
Abstract. RAF kinases entered the limelight when our 
understanding of the genetic nature of cancer was much 
less defined and the seminal importance of proto-onco-
genes as components of intracellular signaling pathways 
was just beginning to be recognized. Following the dis-
covery of the v-RAF oncogene and the subsequent de-
scription of the c-RAF-1 gene by the group of Ulf Rapp, 
the last 20 years have seen the dissection of the signaling 
pathways in which RAF kinases function, and the cellular 

processes they control. The recent demonstration of mu-
tations in B-RAF and C-RAF in human tumors marked 
the return of RAF kinases to their roots as oncogenes. 
The availability of small molecular weight inhibitors has 
fueled the hope for new therapeutic approaches. Despite 
the deep insights gained through the work of many labo-
ratories, the past has left us with sufficient controversy 
and plenty of open questions to keep RAF research as 
interesting as ever.
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From the viral RAF oncogene to the proto-oncogene 
family of RAF serine/threonine kinases

RAF was initially encountered in two different vi-
ruses, the naturally occurring avian retrovirus Mill Hill 
2 (MH2), and the murine sarcoma virus (MSV) 3611 
isolate discovered during experiments aiming to isolate 
novel transforming genes. MH2 contains the avian ho-
mologue of viral RAF (v-RAF), called v-MIL or v-MHT, 
together with the nuclear oncogene v-MYC, which has 
been shown to cooperate with RAF in various aspects 
of transformation [1]. 3611-MSV was recovered from a 
mouse which had developed histiocytic lymphoma and 
lung adenocarcinoma [2]. The name RAF derives from 
the observed enhancing effect of 3611-MSV on the fi-
brosarcoma induction in newborn NSF/N mice, hence 
rapidly accelerated fibrosarcoma, or RAF. Viral RAF 
genes originate from their cellular counterparts through 

homologous recombination, and in both viruses an N-ter-
minal truncation of the cellular proto-oncogene as well 
as a fusion with viral gag-protein-derived sequences oc-
curred during this process resulting in the constitutive 
activation of the kinase [3]. Functional characterization 
of v-RAF or activated versions of C-RAF either alone or 
in combination with other oncogenes was instrumental in 
dissecting the contribution of RAF to many physiological 
and non-physiological processes including proliferation, 
cell survival, differentiation and cellular transformation.
Over time, additional C-RAF homologues were identi-
fied in mammals, referred to as A- and B-RAF [4]. All 
RAF proteins are serine/threonine kinases and show a 
common architecture characterized by three conserved 
regions (CR1–3) of high homology. CR1 and CR2 are 
located in the N-terminal half of the protein, the so-called 
regulatory domain, whereas CR3 comprises the kinase 
domain. The molecular weight ranges from 68 kDa for A-
RAF, to 72 kDa for C-RAF and 72–100 kDa for B-RAF, 
the latter being subject to alternative splicing. All RAF 
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isoforms are expressed fairly ubiquitously, with varying 
levels [5].

RAF kinases as an integral part of intracellular 
signaling cascades

Through combined biochemical and genetic approaches, 
RAF kinases have been shown to be components of an 
evolutionarily conserved signaling cascade that links re-
ceptor activation at the cell membrane to the modifica-
tion of cytoplasmic or nuclear targets that are required for 
the execution of developmental programs as well as for 
cell survival and proliferation [4]. This pathway, which 
includes RAS-RAF-MEK and ERK, is also referred to 
as the mitogen-activated protein kinase (MAPK) or cyto-
plasmic cascade.
RAF activation has been observed in response to many 
mitogenic stimuli, which bind and stimulate cell surface 
receptors with intrinsic or associated tyrosine kinase ac-
tivity [4]. The small GTPase RAS functions as a criti-
cal switch molecule in relaying receptor activation to a 
three-tiered cascade, which in addition to RAF consists of 
the dual-specificity kinases MEK1,2 and their substrates 
ERK1,2 [6]. A multitude of nuclear but also cytoplasmic 
ERK targets that are important for cell fate decisions and 
cell-type-specific functions have been described [6]. The 
events leading to the activation of RAF kinases are com-
plex and still incompletely understood (Fig. 1). Several 
recent reviews provide detailed insight into this topic and 
readers are referred to these resources for an in-depth 
discussion [7–10]. A simplified scenario for the activa-
tion of C-RAF includes the following sequence of events. 
(i) In resting cells, C-RAF adopts an inactive configura-
tion which prevents interaction with substrates. Binding 
of 14-3-3 proteins to phosphorylated serines at positions 
259 and 621 helps to lock the enzyme in this dormant 
state. 14-3-3 proteins are members of an evolutionarily 
conserved family of cytoplasmic proteins, which interact 
with other proteins via a phosphoserine/phosphothreo-
nine-containing recognition motif [11]. (ii) Growth fac-
tor binding results in receptor tyrosine kinase (RTK) ac-
tivation and phosphorylated RTK tyrosine residues help 
to recruit guanine nucleotide exchange factors (GEFs), 
which promote the transition of the GDP-bound inactive 
form of RAS to active RAS-GTP [12]. RAS proteins pre-
dominantly reside at the inner side of the cell membrane, 
where they provide a platform for the recruitment of 
RAF kinases [13]. RAF kinases physically interact with 
RAS and in addition with membrane lipids through the 
RAS-binding domain (RBD) and a cysteine-rich domain 
(CRD) adjacent to the RBD in CR1. This membrane lo-
calization provides the prerequisite for the subsequent 
full activation of the kinase through (iii) phosphorylation 
of serine and tyrosine residues. In the case of C-RAF, this 

phosphorylation may involve p21-activated kinase (PAK) 
and SRC family kinases [7–10]. As a consequence, the 
regulatory domain dislocates from the kinase domain al-
lowing substrate access. Hetero- and homodimerization 
of RAF proteins also may play an important regulatory 
role in the process of RAF activation. Artificially induced 
oligomerization of C-RAF proteins resulted in their ac-
tivation [14, 15] and C-RAF and B-RAF can form het-
erodimers following RAS activation [16]. A small subset 
of mutant B-RAF proteins found in human cancer (see 
below) lacked kinase activity but nevertheless activated 
C-RAF, which then signaled to MEK [17]. C-RAF acti-
vation required 14-3-3-dependent heterodimerization of 
C-RAF and B-RAF, and transphosphorylation. This acti-
vation mechanism also applied to wild-type B-RAF, but 
complex formation in this case was RAS induced [18]. 
Once activated, RAF kinases transmit the signal to down-
stream MEK1,2 kinases, which in turn phosphorylate and 
activate ERK1,2. MEK1,2 remain the best-characterized 
targets for RAF and in many instances their requirement 
in the downstream transmission of RAF signals has been 
demonstrated [19, 20].
Intracellular signaling is commonly seen as a process 
which originates at the cell membrane to modify cyto-
plasmic or nuclear targets. However, evidence has been 
accumulating for the existence of intracellular platforms, 
where MAPK signaling originates or where activated 
pathway components operate. Apoptosis suppression by a 
truncated and constitutively active form of C-RAF, RAF-
BXB [21], has been shown to require translocation of the 
kinase to the mitochondria [22]. Mitochondrial localiza-
tion was achieved by overexpressing Bcl-2, which binds 
C-RAF and resides at the outer mitochondrial membrane, 
or by providing RAF-BXB with a mitochondrial-target-
ing sequence. More recent work suggested that mitochon-
drial RAF may function in a physiological setting. Basic 
fibroblast growth factor (bFGF) protected cells against 
intrinsic stress stimuli through a mechanism which in-
volved serine 338/339 phosphorylation of  C-RAF as well 
as mitochondrial translocation [23]. Protection against 
activators of the extrinsic cell death pathways by vascular 
endothelial growth factor (VEGF), on the contrary, oc-
curred following phosphorylation of tyrosines 340/341 
and proceeded through the C-RAF effector MEK [23]. 
Phosphorylation of serines 338/339 by PAK1 can be the 
initiating signal for mitochondrial translocation of C-
RAF, which leads to the phosphorylation-inactivation of 
the pro-apoptotic Bcl-2 family member BAD [24]. While 
it seems intriguing that C-RAF regulates cell survival at a 
site in the cell which is essential for the control of energy 
production and cell survival [25], the critical targets for 
mitochondrial RAF as well as the regulation of its activity 
and localization at this site remain to be defined.
More recently, additional intracellular sites for MAPK 
signaling have been suggested, one of them being the en-
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dosome. Activation of RTKs through ligand binding is 
followed by internalization of the receptor – most likely 
together with components of the MAPK pathway – via 
clathrin-coated vesicles (CCVs), which fuse with the 
endosome [26]. During the trafficking through the en-
dosomal compartment, activated receptors are sorted for 
degradation, whereas inactive ones are recycled back. 
Receptor signaling is maintained during endocytosis 

[27]. The MAPK cascade can localize to this compart-
ment through the adaptor protein p14, which in turn binds 
the MEK1/ERK1 scaffold protein MP-1 [27]. Signaling 
from components of the cytoplasmic cascade has also 
been demonstrated for intracellular compartments that are 
further removed from the plasma membrane, namely the 
Golgi and the endoplasmic reticulum (ER). The pathway 
regulating RAS activation at the Golgi also initiates at the 
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Figure 1. Association of C-RAF with other signaling molecules during the activation process. A detailed description of these processes is 
given in the text. GF, growth factor; R, receptor. (a) The situation in the resting cell. (b) The activated RAF signaling complex at the cell 
membrane. (c) Possible cross-talk between different RAF isoforms in the activation of MEK as well as MEK-independent RAF effectors.
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plasma membrane through growth factor of inulation, but 
differs from the classical scheme for RAS activation and 
shows a delayed response but sustained signaling [28]. C-
RAF itself has not been associated with the Golgi; how-
ever, RAS targeted to this location activated ERK and 
transformed fibroblasts [29] suggesting that the interme-
diate components in this pathways, RAF and MEK, are 
also active at this site. We do not yet know which fractions 
of RAF distribute to various cellular compartments and 
whether signaling from the same molecule at different 
cellular sites will have different outcomes in terms of cell 
survival, proliferation, differentiation or transformation. 
Understanding these differences will have important im-
plications for therapeutic approaches aiming at the inhi-
bition of RAF kinases.
The core elements, RAS/RAF/MEK/ERK, are sufficient 
to account in theory for the signal propagation down-
stream of a cell membrane receptor to nuclear and cy-
toplasmic targets. However, in living cells, the RAF pro-
teins with molecular weights ranging from 68 to 100 kDa 
have been proposed to be part of a much larger, 300- to 
500-kDa complex. Biochemical and genetic approaches 
have defined more than 30 RAF-interacting proteins, 
which assist in signal propagation by facilitating the as-
sembly of signaling proteins or orchestrating them at 
different subcellular sites [8]. Regulators acting at the 
level of RAF include, among others, RKIP, KSR, 14-3-
3, CNK1, and SUR-8 (Fig. 1). KSR (kinase suppressor 
of RAS) was identified in genetic screens as a positive 
regulator of RAS signaling. Despite homology to ser-
ine/threonine kinases, replacement of a highly conserved 
lysine required for the phosphotransfer reactions results 
in the loss of its kinase activity. KSR thus most likely 
functions as a scaffold protein interacting, among others, 
with MEK and 14-3-3 in its resting state and thereby as-
suring signal propagation along the components bound 
[30]. 14-3-3 binding following phosphorylation by TAK1 
(TGF-β-activating kinase) keeps KSR, and thus also 
MEK, in the cytoplasm. In mammalian cells, the inter-
action of KSR with C-RAF is RAS dependent. Follow-
ing growth factor stimulation, PP2A dephosphorylates 
KSR and thereby causes 14-3-3 displacement. As a con-
sequence, the KSR-MEK complex can move closer to 
RAF, which at this time is already activated at the plasma 
membrane. CNK (connector enhancer of KSR) and sup-
pressor of RAS-8 (SUR-8), are additional modulators 
of RAF signaling. Both were discovered during genetic 
screens in Drosophila and Caenorhabditis elegans and 
directly interact with C-RAF [30]. SUR-8 is found in a 
complex with RAS and C-RAF in mammalian cells and it 
enhances RAS signaling by fostering RAS-RAF interac-
tion. CNK interacts with the C-terminal kinase domain of 
RAF and facilitates assembly with signaling complexes at 
the plasma membrane, which further supports full RAF 
activation. RAF kinase inhibitor protein (RKIP) was ini-

tially isolated as a C-RAF-interaction protein, which also 
binds MEK and ERK [31, 32]. However, RKIP does not 
function as a scaffold for these kinases, but, rather, in-
terferes with the binding of RAF to MEK and thereby 
prevents phosphorylation and activation of MEK. During 
mitogen stimulation, RKIP becomes phosphorylated and 
dissociates from RAF to allow for downstream signaling. 
[33] 

Evolution of RAF kinases

Homologues of C-RAF have been identified in several 
other species, with a single gene present in Drosophila 
melanogaster (D-RAF), C. elegans (lin-45) and plants 
(CTR1). These genetic systems of reduced complexity 
helped to establish non-redundant functions of RAF in 
developmental pathways, and to order signaling mol-
ecules within pathways. This analysis confirmed that 
components and the makeup of this pathway have been 
maintained throughout evolution. Despite the use of al-
ternative names for most of the proteins involved they are 
true homologues of their mammalian counterparts.

Drosophila melanogaster
Drosophila RAF (D-RAF) is more closely related to B-
RAF than to A- or C-RAF. B-RAF therefore may be the 
functional homologue of the ancestral RAF proteins of 
D. melanogaster and C. elegans [34]. The RTK-RAS1-
DRAF-DSOR(MEK)-Rolled (MAPK) cascade is in-
volved in several developmental pathways during embry-
onic development and has been studied extensively for its 
involvement downstream of the two RTKs, Drosophila 
epidermal growth factor (EGF) receptor (DER) and SEV-
ENLESS (SEV). DER is required for the formation of 
many of the adult structures including wings, eyes, and 
legs, whereas SEV signaling is only essential during Dro-
sophila eye development. Eight hundred single eye units 
(ommatidia), each consisting of eight photoreceptors 
(R1–R8), the four lens-secreting cone cells, and accessory 
cells are generated during larval development in a strictly 
orchestrated sequence from a monolayer epithelium, the 
eye-antennal imaginal disc. In a first step, R8 is specified 
and in a further phase, addition of the other photoreceptor 
cells and subsequently of the four cone cells to the grow-
ing ommatidium is performed, before the incorporation of 
pigment cells finally optically isolates each ommatidium 
from its neighbor. R7 is the last of the photoreceptor cells 
to differentiate, in a process which requires the binding of 
the ligand Bride of Sevenless (BOSS) present on the R8 
cell to the SEV receptor on R7. Thus, eye development 
completely fails in the absence of DER-derived signals, 
whereas only R7 differentiation is affected by the absence 
of SEV. The R7 precursor cell in this case develops into 
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a non-neuronal cone cell [35]. Signal propagation from 
both RTKs proceeds in an analogues fashion as described 
for mammalian cells. Ligand binding results in receptor 
activation and in tyrosine phosphorylation, which allows 
for binding of the GEF Son of Sevenless (SOS) that in 
turn activates RAS1. Further signal propagation proceeds 
via D-RAF and the homologues of MEK and MAPK, D-
SOR and Rolled (RL), respectively [36]. In addition, DER 
signaling via the MAPK pathway also has been shown to 
regulate cell survival during eye development [37].

Caenorhabditis elegans
The RTK-RAS (LET-60), RAF (LIN-45), MEK-2 (MEK) 
and SUR-1/MPK-1 (MAPK) signaling pathway in the 
nematode C. elegans has been analyzed most extensively 
during the formation of the vulva, a specialized epithelial 
structure used for egg laying [38]. The vulva forms dur-
ing larval development out of six vulva precursor cells 
(VPCs). The three central VPCs undergo three rounds of 
mitosis and the resulting cells finally make up the vulva. 
This vulva formation is initiated through an inductive sig-
nal, which is present in all non-male larvae, and which 
is transmitted through the LET-60-LIN-45-MEK-SUR-
1/MPK-1 cascade. Hyperactivation of this pathway has 
been linked to a multivulva phenotype, whereas inactiva-
tion of a gene in this cascade causes a pathologic vul-
valess phenotype. Additional cell fates regulated by this 
cascade include the differentiation of the excretory cell, 
required for larval viability, and the progression of germ 
cells through the pachytene stage, necessary for fertility.

Plants
MAPK pathway signaling components are also con-
served in plants. Ethylene is an important gaseous signal-
ing molecule produced in response to environmental and 
endogenous cues, which regulates diverse metabolic and 
developmental processes ranging from seed germination 
to organ senescence. Of economic importance is its role 
as inducer of fruit ripening. Binding of ethylene to recep-
tors with homology to two-component receptors found in 
Escherichia coli and Saccharomyces cerevisiae [39] trig-
gers activation of ethylene-responsive genes. This cas-
cade also includes the C-RAF-like kinase CTR1 which 
has been placed downstream of the receptor through epis-
tasis experiments. Small GTPases of the RAS subfam-
ily are strikingly absent from the sequenced genomes of 
plants. This goes along with the lack of upstream RTKs, 
which normally signal through RAS [40]. Of the multiple 
MEKs and MAPKs which exist in plants, none has been 
convincingly implicated in the ethylene response. Analy-
sis of CTR1 function suggested a role as negative regula-
tor of ethylene signaling. In the presence of air, CTR1 is 
in an active state and represses an ethylene response. In 

the presence of ethylene, a conformational change may 
be induced, relieving this repression [41, 42].

RAF functions in mammals
RAF kinase functions in mammals have been analyzed in 
great detail through combined biochemical and genetic 
approaches. Following the isolation of v-RAF, the onco-
genic function of this kinase family was a strong focus of 
research, despite a lack of evidence for an involvement 
in human tumor development at this time. Activated ver-
sions of A- and B-RAF kinases generated in analoguous 
fashion to the retroviral v-RAF protein shared the abil-
ity to transform established fibroblast cell lines [3]. This 
oncogenic potential also extends to naturally occurring 
mutants of B-RAF and C-RAF, which have been isolated 
recently [43, 44]. Transformation has also been observed 
in vitro for constitutively active versions of MEK [19] 
and ERK [45], suggesting that these effectors are critical 
for the propagation of signals required for transforma-
tion. Moreover, many upstream components present in a 
mutated form in tumors (RTK, RAS) activate this cas-
cade and depend on it for transformation [20]. Cross-talk 
with other signaling entities has also been observed in the 
case of RAF, and involvement of autocrine mechanisms 
has been suggested in some instances. They include the 
activation of NF-κB [46], PI3-kinase/PKB [47, 48] and 
also of stress kinases [49]. In all cases, the contribution 
of these recruited pathways to the transformation in an in 
vivo setting has not been analyzed in detail. However, this 
activation of multiple pathways may be characteristic for 
malignant diseases, where genetic aberrations are usually 
abundant [50] and thus several intracellular signaling 
pathways will be affected.
In the following, we will address mechanisms, which 
have been implicated in RAF transformation and the ef-
fector pathways involved.

Cell cycle progression. Cell cycle progression is criti-
cally regulated through the action of kinases and essential 
cofactors. Cell cycle entry depends on the presence of 
extrinsic factors to proceed factor independently to enter 
S phase and complete the cell cycle beyond the so-called 
restriction point. Cell cycle progression is regulated 
through cyclin-dependent kinases (CDKs) and their regu-
latory subunits, the cyclins. Mitogen stimulation requires 
CDK4 and 6 and the interacting D-type cyclins. D-type 
cyclins are unstable and their synthesis and assembly 
with CDKs is growth factor regulated. CDK activation 
results in the phosphorylation of the retinoblastoma (Rb) 
protein, and thereby relieves its suppressive action on the 
transcription of genes required for DNA synthesis [51]. 
Activation of the RAS-RAF-MEK-ERK pathway has 
been shown to stimulate cell cycle progression, mainly 
through transcriptional upregulation of cyclin D1. Ad-
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ditional cell cycle targets for RAF signaling include the 
CDK inhibitors p27 and p21. p27 protein levels are de-
creased in cells expressing constitutively active mutants 
of RAF by a mechanism which may lead to enforced p27 
degradation. Analysis of signaling through this cascade 
also highlighted the importance of signaling strength. 
Hyperactivation was linked to the induction of growth ar-
rest. The molecular basis for this observation may lie in 
the high levels of p21 expression caused by strong signals 
leading to growth arrest, whereas low levels of p21 are 
permissive for proliferation [52–54].

Cell survival. Cell survival is critically regulated by the 
major intracellular signaling pathways. The demise of a 
cell is initiated through the activation of proteolytic en-
zymes (caspases) by death-receptor-dependent (extrin-
sic) and on strictly mitochondria-dependent (intrinsic) 
pathways [55]. Multiple safeguard mechanisms are in 
place which normally prevent caspase activation or in-
hibit already activated caspases [56–59]. The survival 
activity of RAF was first demonstrated for the oncogenic 
form of the kinase [60]. Expression of gag-v-RAF de-
layed the apoptotic cell death of interleukin (IL-3)-de-
pendent pro-myeloid 32D cells upon growth factor with-
drawal, but was by itself like other pro-survival proteins 
insufficient to prevent cell death for prolonged periods 
of time. A role for C-RAF in cell survival signaling has 
also been supported by the increased apoptosis observed 
in RAF-deficient animals and cells [61–63]. Recent re-
search has dissected the pathways and the mechanisms 
through which RAF controls cell survival. It has demon-
strated the existence of several RAF effectors involved 
in this process, but has also provided evidence for direct 
C-RAF effects, mainly mediated through its interaction 
with critical regulators of apoptosis [56]. Where ana-
lyzed, protection by RAF usually resulted in the mainte-
nance of mitochondrial integrity. In a single instance, a 
protective effect through B-RAF following cytochrome c 
release has also been reported [64]. Based on the analy-
sis of B-RAF-deficient motoneurons, upregulation of 
inhibitor of apoptosis proteins (IAPs), which can bind 
and inhibit active caspases, may be one mechanism op-
erating at the post-mitochondrial level [65]. Inactivation 
of the pro-apoptotic Bcl-2 family member BAD has been 
reported as one possible mechanism through which RAF 
kinase assures cell survival, although how commonly 
BAD is involved in cell death induction remains to be 
determined [66]. Other direct mechanisms for anti-apop-
totic RAF signaling were suggested by the interaction of 
C-RAF with the apoptosis-inducing kinases MST-2 [67] 
and ASK1 [68], resulting in the inhibition of their pro-
apoptotic activity.
Controversy exists around the issue of MEK require-
ment in survival signaling by RAF. While in vitro studies 
clearly demonstrated an essential role for MEK in sur-

vival signaling downstream of RAF [48], the knock in 
of a mutant of C-RAF to the C-RAF locus, which failed 
to activate MEK, was indistinguishable from wild-type 
C-RAF with regard to cell survival [61], arguing that sig-
naling via MEK and ERK is not required for apoptosis 
suppression by C-RAF. The controversy stems from pre-
viously published data [69–71], which suggested that the 
mutations used failed to completely inactivate the kinase 
and thus residual signaling through this cascade may per-
sist. True kinase-dead mutants of C-RAF, however, were 
as efficient as wild-type RAF in interacting with MST2 
and preventing apoptosis [72]. Survival through MEK 
and ERK contributes to apoptosis suppression through 
the inactivation of pro-apoptotic BH3-only members of 
the Bcl-2 family [73], the transcriptional upregulation of 
IAPs [65] and the activation of protein kinase B (PKB) 
via autocrine mechanisms [47, 48].
Major anti-apoptotic pathways not only prevent caspase 
activation or activity but also indirectly contribute to cell 
survival by regulating cellular energy production and use. 
Different mechanisms for achieving this goal have been 
documented previously [25, 74] and even in the case of 
RAF, a linkage to cellular energy production has been 
suggested. Extra-mitochondrial energy production is 
critically affected by A-RAF [75], and its mitochondrial 
counterpart may be susceptible to regulation by C-RAF, 
as suggested by our own data [A. Garedew, C. Doblander, 
E. Gnaiger, J. Troppmair, unpublished data].
RAF-dependent signaling pathways are also able to pre-
vent excessive levels of reactive oxygen species (ROS) and 
calcium concentrations in this organelle [A. Kuznetsov, 
C. Doblander, M. Janakiraman, M. Hermann, M. Wurm, 
R. Sucher and J. Troppmair, unpublished data], which 
directly induce cell death. From these and other data it 
seems realistic to postulate that RAF signaling controls 
mitochondrial events, however, the existence of interme-
diates in these pathways and the nature of mitochondrial 
targets remain to be demonstrated. In this context, the 
recent demonstration of a prohibitin-C-RAF complex 
required for RAS-induced MEK/ERK activation may be 
of particular interest [76]. Prohibitins are evolutionarily 
highly conserved and ubiquitously expressed proteins 
with proposed functions as tumor suppressors, regulators 
of apoptosis and mitochondrial function. Mitochondria 
may be the main site of prohibitin function and localiza-
tion in the cell, where they assist as chaperones in the 
assembly of mitochondrial respiratory chain complexes 
[77]. Whether C-RAF can be found associated with mi-
tochondrial prohibitin and whether such an interaction 
provides access for C-RAF to mitochondrial substrates 
remains to be shown.

Cell migration. Cell migration is an essential part of em-
bryonic development, but is also required for wound heal-
ing, during angiogenesis, and in tumor metastasis. Cyto-
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skeletal reorganization is a prerequisite for cell mobility 
and the small GTPases of the Rho family are key regula-
tors of this process [78]. Rho induces actin reorganiza-
tion via the effectors Rho-kinase/ROK/ROCK and mDia 
[79]. Conditional ablation of C-RAF in keratinocytes 
has shown recently that C-RAF is required for efficient 
wound healing [80]. RAF deficiency did not affect kera-
tinocyte cell survival or proliferation but rather severely 
impaired their migration. ROK was shown to physically 
interact with C-RAF and deletion of C-RAF resulted in 
ROK hyperactivation and mislocation and thus deregu-
lation of Rho downstream signaling [80]. Surprisingly, 
this defect could also be reversed through the expression 
of a kinase-dead mutant of RAF, suggesting functions of 
RAF which are independent of MEK/ERK activation. In 
contrast, increased migration was observed in B-RAF-
deficient cells through a process which also targeted Rho 
signaling but was MEK/ERK dependent [81].

Developmental effects. Developmental effects of RAF 
kinases have been studied through gene knockouts – at 
the organism level for all three RAF isoforms and at the 
organ level for C-RAF. Intestinal and neurological abnor-
malities have been observed in the case of A-RAF, and 
depending on the genetic background, animals died from 
extensive bowel distension 7–21 days postpartum (C57/
Bl/6). Even survivors without intestinal abnormalities 
showed neurological defects (129/OLA) [82]. In an initial 
C-RAF knockout, the first coding exon was replaced by a 
drug resistance gene, resulting in the generation of a 62-
kDa N-terminally truncated protein with reduced activity. 
Embryos homologous for the altered allele grew slowly 
and died by E12.5, most likely due to impaired placenta 
function. However, on an outbred CD1 background, two-
thirds of the mutant mice survived until birth and died 
thereafter of failed lung maturation. A complete knock-
out of C-RAF was achieved by targeting exon 3 result-
ing in a complete loss of C-RAF protein expression [62]. 
Again, the embryos showed growth retardation and pla-
cental anomalies. The fetal livers were hypocellular and 
contained numerous apoptotic cells. B-RAF-deficient 
mice generated through the partial deletion of the RAS-
binding domain died in utero (E10–E12.5). Development 
of the vasculature was disturbed and apoptosis was ob-
served throughout the embryo and, most significantly, af-
fected the vascular endothelium [83].

RAF kinases as oncogenes in humans

B-RAF mutations
While much of the research on RAF kinases for a long 
time focused on C-RAF, it gradually became clear that 
B-RAF may be even more critical for the transmission 
of mitogenic signals to the MEK/ERK module. The gen-

eral interest in B-RAF was further spurred when, in June 
2002, activating mutations of B-RAF were described in 
66% of melanomas and at a lower frequency in a wide 
range of human solid cancers [43]. All mutations were 
located within the kinase domain of B-RAF with a single 
substitution (V600E, formerly V599E [5]) accounting 
for 80% of them (Fig. 2). Since then, more than 60 dif-
ferent mutations have been identified in various tumor 
entities. The highest frequency of B-RAF mutations is 
found in skin tumors (44%, with even higher frequencies 
in the melanoma and nevi subgroups), thyroid carcinoma 
[27%, again with higher prevalence in papillary thyroid 
carcinomas (PTCs)], ovary carcinoma (16%), large in-
testinal colon carcinomas (15%), and carcinomas of the 
biliary tract (15%). Most of the currently known B-RAF 
mutations are located in exon 11 or 15, within the cata-
lytic domain. Many B-RAF mutations result in elevated 
kinase activity as measured in in vitro kinase assays or 
the activation of previously identified RAF targets such 
as NF-κB [84]. Furthermore, expression of mutant B-
RAF proteins in cell lines (i.e. Cos7 or NIH3T3) [85] or 
Xenopus embryos [17] induced constitutive phosphory-
lation of endogenous and/or cotransfected MEK1/2 and 
ERK1/2. Interestingly, some mutant B-RAF proteins dis-
played decreased B-RAF kinase activity in vitro but still 
induced constitutive ERK phosphorylation in vivo. These 
B-RAF mutants activate endogenous C-RAF, possibly via 
an allosteric or transphosphorylation mechanism, thereby 
causing constitutive ERK phosphorylation [17]. Another 
hallmark of many B-RAF mutants is their ability to cause 
cellular transformation, as evidenced by morphological 
alterations in NIH3T3 cells [84], enforced cell prolif-
eration and/or cell growth, growth in soft agar, lowered 
growth factor requirement [84] or tumorigenicity in nude 
mice [43, 86]. Furthermore, thyroid-specific expression 
of B-RAF V600E from a transgene resulted in PTCs that 
underwent dedifferentiation [87]. A causal role for B-
RAF V600E could be corroborated through inhibition or 
depletion of the kinase, which abrogated ERK activity, 
proliferation and transformation of the cell lines studied, 
and further enhanced apoptosis [88, 89].
Further dissection of the effects of B-RAF V600E on 
apoptosis yielded differential results. Apoptosis sup-
pression was abolished in B-RAF-V600E-positive hu-
man melanoma cell lines following treatment with the 
RAF kinase inhibitor BAY 43-9006 [90]. Contrary to 
this, in PCCL3 thyroid cells expressing mutated B-RAF, 
the increased proliferative capacity was not accompa-
nied by net growth, due to a concomitant increase in 
apoptosis [91]. The authors argued that the B-RAF 
V600E mutation facilitates the acquisition of secondary 
genetic events through induction of genetic instability, 
which may account for its aggressive properties [91]. In 
a recent study, Michaloglou and colleagues [92] dem-
onstrated that sustained B-RAF V600E expression in 
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human melanocytes induces cell cycle arrest, which is 
accompanied by the induction of p16INK4a and acidic 
β-galactosidase activity, both markers of senescence. 
Oncogenic mutations may thus induce a genuine pro-
tective physiological process like senescence, which 
could explain how melanocytic nevi, which harbor B-
RAF V600E in more than 70% of cases, can stay in a 
quiescent state for decades without progressing into a 
malignant melanoma.

Many studies have addressed the nature of cooperating 
events in B-RAF transformation in human tumors. B-
RAF mutations with a few exceptions do not coincide 
with mutations in RAS, suggesting that activations of 
B-RAF or RAS are equivalent in their tumorigenic ef-
fects and therefore mutually exclusive [93–97]. A further 
example of mutual exclusivity can be observed between 
B-RAF mutations and the RET/PTC rearrangement in 
PTCs. While each alteration alone is quite frequent in this 

Figure 2. Sequence alignment of B-RAF and C-RAF proteins. Areas highlighted in gray indicate amino acid identity between B-RAF and 
C-RAF. The three conserved regions (CR1–3) are marked by frames. p indicates positions in B-RAF and q indicates positions in C-RAF 
where naturally occurring mutations have been reported.

C-RAF 1   ------------------------------------------------------------  1 
B-RAF 1   --------------------MAALSGGGGGGAEPGQALFNGDMEPEAGAGAGAAASSAAD  20 

C-RAF 1   ----------------------------------------------------MEHIQGAW  8 
B-RAF 21  PAIPEEVWNIKQMIKLTQEHIEALLDKFGGEHNPPSIYLEAYEEYTSKLDALQQREQQLL  100 

                                                                 CR1 
C-RAF 9   KTISNGFGFK-------DAVFDGSSCISPTIVQQFGYQRRASDDGKLTDPSKTSNTIRVF  61 
B-RAF 101 ESLGNGTDFSVSSSASMDTVTSSSSSSLSVLPSSLSVFQNPTDVARSNPKSPQKPIVRVF  160 

C-RAF 62  LPNKQRTVVNVRNGMSLHDCLMKALKVRGLQPECCAVFRLLHEHKGKKARLDWNTDAASL  121 
B-RAF 161 LPNKQRTVVPARCGVTVRDSLKKALMMRGLIPECCAVYRI---QDGEKKPIGWDTDISWL  217 

                            CR2 
C-RAF 122 IGEELQVDFLDHVPLTTHNFARKTFLKLAFCDICQKFLLNGFRCQTCGYKFHEHCSTKVP  181 
B-RAF 218 TGEELHVEVLENVPLTTHNFVRKTFFTLAFCDFCRKLLFQGFRCQTCGYKFHQRCSTEVP  277 

                                                                 
C-RAF 182 TMCVDWSNIRQLLLFPNSTIGDSGVP---------ALPSLTMRRMRESVSRMP---VSSQ  229 
B-RAF 278 LMCVNYDQLD--LLFVSKFFEHHPIPQEEASLAETALTSGSSPSAPASDSIGPQILTSPS  335 

C-RAF 230 HRYSTPHAFTFNTSSPSSEGSLSQRQRSTSTPNVHMVSTTLPVDSRMIEDAIRSHSESAS  289 
B-RAF 336 PSKSIPIPQPFRPADEDHRNQFGQRDRSSSAPNVH-INTIEPVN---IDDLIRDQGFRGD  391 

                                                              
C-RAF 290 PSALSSSPNNLSPTGWSQPKTPVPA-------QRERAPVSGTQEKNKIRPRGQRDSSYYW  342 
B-RAF 392 GGSTTGLSATP-PASLPGSLTNVKALQKSPGPQRERKSSSSSEDRNRMKTLGRRDSSDDW  450 
                                                                    
                 CR3 
C-RAF 343 EIEASEVMLSTRIGSGSFGTVYKGKWHGDVAVKILKVVDPTPEQFQAFRNEVAVLRKTRH  402 
B-RAF 451 EIPDGQITVGQRIGSGSFGTVYKGKWHGDVAVKMLNVTAPTPQQLQAFKNEVGVLRKTRH  510 
                                                            
                                                                     
C-RAF 403 VNILLFMGYMTKDNLAIVTQWCEGSSLYKHLHVQETKFQMFQLIDIARQTAQGMDYLHAK  462 
B-RAF 511 VNILLFMGYSTKPQLAIVTQWCEGSSLYHHLHIIETKFEMIKLIDIARQTAQGMDYLHAK  570 
    
                         
C-RAF 463 NIIHRDMKSNNIFLHEGLTVKIGDFGLATVKSRWSGSQQVEQPTGSVLWMAPEVIRMQDN  522 
B-RAF 571 SIIHRDLKSNNIFLHEDLTVKIGDFGLATVKSRWSGSHQFEQLSGSILWMAPEVIRMQDK  630 
                               

C-RAF 523 NPFSFQSDVYSYGIVLYELMTGELPYSHINNRDQIIFMVGRGYASPDLSKLYKNCPKAMK  582 
B-RAF 631 NPYSFQSDVYAFGIVLYELMTGQLPYSNINNRDQIIFMVGRGYLSPDLSKVRSNCPKAMK  690 

C-RAF 583 RLVADCVKKVKEERPLFPQILSSIELLQHSLPKINRSASEPSLHRAA-HTEDIN--ACTL  639 
B-RAF691  RLMAECLKKKRDERPLFPQILASIELLARSLPKIHRSASEPSLNRAGFQTEDFSLYAC--  748 

C-RAF 640 TTSPRLPV----------------------------------------------------  647 
B-RAF 749 –ASPKTPIQAGGYGAFPVH-----------------------------------------  766 
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tumor entity, they could not be detected together, again 
suggesting equivalent effects on PTC development [98, 
99]. In one single study performed by Xu and colleagues 
[100], a RET/PTC-B-RAF V600E overlap could be ob-
served – although this study has been criticized for the 
use of antibodies, which may not reliably discriminate 
between the rearranged and the wild-type RET proteins 
[101]. Inactivating p53 mutations have been detected in 
melanoma samples harboring the B-RAF V600E substi-
tution [102]. In a transgenic zebrafish, cooperation of 
activating B-RAF mutations with p53 loss could be con-
firmed [103]. While B-RAF in all animals caused rapidly 
developing melanocytic nevi, only those with additional 
p53 deficiency progressed to invasive melanomas [103]. 
A critical role for p53 in this process is also supported 
by data demonstrating that p53 inactivation was required 
in B-RAF-mutated nevi to overcome the senescent state 
[92]. B-RAF mutations are also often coupled to the in-
activation of PTEN/MMAC1 [104] or low expression of 
the tumor suppressor gene SLC5A8 in PTC [105]. The re-
quirement for additional genetic alterations is also shown 
by the frequent linkage of B-RAF mutations to a defective 
mismatch repair (MMR) status [93], which is a hallmark 
of several human malignancies [106, 107]. However, they 
do not seem to be a consequence of defective MMR per 
se, as they are rare in the MMR-deficient subgroup with 
germline mutations in hMHL1 or hMSH2. Supporting 
this hypothesis, the vast majority of B-RAF mutations 
are detected in microsatellite instable cases harboring an 
epigenetic inactivation of hMLH1 [108].

C-RAF mutations
As described above C-RAF is the most intensively stud-
ied of the RAF isoforms. Nevertheless, the list of re-
ported C-RAF mutations is quite short when compared 
with B-RAF. In 1993, the first mutations were described 
in a mouse model for chemically induced lung cancer 
[109]. All of these were consistent point mutations within 
a small region of the observed kinase domain and, in-
deed, some of them were found to be weakly transform-
ing when tested in NIH3T3 assays. Another four exonic 
mutations (P207S, V226I, Q335H and E478K) were 
detected in four human cancer cell lines recently [110]. 
Although none of them resulted in the transformation of 
NIH3T3 cells, the E478K mutant displayed increased C-
RAF kinase activity, its basal kinase activity being 25-
fold higher than that of wild-type C-RAF. In an ongoing 
study, our group has observed the first C-RAF mutations 
in a human malignancy [44] (Fig. 2). S427G and I448V, 
both located in the kinase domain, were detected in two 
patients with therapy-related acute myeloid leukemia (t-
AML), which occurs after chemo- and/or radiotherapy 
for a primary malignancy. As both mutations were absent 
in 200 healthy individuals (corresponding to 400 alleles), 

a common polymorphism could be excluded. In in vitro 
and in vivo kinase assays, only one mutation (S427G) re-
sulted in increased C-RAF kinase activity whereas the 
other (I448V) did not. However, further experiments 
demonstrated that both mutants, despite their difference 
with respect to MEK and ERK activation, result in weak 
oncogenic transformation as well as inhibition of apopto-
sis. An additional interesting finding was that contrary to 
the somatic B-RAF mutations, these C-RAF mutations 
were of germline origin. However, as constitutive activa-
tion of the pathway was only detected in neoplastic tis-
sues, they might constitute a hereditary predisposition to 
solid neoplasms and t-AML. Such genetic predisposition 
has been proposed particularly for patients with t-AML, 
considering that only a minority of individuals receiving 
chemo- and/or radiotherapy for a primary disease develop 
this type of leukemia [111].

RAF overexpression in tumors
The oncogenic potential of overexpressing wild-type 
C-RAF has been demonstrated following lung-targeted 
expression [112], although long latencies suggest the re-
quirement for cooperating events. C-RAF overexpression 
in human malignancies was first described in an analysis 
of 27 cases of AML, where increased mRNA levels were 
observed in two cases with erythroleukemia [113]. This 
C-RAF overexpression was not confirmed at the protein 
level and no data about the phosphorylation status or about 
functional alterations are available. High expression of 
C-RAF mRNA could also be detected in squamous cell 
carcinomas of the head and neck, which could be linked 
to radiotherapy resistance [114]. One study observed a 
striking correlation between high C-RAF expression and 
poor survival in patients with ovarian cancer. A reduction 
of C-RAF protein levels and a concomitant inhibition of 
cell proliferation in vitro was seen after incubation with 
C-RAF antisense oligodeoxynucleotides (i.e. ISIS 5132) 
[115]. However, definitive data about the occurrence or 
the functional consequences in most human tumors are 
still missing, which is remarkable given that ISIS 5132 is 
already in clinical phase II trials.

Other RAF alterations
An interesting new way of B-RAF activation was re-
cently described by Ciampi and colleagues [116], who 
analyzed B-RAF in thyroid cancer [116]. They reported 
a rearrangement of B-RAF via paracentric inversion of 
chromosome 7q resulting in an in-frame fusion between 
exons 1–8 of the AKAP9 gene and exons 9–18 of B-RAF. 
The fusion protein contains the protein kinase domain of 
B-RAF but lacks its autoinhibitory N-terminal portion. 
Hence, this rearrangement results in a constitutive, on-
cogenic activation of B-RAF [116]. Amplification of the 
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mutated B-RAF allele was observed by Maldonado and 
colleagues [117] in seven out of nine melanoma samples 
with B-RAF mutations and a gain of chromosome 7q. 
They therefore suggested that B-RAF mutations are one 
of the factors that drive selection for the frequent gain of 
this chromosomal region in melanoma. Loss of heterozy-
gosity (LOH) affecting the C-RAF locus was observed in 
cervical cancer [118] and renal tumors [119]. However, 
whether these chromosomal losses have any functional 
consequences is not clear. C-RAF amplification has been 
observed in a human osteosarcoma specimen [120] and 
samples of urinary bladder cancer [121], but the relevance 
for the transformation process remains to be defined.

Targeting RAF signaling for therapeutic purposes

Due to the central role of the RAS-RAF-MEK-ERK path-
way in cellular transformation, the search for clinically 
useful intervention strategies has been ongoing at every 
level of the cascade. One prime target was the small G 
protein RAS, which is frequently affected in many hu-
man tumors. In addition, RAF and MEK were considered 
targets, even before mutational activation of RAF had 
been reported in human tumors, based on the assumption 
that activating upstream events cause constitutive signal-
ing through this pathway. Approaches chosen targeted 
the expression, the catalytic activity or post-transcrip-
tional/translational modifications required for proper 
localization and function of these signaling molecules. 
Targeting RAS via farnesyltransferase inhibitors like Za-
nestra (R115777; Johnson & Johnson, Titusville, N. J.) or 
Sarasar (SCH66336; Schering-Plough, Kenilworth, N. J.) 
is the most established approach. Nevertheless, results 
obtained in clinical trials were disappointing and their ef-
ficacy could not be correlated with the presence of RAS 
mutations, casting doubt on whether RAS is the exclusive 
target for these substances [122].

RAF antisense oligonucleotides
RAF antisense oligonucleotides (AONs) induce the 
RNaseH-mediated degradation of RAF mRNA. Two dif-
ferent drugs have been tested in clinical trials so far: ISIS 
5132 (CGP 69846A; ISIS Pharmaceuticals, Carlsbad, 
Calif.) and LErafAON (NeoPharm, Lake Forest, Ill.). 
ISIS 5132 is a synthetic 20-base phosphoriate antisense 
oligodeoxynucleotide targeted against the 3′-untranslated 
region of C-RAF mRNA. Promising results were ob-
tained in preclinical studies where ISIS 5132 was shown 
to exhibit antiproliferative activity in cell culture and an-
titumor activity in animals [123]. In July 1999, the first 
phase I trial of ISIS 5132 was published by Stevenson 
and colleagues [124] and in the following 2 years, a few 
others followed (Table 1) [123, 125, 126]. Although the 

number of patients enrolled was too small for statistical 
evaluation, some patients showed prolonged stabilization 
of their disease and one patient with ovarian carcinoma 
had a significant response with a 97% reduction in CA-
125 levels [126]. Additionally, a significant decrease in 
C-RAF expression levels could be correlated with admin-
istration of ISIS 5132 at doses of ≥ 2.5 mg/kg per day 
[124, 127]. However, results obtained in phase II trials 
were disappointing [128–131]. Only a few prolonged 
disease stabilizations and no single complete or par-
tial response were observed in trials performed in lung, 
colorectal, prostate and ovarian cancer (Table 1). As a 
consequence, further clinical development of ISIS 5132 
has been discontinued.
LErafAON is a new liposome-entrapped RAF antisense 
oligodeoxyribonucleotide with a significantly improved 
cellular uptake, and stable plasma levels for up to 24 h in 
human cancer patients [132]. Preclinical studies in nude 
mice bearing PC-3 human prostate cancer xenografts re-
vealed a significant antitumor activity [133]. As experi-
enced with ISIS 5132, the clinical development is less 
encouraging than the preclinical stage. No objective re-
sponse could be observed in a phase I trial conducted by 
Rudin and colleagues [132] in 22 patients with advanced 
solid tumors. Furthermore, infusion-related hypersensi-
tivity reactions, probably caused by the liposomal formu-
lation, were observed with all dosages administered (1, 2, 
4, 6 mg/kg per week). Phase II trials are currently under-
way and results are pending. But can the discrepancy be-
tween positive responses in in vitro studies and their lack 
in clinical trials be explained? First of all, this targeted 
therapy was completely untargeted in all of these phase 
II trials. For example, C-RAF AON was administered 
to patients diagnosed with prostate or colon carcinomas 
– nevertheless, no single study describing C-RAF over-
expression in these tumor entities has yet been published. 
Furthermore, no single patient enrolled in these phase II 
studies was shown to exhibit C-RAF overexpression in tu-
mor samples prior to drug administration. A recent study 
from Mullen and colleagues [134] further underscores 
the importance of patient preselection. They observed 
a correlation between growth inhibition by ISIS 5132 
in vitro and a high contribution of C-RAF to total (A-, 
B- and C-RAF) expression levels. Next, many targeted 
therapies (with the exception of imatinib mesylate in the 
treatment of BCR-ABL-positive chronic myeloid leuke-
mia) disappointed in clinical trials, when administered as 
single agents. However, as part of combination therapies 
or even as part of polychemotherapies, they demonstrated 
their real clinical benefit. In support of these observa-
tions, superadditive effects of ISIS 5132 and LErafAON 
could be demonstrated in cell lines when coadministered 
with common cytotoxic agents [135–137].
Considering the frequent mutational activation of B-
RAF described in human tumors [5], it remains doubt-
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ful if targeting C-RAF mRNA rather than the other 
isoforms will remain a viable strategy. In one recent 
study with ovarian cancer cells, which also used AONs 
against A-RAF (ISIS 15489) and B-RAF (ISIS 15344), 
McPhillips and colleagues [138] could show that C-
RAF was most relevant for carcinogenesis and therefore 
has to be considered the primary target for antisense 
approaches. This may not be too surprising given the 
fact that C-RAF is involved in the signal transduction 
from deregulated RAS and RTKs, but also some forms 
of mutant B-RAF, which require C-RAF for MEK ac-
tivation (Fig. 1). Targeting the appropriate RAF protein 
in a given tumor will require information on the expres-
sion as well as the mutational and functional status of 
all isoforms.

RAF kinase inhibitors
Several RAF kinase inhibitors such as ZM336372 (As-
traZeneca, Macclesfield, UK), L-779450 (Merck, Darm-
stadt, Germany), or oxindole derivates (GlaxoSmithKline, 
Brentford, UK) exist, but the most established and tested 
is BAY 43-9006 (Sorafenib, Bayer AG, Leverkusen, Ger-
many/Onyx Pharmaceuticals, Richmond, Calif.). This 
bi-aryl urea was designed as a small-molecule inhibitor 
of C-RAF and B-RAF [139] but additional characteriza-
tion revealed a much broader range of targets. Among 
many others it efficiently blocked FLT3, c-KIT and pro-
angiogenic receptor tyrosine kinases such as VEGFR-2, 
VEGFR-3 and mPDGFR-β [140]. In vitro studies demon-
strated inhibition of the RAF-MEK-ERK pathway in sev-
eral tumor cell lines. Subsequent in vivo studies proved 

Table 1. Summary of clinical studies conducted with the RAF AONs ISIS 5132 and LErafAON, the RAF kinase inhibitor BAY 43-9006 
and the MEK inhibitor CI-1040.

Drug Study Combination Phase Patients eligible 
for response

PD SD PR CR

ISIS 5132

Cunningham et al. [126] single agent I 34 27  6  1 0

Stevenson et al. [124] single agent I 29 27  2  0 0

Rudin et al. [125] single agent I 13  8  5  0 0

Oza et al. [131] single agent II 16 12  4  0 0

Tolcher et al. [130] single agent II 16 15  1  0 0
Cripps et al. [129] single agent II 15 10  5  0 0
Coudert et al. [128] single agent II 10 10  0  0 0

LErafAON Rudin et al. [132] single agent I 14  9  5  0 0

BAY 43-9006

Awada et al. [144] single agent I 32 15 16  1 0

Clark et al. [142] single agent I 17 12  5  0 0

Strumberg et al. [145] single agent I 45 19 25  1 0

Moore et al. [143] single agent I 41 32  9  0 0

Kupsch et al. [146] BAY 43-9006 + oxaliplatin I 32 13 17  2 0

ASCO 2005 abstr. 3062 single agent I 31 27  2  2 0

ASCO 2004 abstr. 6611 single agent I 27          23  4 0

ASCO 2005 abstr. 3037 single agent I/II 22  9 12  1 0

ASCO 2004 abstr. 4501 single agent II 63 15 18 25 0

ASCO 2005 abstr. 4762 single agent II  4  3  1  0 0

ASCO 2005 abstr. 5566 single agent II 10  4  6  0 0

ASCO 2004 abstr. 7506 single agent II 19 15  3  1 0

ASCO 2005 abstr. 4510 single agent III 24 vs 12 weeks PFS (p < 0.00001)

ASCO 2004 abstr. 3049 BAY 43-9006 + doxorubicin I 34 17 16  1 0

ASCO 2005 abstr. 3115 BAY 43-9006 + irinotecan I 27 10 17  0 0

ASCO 2005 abstr. 7508 BAY 43-9006 + dacarbazine I 11  6  3  2 0

ASCO 2005 abstr. 3067 BAY 43-9006 + gefitinib I 12  3  8  1 0
ASCO 2004 abstr. 3059 BAY 43-9006 + gemcitabine I/II 42 16 23  3 0
ASCO 2004 abstr. 7507 BAY 43-9006 + carboplatin + 

paclitaxel
I/II 32  2 19 11 0

CI-1040
Lorusso et al. [152] single agent I 41 21 19  1 0
Rinehart et al. [153] single agent II 52 44  8  0 0

Wherever possible, the evaluation of the clinical response has been reviewed. PD, progressive disease; SD, stable disease; PR, partial re-
sponse; CR, complete response; PFS, progression-free survival.



Cell. Mol. Life Sci.  Vol. 63, 2006 Review Article       1325

a broad-spectrum antitumor activity in several human 
tumor xenograft models [140, 141]. Four phase I trials, 
a German, a Canadian, a Belgian and an American have 
been published [142–145] and many more are currently 
ongoing – some of them already presented as abstracts 
(www.asco.org). Beside a satisfying rate of disease stabi-
lizations, a few tumor regressions have also been noticed 
(Table 1). In contrast to RAF AONs, clinicians have al-
ready started testing BAY 43-9006 as part of combination 
therapies. A recently published phase I trial, combining 
BAY 43-9006 with oxaliplatin, revealed a benefit in pa-
tients with refractory solid tumors [146]. Further studies 
are currently ongoing, and again, promising preliminary 
results have already been presented as abstracts (Table 1). 
In addition to phase I combination trials, several phase 
II trials administering BAY 43-9006 as a single agent or 
as part of combination therapies are currently ongoing 
(Table 1). Preliminary results of a phase II randomized 
discontinuation trial were particularly interesting in the 
subgroup of patients with kidney cancer (Ratain et al., 
ASCO 2004, abstract 4501). Approximately 40% of pa-
tients responded (> 25% tumor reduction) and thus were 
continued with BAY 43-9006, and another 30% of treated 
patients showed stable disease (defined as a response 
between 25% tumor reduction and 25% tumor growth). 
These patients were randomized to receive 400 mg bid 
oral placebo or BAY 43-9006. The therapeutic outcome 
was significantly superior in the BAY 43-9006 group 
(ASCO 2005, abstract 4544). Recently, this drug entered 
the stage of clinical phase III trials. One randomized trial 
comparing BAY 43-9006 with placebo and best support-
ive care in patients with kidney cancer has already been 
presented in abstract form and revealed a significantly 
prolonged progression-free survival for patients treated 
with BAY 43-9006 (Table 1) (Escudier et al, ASCO 2005, 
abstract. 4510). Despite these promising results in kid-
ney cancer, it remains unclear if VEGF rather than RAF 
is the relevant target of BAY 43-9006, as VEGF overex-
pression can be observed in the majority of cases [147]. 
Furthermore, clinical trials with other drugs targeted at 
VEGF, such as the monoclonal anti-VEGF antibody be-
vacizumab (rhuMab VEGF, Avastin, Gentech, South San 
Francisco, Calif.) or the small-molecule VEGFR inhibitor 
SU11248 (Sutent Pfizer, La Jolla, Calif.), were equally 
successful [148].

New methods targeting RAF
Beside these two established therapeutic approaches, new 
methods targeting RAF are being developed, some of 
them showing promising results in preclinical studies. For 
example, Gentschev and colleagues [149] demonstrated 
a significantly reduced tumor growth in two transgenic 
mouse models of RAF-oncogene-induced lung adeno-
mas through a new live C-RAF vaccine based on an at-

tenuated Salmonella enterica serovar Typhimurium aroA 
strain [149].

Targeting MEK
Targeting MEK provides an additional means to interfere 
with RAS-RAF-MEK-ERK signaling. Although various 
MEK-ERK-independent functions have been discussed, 
MEK is certainly the main effector of the RAF kinases. 
Again, several MEK inhibitors exist (PD98059; Pfizer; 
UO126; DuPont Pharmaceuticals) but due to its oral 
availability, CI-1040 (PD-0184352; Pfizer) was the first 
to be tested in clinical trials. In a preclinical study per-
formed by Kramer and colleagues [150], its efficacy was 
compared with BAY 43-9006 in RAF-dependent lung 
tumor mouse models. Both drugs were equally effective 
in abrogating RAF-MEK-ERK signal transduction as as-
sessed by ERK phosphorylation. CI-1040 further reduced 
adenoma formation to a third and significantly restored 
lung structure, while BAY 43-9006 did not. The authors 
try to explain this interesting finding through differences 
in the in vivo accessibility of these inhibitors to subcel-
lular sites where C-RAF is localized. As another possible 
explanation, they took the different regulation of RAF 
and MEK. RAF is regulated by a complex system of ac-
tivatory and inhibitory events which makes it difficult to 
potently inhibit full RAF activity. Hall-Jackson and col-
leagues [151] further observed a paradoxical activation of 
RAF when they tried to inhibit it by ZM 336372, which 
they explained through the existence of feedback loops. 
The regulation of MEK is less complex and easier to 
achieve in the living organism. Considering these promis-
ing results, phase I and II trials administering CI-1040 to 
patients with advanced cancer started in 2004 [152, 153]. 
Unfortunately, results were disappointing, with only one 
single partial response. Currently, clinical development 
with the second-generation MEK inhibitor PD 0325901, 
which has markedly superior pharmacologic and bio-
pharmaceutical properties, including a more than 50-fold 
increased potency against MEK [153], is underway. An-
other interesting finding concerning the efficacy of MEK 
inhibitors was recently published by Solit and colleagues 
[154]. They demonstrated that cell lines harboring the 
B-RAF V600E mutation are more susceptible to MEK 
inhibitors than those without mutant B-RAF. Even cell 
lines with RAS mutations were less affected, presumably 
because multiple other pathways can be stimulated by 
activated RAS [155]. They conclude that restricting pa-
tient collectives for future studies with MEK inhibitors to 
those with mutated B-RAF might substantially increase 
the clinical benefit of these drugs.
In conclusion, targeted anti-RAF therapy, especially with 
the RAF kinase inhibitor BAY 43-9006, definitely has 
the potential to provide therapeutic alternatives. There is 
a rapid progression of these new substance into the clinic. 
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However, despite the time factor, careful patient profiling 
before their inclusion in clinical studies will be an inevi-
table step in order to realize the full therapeutic benefit 
of these new drugs.
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