its variations in a list V ari = vi1, …, vij , where each vik 

is a string over the alphabet {A, C, G, T}. Similarly, we store the positions on the 

reference of the first character of each variation in a list which we denote as Posi = ri1, …, rij , 

where each rik is an integer within [1,|S|] and ri1 < ri2 < … < rij. Lastly we store the number 

of characters in the reference that the variation is going to change, which we denote as 

Leni = ℓi1 , …, ℓij , where each ℓik is an integer. These three lists allow us to represent 

most type of variation commonly stored in a VCF file, i.e. SNPs, insertions, deletions, 

substitutions and structural variants.

Given w and p, we first parse S using PFP as defined in Section 2. We denote the resulting 

dictionary, parse, and trigger strings as DS, PS, and TS, respectively. We will now create a 
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dictionary D, parse P, and trigger strings for S and V as follows. First, we add all elements 

of DS, PS, and TS to D, P, and T, respectively. Next, we generate a parse for Si using V ari, 

Posi, and Leni for each i = 1, …, m as follows. Starting with the first element of Posi (i.e., 

ri1), we add all elements of PS to the parse of Si as long as their position in S is less than 

ri1 − w , i.e., we add PS[1], …, PS[j] to the parse of Vi if DPS[1] + … + DPS[j] − jw < ri1 − w
and DPS[1] + … + DPS[j + 1] − (j + 1)w > ri1 − w. Let r′ be the last position covered by this 

parse. We create a temporary string, S r′ + 1 , …, S ri1 − 1 + vi1 + S ri1 + ℓi1 + 1 , …, S r″ , 

where r″ − w is the first position where a new trigger string occurs, and parse 

it using PFP and discard the temporary string. In general, the temporary string we 

create may include more than one variation which depends on when the parse stops, 

e.g., S r′ + 1 , …, S ri1 − 1 + vi1 + S ri1 + ℓi1 + 1 , …, S rik − 1 + vik + S rik + ℓik + 1 , …, S r″ .
Next, we add PS[j′], …, PS[j″] to the parse of Vi, where j′ corresponds to the phrase 

corresponding to S[r″] in PS, and j″ corresponds to the phrase whose position in S is less 

than rik + 1 − w. We parse the temporary string and update the parse, dictionary and trigger 

strings of Vi as we would with PFP from Section 2. We continue on in this process until all 

elements of V ari have been considered.

This approach lets us avoid re-parsing long substrings of Si that exactly match the 

corresponding substrings of S. We store the phrases that occur in Si but not S in a temporary 

dictionary, identified by their Karp-Rabin hashes, until we are finished parsing V. At that 

point we merge the dictionaries and make a pass over the parse, relabelling the phrases 

with their new lexicographic order. We note that, since it is possible to work on each Si 

independently, this process can be easily parallelized using a number of threads less than or 

equal to m (i.e. the number of sequences in the VCF file).

3.2 Compress PFP via Filtering Trigger Strings

Our method for compressing the dictionary and the parse is inspired by Larsson and 

Moffat’s RePair. We do not look for the most common pair of phrases to merge, however — 

which would be the most direct analogue of RePair — and instead we find the trigger string 

whose removal will decrease the total size of dictionary and parse the most. Moreover, when 

removing a trigger string we need to merge all the pairs that share said trigger string. To 

efficiently track the effect of removing a trigger string we formalize the problem as follows 

and introduce a cost function. We also note that the order of the removal of trigger strings 

matters.

To describe our algorithm, we begin by assuming that we parsed S into a dictionary D = 

{D1, …, D|D|} and a parse P = [p1, …, p|P|]. We aim to derive from D and P a new parse 

of S, D′ and P′, such that ||D′|| + W|P′| < ||D|| + W|P|, where ||D|| is the sum of the lengths 

of the phrases in D and W is the size in bytes of one element of the parse. To simplify the 

notation, given a phrase pi of the parse, we define |pi| = |Dpi|. Following from the definition 

of PFP, we note that each pair of consecutive phrases (pj, pj+1) in P overlaps by a trigger 

string of w characters. Therefore we define a set Li as the set of pairs of phrases (pj, pj+1) 

for each trigger string Ti, where pj ends with Ti and pj+1 starts with Ti. We also define two 

additional sets L1i (resp. L2i) that contains the first (resp. second) element of the pairs in Li, 
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i.e., L1i = p1 ∣ p1, p2 ∈ Li  and L2i = p2 ∣ p1, p2 ∈ Li . Furthermore we refer to f(p, q) as the 

frequency of the pair of phrases (p, q) in P.

Based on the set Li, we can compute the effect that removing Ti has on the total size of the 

dictionary and parse. In particular, for each merged pair the size of the parse will reduce 

by W. The total parse size reduction will amount to W times the number of occurrences 

of Ti. As for the dictionary, if a pair is merged then its size will increase by the number 

of characters in the merged phrase, and will decrease by the size of the elements of the 

pair taken singularly. We can formalize this by defining the following cost functions. We 

define CD(Ti) to be the reduction in size of the dictionary due to the removal of Ti, i.e., 

CD T i = ∑p ∈ L1i ∪ L2i |p| − ∑ p1, p2 ∈ Li p1 + p2 − w . Similarly, we define CP (Ti) as the reduction 

in the size of the parse, i.e., CP T i = ∑ p1, p2 ∈ Li f p1, p2 × W . We define the total cost of a 

trigger string Ti as C(Ti) = CD(Ti) + CP (Ti).

Hence, the algorithm to derive D′ and P′ consists of finding the trigger string with the 

highest cost, replacing each pair (p, q) of phrases overlapping in such trigger string with a 

new symbol u obtained, concatenating to D[p] all the characters of D[q] from position w + 1 

on, and updating the frequencies and costs associated with the removal of Ti. The process is 

repeated until there are no trigger strings with positive cost left.

In order to perform these updates efficiently, we construct and use the following auxiliary 

data structures. Given the dictionary D and parse P, we construct and store an array AD for 

the elements of D, and a double-linked list LP. Note that, even though AD start as a sorted 

array inheriting the ordering from D, during the procedure it looses it’s ordering.

Next, given the set of trigger strings T, we construct an indexed priority queue PQT to 

store the costs C(Ti) for each trigger string Ti in T. The indexed priority queue is a priority 

queue which allows us to change the priority value of any of the elements in the queue in 

logarithmic time with respect to the size of the queue [15, Sec. 2.4]. Finally, we construct 

an array AT of lists such that for each trigger string Ti in T we store a list of pointers to 

elements of LP that end with Ti.

To characterize the running time of the algorithm, we first give the running time of a single 

iteration in the following lemma.

Lemma 3.1 Given a set of trigger strings T, dictionary D, parse P, data structures PQT, LP, 

AT , and AD, we can remove the trigger string Ti ∈ T that occurs occ times in P, in O(occ 
log|T| + occ log occ) time and O(occ) additional space, such that the data structures PQT′, 
LP′, AT′, and AD′ are updated, where T′, D′, and P′ are the trigger string set, dictionary 
and parse obtained by the removal of Ti.

The following paragraphs give an idea of how to achieve the time and space complexity 

presented in Lemma 3.1, a detailed proof will be included in the full version of the paper. 

Let LTi be the list of occ phrases in LP that end with Ti in LP order. We construct two arrays 

AL and AR which store the triplets of phrases visited during the process with a trigger string 

different from Ti on the left or on the right, respectively. For all occurrences p ∈ LTi, let q 
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be the next element in LP, that can be obtained in O(1) time. Let Tj and Tk be the trigger 

strings at the beginning and at the end of p and q respectively, and let ℓ and r be the phrases 

preceding p and following q in LP, respectively. Then we insert (p, ℓ, q) in AL and (q, r, p) in 

AR. We will mark the occurrences of deleted phrases from AD, and append the phrase u in 

AD that represents the phrase in D obtained by the concatenation of p and q. Finally, we will 

remove the occurrence of q and replace the occurrence of p with the concatenated string in 

LP. We note that AT can be updated by ignoring the list of occurrences relative to Ti. Hence, 

for each occurrence of the trigger string Ti we take O(1) time to update the data structures.

After all the occurrences have been processed, we sort L and R in O(occ log occ) time. 

This allows to compute for each trigger string Tj the set Lj
′ = (p, ℓ , q) ∈ AL ∣ ℓ ends with 

Tj} ∪ {(q, r, p) ∈ AR | r starts with Tj} of new pairs, the set L12j = (p, q) ∣ (p, u, q) ∈ Lj
′

of new single phrases, the set Uj = (p, u) ∣ (p, u, q) ∈ Lj
′  of updated pairs, and the set 

U12j = p ∣ (p, u, q) ∈ Lj
′  of updated single phrases from which we can compute the updated 

costs of CD T j = CD T j − ∑p ∈ U12j ( | p | ) + ∑(p, q) ∈ L12j ( | p | + |q | − w) + ∑(p, u) ∈ Uj ( | p | + |u | − w)
− ∑(p, u, q) ∈ Lj′ ( | p | + |u | + |q | − 2w)

where the second and fourth terms are meant to remove the contribution of the phrases 

that are going to be merged from the previous value of CD(Tj), and the third and fifth terms 

add the contribution of the new phrases obtained by the removal of the trigger string Ti. 

Furthermore, the scan of the occurrences of Ti in LP ensure that if a phrase is repeatedly 

merged with consecutive phrases in LP then the subsequent operations produces a telescopic 

sum leading to the correct final cost update. This can happen when we have phrases that 

starts and ends with the same trigger string Ti. We note that each of the four sets can be 

obtained by sorting the original arrays AL and AR in O(occ log occ) time. Hence, the total 

time for this phase is O(occ log occ). We then update PQT in O(occ log|T|) time. In total we 

will take O(occ log |T| + occ log occ) time to remove all the occurrences of Ti.

It is also easy to see that by removing all the occurrences of Ti from the parse, and merging 

all the corresponding phrases, we generate a dictionary D′ and a parse P′ that are a valid 

prefix-free parsing of the original text S. Next, we present our main theorem. Due to page 

length, we leave the proof of this theorem to the full version of the paper.

Theorem 3.2 Given a set of trigger strings T, dictionary D, and parse P, we can obtain a 
new set of trigger strings T′, D′ and P′ such that C T i

′ ≤ 0 for all T i
′, in T′ in O(|P|+|D|+|D′| 

log|D′|+|P| log|P|)) time and O(|P|+|D|+|T| log|T|) space.

4. Experiments and Discussion

Experimental Set-up.

We implemented our method in ISO C++ 2020 and measured the performance using two 

datasets. Our first set of data was the repetitive corpus from Pizza&Chili [14], which 

is a collection of repetitive texts characterized by different lengths and alphabet sizes. 

The second dataset consists of 10 sets of variants of human chromosome 17, 18, and 19 

(chr17–19), containing 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 5000 

distinct sequences where each collection is a superset of the previous one. The smallest 
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of these datasets (chr17–19.500) has size 101.90GB and the largest (chr17–19.5000) 

has size 1017.16GB with each data point increasing in size by 100GB. The experiments 

on Pizza&Chili were performed on a server with Intel(R) Xeon(R) CPU E5–2640 v4 @ 

2.40GHz with 40 cores and 756GB of RAM, while the experiments on chr17–19 were 

performed on a server with two AMD(R) EPYC(R) 7702 processors for a total of 128 cores 

and 1028GB of memory. The running time was recorded with the Unix utility /usr/bin/

time and the memory usage with malloc_count2. We refer to disk space as the total 

number of bytes written to disk, including intermediate data. We limited the resources for 

each run to 2TB of disk space, 1TB of memory and 21 CPU days.

Results on Pizza&Chili.

We first compared the performance using Pizza&Chili and the chromosome 19s from 1000 

human haplotypes (chr19.1000). In this experiment, we only evaluated the filtering of the 

trigger strings, since Pizza&Chili includes multiple collections but none are available in the 

form of a VCF file. Although the chromosome 19 dataset is available for download only 

as a VCF, in this experiment we constructed and used the FASTA files for this dataset to 

make it consistent with Pizza&Chili. We first built the PFP on the input data and then we 

compressed with the method in Section 3.2 (REPFP). In Table 1, we report the size of the 

dictionary and parse produced by PFP, and the size of the dictionary and parse produced 

from REPFP. The space savings on the size of the PFP ranged from 1% to 57%, with 

the highest compression obtained on einstein.en.txt (57%) and the second and third 

highest compression obtained on einstein.de.txt and chr19.1000, respectively.

Results on Chromosome 17, 18, 19.

Here, we compare REPFP-CST to PFP-CST [2]. PFP-CST is the most recent CST 

implementation and was shown to require less memory and time for construction than 

Cáceres and Navarro’s block tree-based CST [4], and the CST of the SDSL library [8]. 

While REPFP-CST is able to work directly from a VCF file, PFP-CST requires the input to 

either be text or FASTA format. Therefore, we first evaluate the CPU time, memory and disk 

space that would be required to extract FASTA files from VCF using bcftools consenus, 

and thus, the savings obtained by building the dictionary and parse directly from VCF. This 

is shown in Table 2. More than 21 CPU days were needed to extract chr17–19.2500 from 

VCF, hence we were not able to evaluate PFP-CST on any bigger dataset. By building the 

PFP directly from the VCF we obtain a maximum speedup of 33.4x to build the PFP and of 

25.3x on the construction of the whole CST.

Next, in order to fully evaluate the effect filtering the trigger strings has on the CST 

construction, we eliminated the need for PFP-CST to build from a FASTA file and compared 

the performance of PFP-CST (using the PFP constructed from the VCF) to REPFP-CST. 

Figure 1 illustrates the peak memory, CPU time and the size of the CST. Filtering resulted 

in an average reduction of the size of PFP across all the collections of 36.27%, where 

the minimum was 34.87% on chr17–19.500 and the maximum was 36.67% on chr17–

19.1750. This led to an average reduction of the CPU time required to build the CST of 

2 https://github.com/bingmann/malloc_count 
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37.17% with a maximum of 45.41% and a minimum of 28.19%. Furthermore, it led to 

an average reduction of the peak memory of 27.65% with a maximum of 46.56% and a 

minimum of 22.48%. Lastly, the reduction on the size of the data structure averaged on 

21.11% with a maximum of 25.22% and a minimum of 15.30%. Note that the percentage 

reduction of CPU time, memory and disk space increased with the number of haplotypes 

in the collection ranging from 30.65% CPU time, 23.57% memory and 15.30% disk 

on chr17–19.500 to 45.41% CPU time, 28.45% memory and 25.22% disk on chr17–

19.5000.

Acknowledgments

MO, MR, and CB are funded by the National Science Foundation NSF SCH: INT (Grant No. 2013998), NSF IIBR 
(Grant No. 2029552), and National Institutes of Health (NIH) NIAID (Grant No. HG011392 and R01AI141810). 
TG is funded by NSF IIBR (Grant No. 2029552), NIH NIAID (Grant No. HG011392), and NSERC Discovery 
Grant RGPIN-07185-2020.

References

[1]. Boucher C, Cenzato D, Lipták Zs., Rossi M, and Sciortino M. Computing the original eBWT 
faster, simpler, and with less memory. In Proc. of SPIRE, pages 129–142, 2021.

[2]. Boucher C, Cvacho O, Gagie T, Holub J, Manzini G, Navarro G, and Rossi M. PFP compressed 
suffix trees. In Proc. of ALENEX, pages 60–72, 2021. [PubMed: 35355938] 

[3]. Boucher C, Gagie T, Kuhnle A, and Manzini G. Prefix-free parsing for building big BWTs. In 
Proc. of WABI, pages 2:1–2:16, 2018.

[4]. Cáceres M and Navarro G. Faster repetition-aware compressed suffix trees based on block trees. 
Inform and Comput, page 104749, 2021.

[5]. Danecek P et al. The variant call format and VCFtools. Bioinformatics, 27(15):2156–2158, 2011. 
[PubMed: 21653522] 

[6]. Gagie T, Gourdel G, and Manzini G. Compressing and indexing aligned readsets. In Proc. of 
WABI, pages 13:1–13:21, 2021.

[7]. Gagie T, Navarro G, and Prezza N. Fully Functional Suffix Trees and Optimal Text Searching in 
BWT-Runs Bounded Space. J. of the ACM, 67(1):1–54, 2020.

[8]. Gog S, Beller T, Moffat A, and Petri M. From Theory to Practice: Plug and Play with Succinct 
Data Structures. In Proc. of SEA, pages 326–337, 2014.

[9]. Gusfield D. Algorithms on Strings, Trees, and Sequences - Computer Science and Computational 
Biology. Cambridge University Press, 1997.

[10]. Kuhnle A, Mun T, Boucher C, Gagie T, Langmead B, and Manzini G. Efficient construction 
of a complete index for pan-genomics read alignment. J Comput Biol, 27(4):500–513, 2020. 
[PubMed: 32181684] 

[11]. Larsson NJ and Moffat A. Off-line dictionary-based compression. Proc. of the IEEE, 
88(11):1722–1732, 2000.

[12]. Mäkinen V, Belazzougui D, Cunial F, and Tomescu AI. Genome-Scale Algorithm Design: 
Biological Sequence Analysis in the Era of High-Throughput Sequencing. Cambridge University 
Press, 2015.

[13]. Ohlebusch E. Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and 
Phylogenetic Reconstruction. Oldenbusch Verlag, 2013.

[14]. Pizza & Chili repetitive corpus. Available at http://pizzachili.dcc.uchile.cl/repcorpus.html. 
Accessed 16 April 2020.

[15]. Sedgewick R and Wayne K. Algorithms. Addison-Wesley Professional, 2011.

[16]. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature, 
526:68–74, 2015. [PubMed: 26432245] 

Oliva et al. Page 9

Proc Data Compress Conf. Author manuscript; available in PMC 2024 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://pizzachili.dcc.uchile.cl/repcorpus.html


[17]. Weigel D and Mott R. The 1001 Genomes Project for Arabidopsis thaliana. Genome Biol, 
10(5):107, 2009. [PubMed: 19519932] 

Oliva et al. Page 10

Proc Data Compress Conf. Author manuscript; available in PMC 2024 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Oliva et al. Page 11

Proc Data Compress Conf. Author manuscript; available in PMC 2024 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Oliva et al. Page 12

Proc Data Compress Conf. Author manuscript; available in PMC 2024 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Chromosomes 17–19 construction CPU time (left), peak memory in GB (center), and data 

structure size in GB (right).
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Table 1:

Performance of REPFP for the Pizza&Chili repetitive corpus and 1000 variants of chromosome 19 in FASTA 

format. We report the alphabet size σ and dataset size n in MB. The size of the dictionary and parse before and 

after REPFP are given in MB. Lastly, we report the compression ratio and space saving provided by REPFP, 

where the compression ratio is the ratio of the total size of PFP over the total size of REPFP, while the space 

saving is 1 minus the reciprocal of the compression ratio expressed in percentage.

Description PFP RePFP Compression Metrics

Name σ n Dict Parse Dict Parse Compression Space Savings

cere 5 461.28 90.34 16.99 91.33 15.26 1.01 1%

einstein.de.txt 117 92.21 1.31 3.49 1.70 0.82 1.90 47%

einstein.en.txt 139 465.24 3.25 17.83 4.91 4.22 2.31 57%

Escherichia_Coli 15 112.68 52.57 4.48 52.63 4.10 1.01 1%

influenza 15 154.80 49.10 6.27 49.43 5.43 1.01 1%

kernel 160 249.51 14.78 9.95 15.03 4.59 1.26 21%

para 5 429.26 84.87 16.34 86.26 14.08 1.01 1%

world_leaders 89 46.90 10.71 1.02 10.70 0.85 1.02 2%

chr19.1000 5 60,110.54 274.57 2219.08 541.09 951.65 1.67 40%
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Table 2:

Comparison of the CST construction using PFP-CST and REPFP-CST. We compared the CPU time (“Time”), 

peak memory (“Memory”), and disk space (“Disk”) required to build a CST using PFP-CST and REPFP-CST. 

PFP-CST requires extraction to FASTA file and building the PFP (“Extraction & PFP”) then construction of 

CST from PFP (“Construction of CST”). REPFP-CST builds the PFP from VCF, filters trigger strings from the 

PFP, and builds the CST from the compressed PFP. Memory is in GB. Time is hh:mm::ss.

Sequences 
of 

chr17–
19

PFP-CST RePFP-CST

Extraction & PFP Construction of CST Total for PFP-CST Total for

Time Mem Disk Time Mem Disk Time Mem Disk Time Mem Disk

500 125:52:05 0.94 122.34 00:58:25 85.44 38.80 126:50:30 85.44 161.14 06:08:23 65.31 66.50

1000 251:27:49 1.29 243.19 01:56:03 156.38 69.23 253:23:53 156.38 312.43 10:54:48 121.22 124.14

1500 376:55:26 1.50 363.99 03:08:23 305.37 150.04 380:03:49 305.37 514.04 15:51:24 163.20 232.07

2000 502:23:32 1.84 484.79 4:17:56 380.04 192.95 506:41:28 380.04 677.74 20:20:02 288.34 302.18

2500 NA NA NA NA NA NA NA NA NA 25:05:44 360.25 372.29

3000 NA NA NA NA NA NA NA NA NA 29:51:21 422.42 441.46

3500 NA NA NA NA NA NA NA NA NA 35:00:43 464.20 508.25

4000 NA NA NA NA NA NA NA NA NA 39:51:01 540.62 577.48

4500 NA NA NA NA NA NA NA NA NA 46:03:01 584.04 645.29

5000 NA NA NA NA NA NA NA NA NA 50:30:21 643.81 711.80
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