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Abstract. Starch belongs to the most abundant biopoly-
mers on Earth. As a source of energy, starch is degraded
by a large number of various amylolytic enzymes. How-
ever, only about 10% of them are capable of binding and
degrading raw starch. These enzymes usually possess a
distinct sequence-structural module, the so-called starch-
binding domain (SBD). In general, all carbohydrate-bind-
ing modules (CBMs) have been classified into the CBM
families. In this sequence-based classification the indi-
vidual types of SBDs have been placed into seven CBM
families: CBM20, CBM21, CBM25, CBM26, CBM34,
CBM41 and CBM45. The family CBM20, known also as
a classical C-terminal SBD of microbial amylases, is the

most thoroughly studied. The three-dimensional struc-
tures have already been determined by X-ray crystallog-
raphy or nuclear magnetic resonance for SBDs from five
CBM families (20, 25, 26, 34 and 41), and the structure
of the CBM21 has been modelled. Despite differences
among the amino acid sequences, the fold of a distorted
p-barrel seems to be conserved together with a similar
way of substrate binding (mainly stacking interactions
between aromatic residues and glucose rings). SBDs have
recently been discovered in many non-amylolytic pro-
teins. These may, for example, have regulatory functions
in starch metabolism in plants or glycogen metabolism in
mammals. SBDs have also found practical uses.

Keywords. Starch-binding domain, carbohydrate-binding module families, amylase, raw starch degradation, CBM

clan, evolutionary relatedness.

Starch-binding domain: a historical overview

In general, the starch-binding domain (SBD), is usually
a distinct sequence-structural module that improves the
efficiency of an amylolytic enzyme so that the amylase
can bind and digest raw starch. Because the motif was
first recognised in amylases and thus revealed to cope
with raw starch, it was named the raw (granular) starch-
binding site [ 1-4]. Nowadays, due to occurrence of SBDs
in a wide spectrum of often non-amylolytic enzymes, it
has become reasonable to expect more variable function
in specific cases. However, at least at present the SBD
still seems to have something to do with polysaccharides
related to starch [5]. Nevertheless, the pure starch-bind-
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ing and degrading function appears to be reserved for mi-
croorganisms [6].

Approximately 10% of amylolytic enzymes contain a dis-
tinct SBD. It should be noted that there are a few amylo-
lytic enzymes capable of binding and digesting raw starch
without a specialized functional domain in their sequence
and structure [7-9]. However, these enzymes are outside
the scope of the present article and are only briefly men-
tioned here. The two plant a-amylase isozymes from bar-
ley might be the best example. Barley o-amylase contains
a surface-binding site consisting of two critically oriented
tryptophan residues within the catalytic domain [7, 10,
11]. A second surface site, the so-called sugar tongs sur-
face-binding site (a sugar molecule entrapped by a ty-
rosine) recently discovered and confirmed in the C-ter-
minal domain [12—-14], seems to be unique to the barley
isozyme AMY 1. A similar tyrosine capturing feature was
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also observed in the surface binding site of Saccharomy-
copsis fibuligera raw-starch degrading glucoamylase [15,
16].

The pioneering sequence alignment (Fig. 1) by Svensson
etal. [17] in 1989 was significant in galvanising research
into SBD structure-function studies. At that time, all the
SBDs were known as C-terminally positioned modules
except for one located N-terminally in the glucoamylase
from Rhizopus oryzae [18]. Moreover, neither the clas-
sification of glycoside hydrolases [19] nor that of carbo-
hydrate-binding modules [20], which would have made
comparison easier, were established. Importantly, Svens-
son et al. [17] not only aligned the SBD sequences origi-
nating from various amylolytic enzymes (basically from
o-amylases, B-amylases and glucoamylases), but they
also took into account the N-terminal SBD from R. ory-
zae glucoamylase. In fact, the consensus SBD residues
they identified (Fig. 1) have held until now.

From the evolutionary point of view, the most insight-
ful observation was made in 1999 by Janecek and Sevcik
[21] who demonstrated using the evolutionary tree
(Fig. 2) that SBD behaves independently with regard to
the catalytic domains of o-amylases, f-amylases and glu-
coamylases. In other words, the evolution of SBD studied
reflected the evolution of species rather than evolution of
the individual amylases. In the evolutionary tree based on
the alignment of more than 40 SBD sequences, fungi and
actinomycetes were clustered separately, surrounded by
other bacteria that were also grouped according to their
taxonomy. SBD from Aspergillus kawachii o-amylase
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(Fig. 2) clustered together with the bulk of the Aspergil-
lus-originated SBDs from glucoamylases has been the
most convincing example [21].

Starch-binding domains as CBM families

As mentioned above, for many years SBD was recognised
as a C-terminal sequence motif of about 10% of amy-
lases, except for the N-terminal case of R. oryzae glu-
coamylase. The second example of an N-terminal SBD
was reported in 1995 by Steyn et al. [22] who described
the corresponding motif at the N-terminus of Lipomyces
kononenkoae a-amylase. Soon after, the SBD of this type
was found in glucoamylase from Arxula adeninivorans
[23]. The situation started to change dramatically in 2000
when Sumitani et al. [24] reported a raw-starch degrading
o-amylase from Bacillus sp. strain 195. But the starch-
binding and degrading function in this -amylase was as-
cribed to a tandem C-terminal repeat, with no sequence
similarity to previously known °‘classical’ C-terminal
SBDs [24].

At present individual SBDs are best characterised within
the sequence-based classification of all carbohydrate-
binding modules (CBMs) as the so-called CBM families
[20]. This classification has emerged from the well-estab-
lished classification of catalytic domains that classified
o-amylases, f-amylases and glucoamylases into the three
respective glycoside hydrolase (GH) families GH13,
GH14 and GH15, respectively [19]. Thus, all present-

Rhior GMY 9 vgldsynydgspfs-kiyv 27 45 dnﬁnnngntiaasysapisgsnye Wt f
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Aspni:GMY 514 AVAVTFDLTATWTYEENIYLVESIS ETSDGIALSAD---KYTSSDjy
Bacst MGA 581 SVVFTVKSAPP@NLEDKIYLTENIPE STDTSGAVNNAQGPLLAPNY)
Psest M4H 430 VSVSFRCDNG DSVYA VS SPAAALRL-—-—--—-—
Bacsp_ CGT 587 VTVRFEVINNAT) NVFLTENVSE] DPNNAIGPMYNQ-—--VVYQVYITRYY
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-B1- -B2- -B3-
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Figure 1. Starch-binding domain of amylolytic enzymes. This is the pioneering alignment of C-terminally positioned SBD motifs belong-
ing to the CBM20 family together with the N-terminal SBD of Rhizopus oryzae glucoamylase later classified into CBM21. Sources and
abbreviations of the enzymes: Rhior_GMY, glucoamylase from Rhizopus oryzae (SwissProt [111] accession number P07683); Strli_AMY,
o-amylase from Streptomyces limosus (P09794); Theth_ BMY, B-amylase from Thermoanaerobacter thermosulfurogenes (P19584); Aspni_
GMY, glucoamylase from Aspergillus niger (P04064); Bacst. MGA, maltogenic a-amylase from Bacillus stearothermophilus (P19531);
Psest_M4H, maltotetraohydrolase from Pseudomonas stutzeri (P13507); Bacsp_CGT, cyclodextrin glucanotransferase from Bacillus sp.
1011 (P05618); Klepn_CGT, cyclodextrin glucanotransferase from Klebsiella pneumoniae (P08704). Gaps are indicated by dashes. The
consensus residues are highlighted by inversion. The sequence of SBD from R. oryzae is shown in lower-case letters. Secondary structure
elements are indicated under the alignment blocks. Adapted from [17].
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Figure 2. Evolutionary tree of amylolytic enzymes containing the SBD. This is the tree illustrating the evolutionary feature of the CBM20
SBDs reflecting the evolution of species rather than evolution of the individual amylase specificities. The enzymes sources are abbre-
viated as follows: AMY, a-amylase; CGT, cyclodextrin glucanotransferase; MGA, maltogenic o~amylase; M4H, maltotetraohydrolase;
MS5H, maltopentaohydrolase; BMY, f-amylase; GMY, glucoamylase. The branch lengths are proportional to the divergence of the SBD
sequences. The most striking example (the SBD from Aspergillus-originated a-amylase placed among the SBDs Aspergillus-originated
glucoamylases), which manifests the remarkable evolutionary behaviour of SBD, is highlighted by a black rectangle. Adapted from [21].

day SBDs have been divided into seven CBM families
[20, 25]: CBM20, CBM21, CBM25, CBM26, CBM34,
CBM41 and CBM45. The entire system is accessible at
the CAZy Web server (http://www.cazy.org/CAZY/).
Like the CBM families, also reflect the individual SBD
families chronology. This means that the family with the
lowest number (CBM20) represents the ‘oldest’ SBD,
i.e. the ‘classical’ best-known C-terminally positioned
SBD, whereas the N-terminal SBDs represented by the
SBD from R. oryzae glucoamylase were grouped into
the family CBM21. The arrangement of all seven CBM
families of SBDs with regard to the enzyme specificities
of their catalytic domains is schematically illustrated in
Figure 3.

The CBM20 family

CBM20 is the most well studied SBD family. The granu-
lar raw starch-binding function has been demonstrated in
several cases, such as in glucoamylase from Aspergillus
niger [26, 27], cyclodextrin glucanotransferase (CGTase)
from Bacillus circulans strain 251 [28, 29], maltogenic
o-amylase from Bacillus stearothermophilus [30] and
B-amylase from Bacillus cereus var. mycoides [31, 32].
It is possible to note that all real SBD modules, i.e. the
SBDs that bind and degrade raw starch, are positioned C-
terminally with regard to the catalytic domain [5]. These
have been found most frequently in the three GH fami-
lies: GH13 — the a-amylase family, GH14 — $-amylases
and GH15 — glucoamylases. They are predominantly of
microbial origin [5]. The o~amylase family (clan GH-
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— GH13 }

CBM20

CBM20 in Bacillus cereus GH14 B-amylase (P36924; 546)

—{ GH14

CBM20 in Aspergilius niger GH15 glucoamylase (P04064; 640)

— GHis

|——— cBM20

CBM21 in Lipomyces kononenkoae GH13 a-amylase (Q01117,; 624)

— cBM21 GH13

Y

CBM21 in Rhizopus oryzae GH15 glucoamylase (PO7683; 604)

— cBM21 ——| GHis

+

CBM25 in Bacillus sp. 195 GH13 a-amylase (O24781; 700)

—_— GH13

j——_cBm25_|-{_camzs |

CBM26 in Lactobacillus manihotivorans GH13 a-amylase (Q9XCV8; 801)

— GH13

——{ cemzs |

cBM26 | CBM26 | CBM26 |

CBM34 in Thermoactinomyces vulgaris GH13 “a-amylase” TVA | (Q60053; 666)

— camas H GH13

J

CBM41 in Kiebsiefla pneumoniae GH13 pullulanase (PO7811; 1096)

= CBM41 7'{

GH13 }

CBM45 in Sofanum tuberosum a-glucan, water dikinase (Q9AWAS; 1464)

=  CBMA45 CBM4S

Figure 3. Arrangement of the SBD modules in CBM families. The position and size of both CBMs and GH domains in the individual
representatives correlates with the size of the real proteins. The SwissProt accession numbers and the lengths of the enzymes are given in

parentheses.

H), which consists of three GH families, 13, 70 and 77
[33], covers most enzyme specificities with SBD [34],
such as c-amylase (EC 3.2.1.1), CGTase (EC 2.4.1.19),
maltotetraohydrolase (EC 3.2.1.60), maltopentaohydro-
lase (EC 3.2.1.-), maltogenic c-amylase (EC 3.2.1.133)
and amylopullulanase (EC 3.2.1.1/41), plus the GH77
plant-originating 4-a-glucanotransferase (EC 2.4.1.25).
The CBM20 motif was recently also found in the GH31
6-a-glucosyltransferase (EC 2.4.1.-) from Arthrobacter
globiformis [35].

Sequentially similar motifs have also been recognised in
many non-amylolytic proteins. They have been added to
CBM20 because part of their sequence exhibits similarity
to SBD. Since many of these proteins come from genome
sequencing projects, their functions are still unknown.
However, some of them may possess a significant func-
tion related to that of genuine SBD, e.g. a~glucan, water
dikinase [36], laforin [37], genethonin-1 [38], carbohy-
drate esterases and many others [5].

Generally, whereas SBD modules of the CBM20 type
are positioned C-terminally in GHs, in non-amylolytic
proteins SBD-like modules can be positioned at both the
C- and N-termini or even inside the sequence [5]. In any
case the modules consist of ~100-amino acid residues

(Fig. 1).

The binding sites in CBM20

The basic function of SBD is to bind to raw starch [27,
29, 39]. In general, being a natural part of an amylase,
the SBD fulfils several particular roles, such as (i) en-
abling the enzyme molecule to interact with the insoluble
substrate in solution; (ii) delivering the substrate to the
active site in the catalytic domain; and (iii) disrupting the
surface of the starch granule [6].

The structure-function relationships of the CBM20 motif
are quite well understood. Most knowledge is based on
nuclear magnetic resonance (NMR) studies of 4. niger
glucoamylase SBD [26, 27] and the X-ray crystallog-
raphy of B. circulans strain 251 CGTase [28, 29]. The
CBM20 structures have also been solved for the motifs of
CGTases from Bacillus stearothermophilus [40], Bacillus
circulans strain 8 [41], Bacillus sp. strain 1011 [42] and
Thermoanaerobacter thermosulfurogenes [43], malto-
genic a-amylase from B. stearothermophilus [30] and
B-amylase from B. cereus var. mycoides [31, 32].

The three-dimensional structure of CBM20 SBD of 4.
niger glucoamylase (i.e. of a GH15 amylase) has been
determined in solution by NMR in both a free state [26]
and in a complex with -cyclodextrin, a cyclic analogue
of starch [27]. The SBD forms an open-sided, distorted,
B-barrel structure [26]. The overall topology shows eight
B-strands (Fig. 4a) arranged into two major 3-sheets [44].
One is a five-stranded antiparallel 3-sheet, while the sec-
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ond sheet consists of one parallel and one antiparallel f-
strand pair. The N- and C-termini are at opposite ends of
the longest axis of the molecule [26]. The structure of the
SBD bound to -cyclodextrin showed the presence of the
two binding sites (Fig. 4a), which differ from each other
functionally as well as structurally [27]. Binding site 1 is
small, accessible and acts as the initial starch recognition
site. In comparison with free SBD, the structure of site 1
remains almost unchanged in the SBD-f-cyclodextrin
complex. It is composed of two dominant tryptophans,
Trp>¥ and Trp*° (Fig. 1), which are essential for bind-
ing. They form a compact, rigid and surface-exposed hy-
drophobic site with an inter-ring spacing appropriate for
binding to o-1,4-linked glucoses [27]. On the other hand,
binding site 2 is more extended and flexible, since upon
binding to B-cyclodextrin, it undergoes a significant con-
formational rearrangement. The stacking interaction at

Starch-binding domains

this site between SBD and the substrate is also governed
by hydrophobic effects from two aromatic rings: Tyr>?’
and Tyr>*°. Of the two tyrosines, the former appears to be
very flexible, whereas the latter seems to be reasonably
static [27]. The third well-conserved tryptophan, Trp>®
(Fig. 1), has been classified as a buried residue with neg-
ligible surface accessibility. Although incapable of direct
interaction with B-cyclodextrin, it was found in close con-
tact with many residues in and around binding site 2 [27].
Finally, although the fourth tryptophan, Trp®'s (Fig. 1), is
not so strictly conserved in CBM20 [21], it may have an
essential structural (i.e. not functional) role in SBD from
A. niger glucoamylase [45].

Two analogous binding sites were also identified in the
SBD X-ray structure of maltose-dependent CGTase from
B. circulans strain 251 [29], i.e. of a GH13 amylolytic
enzyme. Binding site 1, involving two tryptophans, Trp®!¢

Figure 4. The structural features of SBD from the individual CBM families. Wherever possible, structures are oriented similarly. The
tryptophan and tyrosine residues involved in stacking interactions with substrate in binding site 1 are coloured blue and in binding site 2,
if present, by magenta. (a) The CBM20 of Aspergillus niger glucoamylase in complex with -cyclodextrin [27]; PDB code [112]: lac0.
(b) The CBM21 of Rhizopus oryzae glucoamylase [60]. (c) The CBM25 of Bacillus halodurans maltohexaose-forming amylase [64]; PDB
code: 2¢3w. (d) The CBM26 of Bacillus halodurans maltohexaose-forming amylase [64]; PDB code: 2¢3h. (e) The CBM 34 of Thermo-
actinomyces vulgaris ‘o-amylase’ TVA 1 [74]; PDB code: 1uh4. (/) The CBM41 of Klebsiella pneumoniae pullulanase [81]; PDB code:
2thf. The structures were displayed with the program Pymol [113].
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and Trp®? (corresponding to Trp>* and Trp>° of A. niger
SBD), is most important for raw starch-binding capacity,
whereas binding site 2 (Tyr®?) has an important role in
guiding linear starch chains to the active site [29]. The
situation should be similar in the SBD of S-amylase, i.c.
of a GH14 amylase, especially in binding site 1 (Trp*
and Trp*” in B. cereus B-amylase) [31, 32, 46, 47]. How-
ever, binding studies of 4. niger glucoamylase SBD with
amylose suggest that both binding sites might be essential
for correct CBM20 functioning [48].

In an effort to elucidate SBD boundaries and the contri-
bution of individual SBD segments to raw starch bind-
ing and degrading, several authors undertook deletion
analyses of SBDs. Goto et al. [49] prepared mutant glu-
coamylases from Aspergillus awamori var. kawachi, in
which the SBD was truncated by deleting the C-terminal
segments according to the position of the four tryptophan
residues. They revealed that the sequence around Trp>¢?
(i.e. Trp>® in A. niger glucoamylase) is essential for di-
gestion of raw starch, whereas the sequence around Trp>%
(Trp>*°) contributes to the adsorption to raw starch [49].
Chen et al. [50] studied mutant glucoamylase from A.
awamori containing extensive deletions at the C-termi-
nus of or within the SBD. They concluded that any dele-
tion mutations in SBD result in diminution or loss of raw
starch binding and digesting ability of the glucoamylase
[50]. Using a similar approach with the o-amylase from
Bacillus sp. strain TS23, Lo et al. [51] observed in SBD-
deletion mutants a diminution in raw starch-binding abil-
ity but without significant effect on raw starch-degrading
activity. Mutation of Trp** and Trp>$® (equivalent to Trp®'®
and Trp®? in B. circulans CGTase) in the same o-amylase
confirmed that the two tryptophans are also important for
this SBD [52].

The CBM21 family

There has been substantially less information about
CBM21 in comparison with CBM20. The key member
of the CBM21 family is the SBD from R. oryzae glu-
coamylase [18]. The SBD function was ascribed to the
N-terminal part of the enzyme based on comparison of
multiple forms (resulting probably from limited prote-
olysis) differing in the ability to adsorb and degrade raw
starch [18, 53], supported by sequence comparison with
other glucoamylases [54]. Although at present five amy-
lolytic enzymes are known to contain this type of N-ter-
minally positioned SBD [5], the unambiguous evidence
of actual SBD function was demonstrated only for R. ory-
zae glucoamylase [18]. Of the four additional amylases,
two are c-amylases from Lipomyces kononenkoae [22]
and Lipomyces starkeyi [55] and two are glucoamylases
from Arxula adeninivornas [23] and Mucor circinelloi-

des [56]. Of these the N-terminal CBM21 motif of the L.
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kononenkoae o-amylase LKA1 was recently shown to be
responsible for raw starch binding [57].

A substantial part of the CBM21 family is formed by the
group of regulatory subunits of Ser/Thr-specific protein
phosphatases [5]. These regulatory subunits direct the
protein phosphatase to glycogen [58]. Bork et al. [59]
described their sequence similarities to SBDs of both
CBM20 and CBM21, but more pronounced similarities
have been found with members of the CBM21 family
[5]-

The CBM21 SBD is ~100 amino acid residues long. In
amylases the SBD module is located exclusively N-termi-
nally, whereas in regulatory subunits of Ser/Thr-specific
protein phosphatases and other putative proteins its exact
position may vary; the C-terminal positioning seems nev-
ertheless to dominate [5].

To date, no three-dimensional structure has been deter-
mined for a CBM21 member [20]; however, Chou et al.
[60] recently elucidated the two raw starch-binding sites
in SBD from R. oryzae glucoamylase based on the model-
ling the structure and site-directed mutagenesis. They not
only revealed that the overall fold of the CBM21 should
be closely similar to that of the CBM20, but they also
identified two raw-starch binding sites analogous to those
present in CBM20 (Fig. 4b). Binding site 1 (responsible
mainly for binding) involves the residues Trp*’ and Tyr®?
(corresponding to Trp>* and Trp>*° of A. niger glucoamy-
lase; Fig. 1), whereas the key residue of binding site 2
(responsible mainly for facilitating binding) was identi-
fied as Tyr*? [60]. These results have clearly confirmed
the pioneering sequence alignment of SBDs (Fig. 1) [17]
and strongly support the recent proposal [5] to group
the CBM20 and CBM21 families into a common CBM
clan.

The CBM20 and CBM21 clan

The idea of a common evolutionary origin of the two
best-known types of SBD, i.e. classical C-terminal
CBM20 SBD from 4. niger glucoamylase [61] and B.
circulans CGTase [62] and the less-characterised N-ter-
minal CBM21 SBD from R. oryzae glucoamylase [18],
was already indicated in 1989 by Svensson et al. [17]
who aligned the sequences together. Later, this idea was
reinforced by finding a motif similar to the N-terminal
SBD in the group of eukaryotic (also mammalian) regu-
latory subunits of Ser/Thr-specific protein phosphatases
[59] that target the protein phosphatases to glycogen. The
possibility that C- and N-terminal SBDs are related was
taken up again Janecek and Sevcik [21]; however, due
to the lack of relevant CBM21 amylase-originating se-
quence data, no insightful conclusions could be made at
that time. Moreover, when in 1999 Coutinho and Henris-
sat [20] established the sequence-based classification of
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all carbohydrate-binding modules into the CBM families,
the two SBDs were placed into two different CBM fami-
lies: CBM20 (4. niger glucoamylase, B. circulans CG-
Tase, etc.) and CBM21 (R. oryzae glucoamylase).
Nevertheless, in the last decade the complete genome se-
quencing projects have offered many novel proteins (often
not amylolytic and often only putative ones) that exhibit
unambiguous sequence similarities with SBDs of either
CBM20 or CBM21 type. Thus laforin (a dual Tyr-Thr/
Ser-specific protein phosphatase involved in the Lafora
type of epilepsy) [37], genethonin-1 (a skeletal muscle
protein of yet unknown function) [38] and the o-glucan,
water dikinase (a plant-specific glucan phosphorylase)
[36], can be mentioned as perhaps the most remarkable
examples in addition to the regulatory subunits of Ser/
Thr-specific protein phosphatases mentioned above. It
has also become clear that the original idea [17, 21] of the
CBM20 module being at the C-terminus and the CBM21
module at the N-terminus of a protein is no longer appli-
cable [5]. This was especially due to the SBDs discovered
in non-amylolytic proteins.

The two CBM families CBM20 and CBM21 are fi-
nally now suggested to share a common evolutionary
origin based on a rigorous bioinformatics analysis of
125 CBM20 members and 56 CBM21 members [5]. The
best-conserved sequence features (Fig. 5) cover the re-
gions around the two tryptophans (Trp** and Trp>° of
the A. niger glucoamylase CBM20) that constitutes the
starch-binding site 1 [27]. On the evolutionary tree the
two CBM families retain their own independence [5],
the SBDs from the GHI13 bacterial amylopullulanases
being revealed as candidates for evolutionary intermedi-
ates between the two CBM families (Fig. 6). An enzyme
clan within the classification of catalytic modules con-
sists of a group of enzyme families with a common an-
cestry, similar tertiary structure and conserved catalytic
machinery and reaction mechanisms [63]. A CBM clan
proposed by Machovic et al. [5] contains CBM families
having a common evolutionary origin, similar tertiary
structure and similar binding site residues and mode
of carbohydrate binding. The idea that the CBM20 and
CBM21 families should be grouped into a common
CBM clan is strongly been supported by the recent ra-
tional modelling of the R. oryzae CBM21 three-dimen-
sional structure (cf. Fig. 4a,b) and identifying its two
raw starch-binding sites as analogous to those present
in the CBM20 family [60].

The CBM25, CBM26, CBM34, CBM41 and
CBMA45 families

Currently there are five CBM families with the SBD
function in addition to the above-mentioned CBM20
and CBM21 [20]. These are CBM25, CBM26, CBM34,
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CBM41 and CBM45. The schematic arrangement of
their representatives in a real protein is illustrated in Fig-
ure 3. It is worth mentioning that although classifying
these SBD modules into the individual CBM families
has mainly been based on the differences between their
amino acid sequences, the basic features of their three-
dimensional structures as well as the rough architecture
of the raw starch-binding site(s) seem to be adopted in a
similar manner (Fig. 4).

The CBM25 and CBM26 families

The above-mentioned possibility was also pointed out by
Boraston et al. [64] who recently solved the structures of
both CBM25 (Fig. 4c) and CBM26 (Fig. 4d), which are
naturally present in the maltohexaose-forming amylase
from Bacillus halodurans [65]. Of these two structur-
ally related CBM families [20], CBM25 was established
based on revealing a novel type of SBD in 1998 in the
o-amylase from a Bacillus sp. strain 195 [24]. This o-
amylase contains CBM25 in two copies (Fig. 3), but
CBM25 may also be present in a single copy, e.g. in the
B-amylase from Bacillus circulans [66]. The CBM26
family relies especially on the SBD motifs recognised
in the o-amylases from lactobacilli [67]. The SBD func-
tion has also been demonstrated in the maltotriose-
forming amylase from Streptococcus bovis [68]. The
SBD modules of CBM26 are mostly organized in tan-
dem repeats [69—71] (Fig. 3). Both CBM25 and CBM26
are small families; at present they count no more than
20 members each [20]. Despite the low degree of se-
quence identity between CBM25 and CBM26 (~15%),
the overall topology looks very similar [64]. Both motifs
adopt extremely related B-sandwich folds — 10 -strands
for CBM25 and 9 B-strands for CBM26 (Fig. 4c,d);
strand 3 of CBM25 has no equivalent in CBM26.
These folds are closely similar to that recognised for
CBM20 (Fig. 4a) and even CBM21 (Fig. 4b). Based on
the structure of CBM25 and CBM26 complexed with
maltotetraose and maltose, respectively, the former very
probably contains two binding sites, whereas the latter
possesses only one site for binding raw starch [64]. Of
the residues forming the main binding platform, only
the central amino acid residue, His®? in CBM25 and
Tyr’®® in CBM26 (B. halodurans maltohexaose-forming
amylase numbering), is conserved at the structural and
sequence level. The other two residues involved in the
binding site — Trp*° and Trp®*® of CBM25 and Trp®
and Tyr”*® of CBM26 — overlap in space but do not cor-
respond with each other in sequence [64].

The CBM34 family
The CBM34 family belongs to the large CBM families
(=100 CAZy entries) [20]. From the point of view of a
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Figure 6. Evolutionary tree of selected representatives of CBM20 and CBM21. The tree is based on the alignment shown in Figure 5, where
all the abbreviations are also explained. The SBD-like sequences from GH13 amylopullulanases were recently identified as the candidates
for the intermediate members between the two CBM families [S]. Based on the most recent observations [85, 100] the SBD of the starch
excess 4 protein (Arath_SEX4) and the glycogen-binding domain of the 3-subunit of AMP-activated protein kinase (Ratno_AMPK) should
also be of interest. The tree was calculated on the EBI server (http://www.ebi.ac.uk/) within the Clustal W package as a Phylip tree type and

displayed with the program TreeView [115].

catalytic domain, this family covers the N-terminal do-
mains of neopullulanase, maltogenic amylase and cyclo-
maltodextrinase [72]. These are all closely related mem-
bers of the o~amylase family GH13 grouped into the
so-called neopullulanase subfamily [73]. The raw starch-
binding function has been demonstrated in the case of
the N-terminal domain of Thermoactinomyces vulgaris
‘o-amylase’ TVA 1 [74]. Both TVA I and TVA II are a
typical o-amylases [75]. Since they exhibit the properties
of neopullulanase, maltogenic amylase and cyclomalto-
dextrinase, it is difficult to describe them succinctly [76].
Domain N of TVA I acts as an anchor in the catalytic
reaction of the enzyme; function as a pullulan-binding
domain has also been suggested [77]. The CBM34 fold
(Fig. 4e) is very similar to CBM20, CBM21 and both
CBM25 and CBM26 because it is also a distorted -bar-
rel structure consisting of nine S-strand segments [78].
The crucial amino acid residue involved in the raw starch
binding in TVA I, Trp® [74], clearly has no counterpart in
TVA 11 despite the otherwise pronounced sequence simi-
larity between the two respective domains N. The absence
of that tryptophan could be one of the factors responsible
for the isolated position of domain N in the structure of
TVA 11, which makes possible critical participation in the
formation of a TVA II dimer [78].

The CBM41 family

The CBM41 family was defined in 2004 based on the
finding [79] that the very N-terminal domain of the GH13
pullulanase from Thermotoga maritima [80] binds tightly
to o-glucans. The family (more than 50 entries) covers
mostly bacterial pullulanases from the a-amylase family
GH13 and many uncharacterised proteins [20]. Interest-
ingly, a substantial number of these pullulanases are from
human pathogens [79]. The recent structural study [81],
however, has revealed an even more remarkable fact:
similarity of the sugar-binding site of CBM41 to that of
CBM20. Despite the differences between the amino acid
sequences of CBM20 and CBM41 [20], the overall struc-
ture of CBM41 (Fig. 4f) is again a distorted antiparallel 3
sandwich fold (eight-stranded in this case) with two tryp-
tophans, Trp® and Trp* (Klebsiella pneumoniae pullula-
nase numbering [82]), making stacking interactions with
the glucose rings of the substrate [81]. The position of the
tryptophan residues is different in CBM41 and CBM20;
moreover, the additional CBM41 binding residue, Tyr’,
has no equivalent in the CBM20 structure [81].

The CBM45 family
The CBM45 family belongs to the most recently es-
tablished CBM families [20]. Until now, all its mem-
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bers have originated from eukaryotic proteins from the
plant kingdom as the N-terminal modules of plastidial
o-amylases and o-glucan, water dikinases. The experi-
mental evidence was delivered by Mikkelsen et al. [83],
who revealed in the potato o-glucan, water dikinase
that the N-terminally positioned motif of this enzyme is
specific for plastidial a-glucan degradation. This type
of SBD usually occurs as tandem repeats containing
three conserved tryptophans, two of which (Trp® and
Trp!''”) were already confirmed to be responsible for
carbohydrate binding [83]. Unfortunately, the three-di-
mensional structure of a CBM45 motif has not yet been
determined.

SBD-related homologues in plants and mammals

Nowadays, in the post-genome era when complete se-
quences of a number of genomes has become available,
SBDs or at least the sequences exhibiting similarities to
SBD have also been recognised in enzymes and proteins
that are not necessarily amylases. Dual-specific protein
phosphatases should deserve special attention because
these proteins are involved in various important physi-
ological processes in plants and mammals [84]. It is
worth mentioning that in plants these processes concern
starch metabolism, whereas in mammals they participate
in the metabolism of glycogen [85]. The presence of an
SBD motif in the sequences of protein phosphatases re-
flects their regulatory function since they are involved in
polysaccharide metabolism indirectly via modulation of
activity of degradative enzymes (i.c. also amylases), such
as isoamylase, f-amylase and disproportionating enzyme
[85]. In particular, the initial steps of starch degradation
at the granule surface are regulated, and the modulation
concerns mainly phosphorylation [85].

SEX4 protein

The starch excess 4 (SEX4) locus encodes a putative dual-
specificity protein phosphatase [86]. Genes coding for
highly similar proteins have been known to be evolution-
arily conserved in higher plants, such as tomato, rice and
maize. Recently, Niittyla et al. [85] and Kerk et al. [87]
independently reported on the presence of a CBM20 mo-
tif at the C-terminal end of the SEX4 protein exhibiting,
in fact, all relevant CBM20 sequence features (Fig. 5).
This protein is chloroplastic, can bind to starch and regu-
lates the initial steps of starch degradation [85, 87].

Laforin

Laforins are dual-specificity protein phosphatases of
animal origin that contain a CBM20 motif (Fig. 5) at
the N-terminus [88]. Interestingly, mammalian laforins
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are the proteins most closely related to the SEX4-like
proteins (Fig. 6), which control the above-mentioned
starch metabolism in plants [85]. In humans, laforin is
a product of the EPM2A4 gene, and it was shown that
mutations of this gene cause the Lafora form of epilepsy
[89]. The CBM20 motif of laforin was demonstrated to
be critical for association with glycogen both in vitro
and in vivo [90]; however, it does indeed preferentially
bind starch versus glycogen [91-93]. The presence of a
functional SBD in laforin is necessary due to accumu-
lation of Lafora polyglucosan bodies consisting almost
exclusively of glucose molecules. Laforin has to detect
the appearance of Lafora bodies and control mecha-
nisms to preclude their further formation or to initiate
their elimination [88].

Genethonin-1

Genethonin-1 [38] is another human protein containing
an unambiguous C-terminally positioned CBM20 motif
(Fig. 5). This skeletal muscle protein could play a struc-
tural or regulatory role [94]; however, it deserves to be
studied in a more detail because its exact function re-
mains undiscovered. Moreover, the CBM20 of genetho-
nin-1 displays a remarkably high ~40% sequence similar-
ity to those of amylases [38].

Glycogen-binding domain of the S-subunit of AMPK

AMPK is an afy heterotrimer AMP-activated protein
kinase that co-ordinates cellular metabolism in re-
sponse to energy demand and other stimuli [95]. The
glycogen-binding domain (Fig. 5) forms a middle part
of the B-subunit (8-GBD) and is responsible for localis-
ing AMPK to glycogen [96, 97]. From the evolutionary
point of view, Polekhina et al. [97] indicated the relat-
edness of 3-GBD to representatives of both the CBM20
and CBM21 families and additionally pointed out its
more pronounced similarity to domain N of GH13 iso-
amylase [98] and branching enzyme [99]. With regard to
the recently proposed CBM clan of CBM20 and CBM21
[5], the B-GBD together with the SBD-like motifs of
GH13 amylopullulanases could represent the CBMs in-
termediary between the two respective families (Fig. 6).
The structure of rat f-GBD was recently solved [100]
and confirmed a fold of antiparallel 3-sandwich (Fig. 7)
that is related, as predicted from sequence similarities,
to those of CBM20 and CBM21 (Fig. 4). The complex
of B-GBD with B-cyclodextrin revealed [100] the essen-
tial roles of two conserved tryptophans, Trp!% and Trp!33
(rat B-GBD numbering [101]), thus suggesting a similar
situation in binding both the glycogen in 3-GBD and
the starch in classical SBDs of the CBM20 and CBM21
families.
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Figure 7. The structural features of the GBD of the -subunit of
AMPK. The structure is, so far as possible, oriented similarly to
those illustrated in Figure 4. The two tryptophans involved in stack-
ing interactions with the substrate are shown. PDB code: 1z0m4
[100]. The structure was displayed using the program Pymol
[113].

Examples of practical applications of SBDs

SBDs have found practical utilization in various aspects
of science and technology. The most important exam-
ples are applications of SBDs related to (i) purification
of recombinant biologically active proteins, e.g. affin-
ity purification of -galactosidase-SBD fusion protein
[102]; (ii) starch bioengineering, e.g. SBDs used as
tools to anchor proteins (that do not have affinity for
starch granules) inside starch granules during their bio-
synthesis [103, 104]; (iii) probiotic food technologies,
e.g. expression of SBDs at the cell surface of bifido-
bacteria to make them susceptible to raw starch binding
[105]; (iv) biomedical applications ranging from bone
replacement to engineering of tissue scaffolds and drug
delivery systems, e.g. a cellulose/starch cross-bridging
protein composed of a cellulose-binding domain and an
SBD fused in-frame via a synthetic elastin linker [106];
(v) improving the properties of non-amylolytic en-
zymes, e.g. leucine aminopeptidase II fused with SBD
to gain higher thermostability and catalytic efficiency
[107]; and (vi) enabling amylases without the ability to
bind and degrade raw starch to perform these functions,
e.g. a-amylase from Bacillus subtilis X-23 and SBD
from Bacillus sp. A2-5a CGTase [108], glucoamylase
from Saccharomyces cerevisiae and SBD from Asper-
gillus niger glucoamylase [109], and barley o-amylase
AMY1 and SBD from Aspergillus niger glucoamylase
[110].

It is worth mentioning that although various types of
SBDs have already been recognised and classified into
seven different CBM families, most of the practical ap-
plications have been done with the ‘classical’ SBD of the
CBM20 family.
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