
Abstract. The sequence of entire genomes from higher
eukaryotes revealed that an average gene is very large due
to the interruption of the coding sequence with large non-
coding introns. Introns are co-transcriptionally removed
by splicing with great accuracy and fidelity, although con-
trary to our expectations, currently known signals required
for pre-messenger RNA (mRNA) processing are very de-
generate and redundant. Furthermore, the vast majority of
genes are alternatively processed. A large number of pro-
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teins are therefore involved in generating specificity in
pre-mRNA processing that requires a dedicated mecha-
nisms to operate at genomic dimensions. In this review I
will summarize recent progress in understanding how es-
tablished principles of pre-mRNA processing extend to
genomic dimensions and discuss emerging concepts in
coupling of pre-mRNA processing with other nuclear
events and nuclear organization.

Keywords. Alternative splicing, alternative polyadenylation, editing, capping, hnRNP, coupling of RNA processing to
transcription, genomics.

Introduction

Since the genomes of several higher eukaryotes have
been sequenced, it has become clear that most genes are
very large due to the interruption of the coding sequence
with large portions of non-coding sequences (introns).
Furthermore, the size of introns correlates with genome
size, and both increase from lower to higher eukaryotes
[1]. In addition, an increased size of introns has also been
associated with a smaller population size of a species. An
average gene in humans is transcribed under the control
of transcription factors from about 30 kb of chromosomal
DNA into a pre-messengerRNA (pre-mRNA). The pre-
mRNA is then processed by splicing out introns to an
mRNA of only about 3 kb. The mRNA is then transported
to the cytoplasm, where it serves as template for the syn-
thesis of a protein [2]. Despite the generally very short
and degenerate nature of splicing signals, processing of
pre-mRNAs occurs with amazing fidelity and accuracy
independent of intron size. Central to the processing of

pre-mRNAs are a large number of combinatorial interac-
tions among regulatory factors. Of particular interest to
our understanding of pre-mRNA processing is the eluci-
dation of combinatorial codes to predict processing
choices in situations of alternative pre-mRNA processing
or to evaluate the impact of genetic polymorphisms.
The annotation of eukaryotic genomes by experimental
determination from complementary DNA (cDNA) li-
braries and homology to other genomes has much im-
proved since publication of the first draft sequences. One
of the striking results of this effort has been that alterna-
tive pre-mRNA processing is a major theme in the ex-
pression of genes. In humans, for example, about 60–
80% of genes are alternatively spliced in at least one
exon, and at least 30% of genes have alternative polyA
sites [3–5]. Since a mere number around 25,000 genes in
humans has been below expectations with regard to or-
ganismal complexity compared with other eukaryotic
genomes such as Drosophila (14,000 genes), Caenorhab-
ditis elegans (19,000 genes) or Arabidopsis (~25,000), al-
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ternative RNA processing has gained attention as a mech-
anism to generate molecular diversity and contribute to
morphological complexity (for references on gene num-
bers see [1]). Notably, the number of alternatively spliced
genes increases from 10% in C. elegans and plants to 25–
40% in Drosophila and 60–80% in humans, and thus cor-
relates with organismal complexity [3–9]. Previously,
gene duplication, particularly the duplication of tran-
scription factor genes in association with their regulatory
potential to act in a combinatorial manner, has been pro-
posed to provide the major contribution to an increase in
organismal complexity [10]. Gene duplication and alter-
native RNA processing, however, show an inverse corre-
lation in evolutionarily conserved gene families, suggest-
ing that both mechanisms are evolutionarily interchange-
able strategies to genic proliferation [11]. A link between
the elaboration of transcriptional control and alternative
RNA processing is also suggested by the fact that tran-
scription and pre-mRNA processing are highly coupled
processes (see below, [12, 13]). Consequently, the type of
promoter and its associated transcription factors and co-
regulators have been shown to determine alternative pre-
mRNA splicing choices [14, 15].
Among the different pre-mRNA processing possibilities,
alternative splicing is the most prevalent mechanism to
generate proteomic diversity while alternative polyA site
choices can influence proteomic diversity through the
use of different terminal exons, and regulatory potential
through 3¢UTR sequences, respectively (Fig. 1). RNA
editing is found in a minority of transcripts. To name only
a few astounding examples of extensively alternatively

spliced genes, the Down syndrome cell adhesion mole-
cule gene (Dscam) from Drosophila or the Neurexin and
CD44 genes in humans can produce as many as about
38,000, 3000 and 1000 different splice forms, respec-
tively (Fig. 2) [16–18]. An interesting feature of the
Dscam gene, a cell adhesion molecule involved in axon
guidance, are three regions in the extracellular domain
where a single exon from a number of possible choices is
spliced in a mutual exclusive fashion, thereby generating
a highly variable region (Fig. 2c). Cloning of Dscam
cDNAs from Drosophila revealed that most isoforms are
made, while for CD44 alternative splicing in a cell line
with metastatic growth, 95% of alternative splice forms
belong to the 15 most frequently found isoforms [16, 17].
Functional relevance of Dscam diversity is further indi-
cated by its expression in the immune system and by the
homophilic interaction of extracellular domains illustrat-
ing the potential of alternative splicing to contribute to
the complex wiring of the nervous system [19, 20]. An-
other example of an extensively regulated gene is the lola
transcription factor from Drosophila (Fig. 2d). Here,
choice of a different terminal exon regulates the DNA
binding properties of this transcription factor involved in
wiring of the nervous system [21]. The importance of al-
ternative splicing in the nervous system is further pointed
out by the much higher number of affected genes in this
tissue compared with other human tissues [22, 23]. Alter-
native splicing is not restricted to functional groups of
proteins, although some cellular functions such as apop-
tosis seem to be highly regulated by alternative splicing
[22, 24, 25].
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Figure 1. Alternative pre-mRNA processing types illustrated with an artificial model gene (top) transcribed and processed into possible
mRNA isoforms (bottom). Exons are shown as boxes and introns or intergenic regions as lines. Gene regions with alternative pre-mRNA
processing choices are illustrated in white and connected with dashed lines, while constitutive parts are depicted in black and connected
with solid lines. For adenosine to inosine editing (A to I) an editing site complementary sequence (ECS) located in an intron pairs with the
edited site in the exon.



Much has been learned about principles operating in con-
stitutive pre-mRNA processing. Extending our knowl-
edge to genomic dimensions, however, has been difficult
due to large intron sizes and degenerate regulatory se-
quences. Deducing regulatory mechanisms of alternative
splicing and polyadenylation has therefore mainly relied
on experimental determination. In addition, since genom-
ic dimensions mostly do not fit our test tubes to analyze
alternative pre-mRNA processing, many simplifications
in assay systems are made as a compromise to study a
particular problem of regulated RNA processing. The
availability of the sequence of entire genomes for bioin-
formatic approaches together with the powerful genetic
systems of yeast, Drosophila and mice as well as RNAi
(RNA interference) applications to generate hypomor-
phic conditions now provide the tools to extend our un-

derstanding of pre-mRNA processing and its regulation
to genomic levels. This is of particular relevance as 15%
of inherited diseases in humans result from mutations in
the proximity of splice junctions, but considering all as-
pects of pre-mRNA processing, this number is underesti-
mated [26–29]. In addition, splicing is also modulated by
age [30].
In recent years, several strategies have proven successful
to correct defects in pre-mRNA processing in simplified
assay systems [31]. Currently, the most promising exam-
ples for therapeutical approaches are those where recon-
stitution from a null condition to residual gene activity
provides large improvements to life quality; as, for exam-
ple, in some cases of b-thalassemias, where skipping of a
stop codon-containing exon results in a functional b-glo-
bin protein (for review see [31]). In many instances, how-
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Figure 2. Examples of genes where alternative splicing generates extraordinary molecular diversity. Exons are shown as boxes and introns
or intergenic regions as lines. Gene regions with alternative pre-mRNA processing choices are illustrated in white and connected with
dashed lines while constitutive parts are depicted in black and connected with solid lines. (a) The human Neurexin 3 gene coding for a neu-
ronal cell adhesion molecule spans over 1600 kb of genomic DNA and encodes for 24 exons (modified form [18]). In addition to two tran-
scriptional start sites, the 5¢ and 3¢ regions of the gene contain variable exons (exons 2–4) or splice sites (exons 22–24). The neurexin 3
gene’s largest constitutively spliced intron (292 kb) is between exons 16 and 17, and the largest alternatively spliced intron (347 kb) is be-
tween exon 1 and 5. (b) The human CD44 gene contains an extended variable region in the extracellular domain and two alternative ter-
minal exons located intracellularly (modified from [313]). Although many of the possible isoforms are made, different cell types prefer-
entially express a specific combination of variable exons [313, 314]. TM, transmembrane domain. (c) The Drosophila Down syndrome cell
adhesion molecule (Dscam) gene contains three variable extracellular regions where one exon is included from a number of possible
choices, and a region with two mutually exclusive exons in the transmembrane domain (TM, modified from [16]). (d) The Drosophila lon-
gitudinal lacking (lola) transcription factor gene spans over 60 kb, contains four alternative promoters and 19 different terminal exons en-
coding zinc finger DNA binding domains (modified from [222]). The constant region (black) encodes a BTB dimerization domain.



ever, the delicate balance of different isoforms is impor-
tant, as shown in the regulated inclusion of exon 10 in the
tau gene, whose mis-regulation has been linked to fron-
totemporal dementia and Parkinsonism (FTDP) [32]. In
stress induced neural hypersensitivity, a short temporal
switch in acetylcholinesterase alternative splicing results
in changes in dendritic physiology lasting weeks [33].
Thus, the development and test of strategies for therapeu-
tic use requires model systems that operate at genomic
and organismal levels, particularly with regard to long-
term effects on brain function and the regulation of be-
havioral output.
In the following section, I will give a brief introduction to
the individual steps of pre-mRNA processing required for
mRNA maturation into an export competent ribonucleo-
protein particle (RNP) and the mechanisms that operate
to recognize the highly degenerate processing signals that
are dispersed at genomic levels by large introns. As alter-
native pre-mRNA processing is a major theme in gene ex-
pression, I am going to summarize recent advances in our
current understanding of the regulatory mechanism and
how they apply to genomic dimensions. In recent years,
mechanisms that deal with splicing of large introns have
come to our attention, and I will discuss those in light of
additional complications for the processing of pre-mR-
NAs that arise at genomic levels. Although individual
pre-mRNA processing reactions have been viewed as
separate reactions for many years, coupling to transcrip-
tion has become a major focus of recent research, and
concepts have emerged regarding how organization into
processing units can both add new regulatory potential
and reduce sequence complexity. Finally, I will point out
some of the future directions that will advance our under-
standing of the mechanistic aspects of pre-mRNA pro-
cessing and how this in turn can be applied to improve hu-
man health.

Pre-mRNA processing reactions:
capping, editing, splicing, 3¢end processing

The first step in the processing of a pre-mRNA is cap-
ping. After synthesizing 20–30 nucleotides, RNA Poly-
merase II (RNA Pol II) pauses, and in a three-step reac-
tion a N7-methyl GMP is added in an unusual 5¢-5¢
triphosphate linkage [34, 35]. The cap is then bound by
the nuclear cap binding complex consisting of a 20- and
80-kDa protein [36]. Nucleotides adjacent to the cap
structure are to various degrees also ribose methylated
[37]. These 2¢-O-methylations are carried out by enzy-
matic activities different from methylation of internal
adenosine residues, which form N6-methyladenosine be-
fore splicing, but no unambiguous nuclear function has
yet been attributed to this type of modification [38]. The
cap structure is important for protecting the RNA from

5¢-3¢ exonucleases, stimulating splicing of the first intron
and 3¢end processing, and for enhancing translation [36,
39–42].
Until recently RNA editing was known to occur only in a
handful of transcripts and was largely underestimated ow-
ing to the difficulty in detecting editing sites, as only a
single nucleotide is changed [43, 44]. Editing is either
achieved by deamination or, as in mitochondria of try-
panosomes, a lower eukaryote by insertion of uridines into
the pre-mRNA with the help of a guide RNA [45]. Cyti-
dine to uridine deamination (C to U) occurs on single-
stranded RNA as substrate, and involves the editing activ-
ity APOBEC-1 (apoB editing catalytic subunit 1) and at
least one auxiliary factor from the alternatively spliced
ACF gene (APOBEC-1 complementation factor, ACF65
and ACF64) that recognizes a specific RNA sequence
termed mooring sequence [46]. Only two genes are
known, apolipoprotein B and neurofibromin, that are C to
U edited by APOBEC-1, and mice devoid of APOBEC-1
are viable. In humans, a family of APOBEC-1 related pro-
teins are present, but they have primarily been associated
with DNA editing in immune cells important for class
switch recombination and hypermutation of immunoglob-
ulins, and of retroviral genomes [47]. Adenosine to ino-
sine deamination (A to I) is catalyzed by ADAR’s (ade-
nosine deaminase acting on RNA) and seems to be part-
icularly prominent in the nervous system based on
phenotypic analysis [48]. The editing site usually consists
of an imperfect duplex RNA formed by base pairing be-
tween the editing site and an editing site complementary
sequence (ECS, Fig. 1) that can be thousands of nu-
cleotides away [49]. Since auto-regulatory editing of a sin-
gle nucleotide in ADAR2 transcripts changes its splicing
pattern, and since the ECS is mostly present in introns,
editing is thought to occur before splicing [43, 50]. A to I
editing has been largely underestimated as recent bioin-
formatic approaches together with experimental valida-
tion showed A to I editing in Alu elements, widespread
repetitive elements that comprise at least 10% of primate
genomes, but are absent in others [51–53]. The repetitive
Alu elements are about 300 nt long and form extensive
double-stranded regions likely with a widespread impact
on further pre-mRNA processing. In addition, a large
number of Alu elements have also become alternatively
spliced exons [54].
The removal of introns by splicing occurs in two trans-es-
terification steps resulting in a spliced RNA and a lariat of
the intron. Splicing requires four loosely defined sequence
elements, which are the 5¢ splice site (consensus in mam-
mals: AG/GURAGU), the branchpoint (YNYURAC), a
variable stretch of pyrimidines termed polypyrimidine tract
and the 3¢ splice site (YAG/N; / denotes the exon/intron
boundary). During the first step, the 2¢-hydroxyl group of
the branchpoint adenosine, which is up to 100 nt upstream
of the 3¢ splice site, attacks the phosphodiester linkage of
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the 5¢ splice site, leaving a 3¢-hydroxyl group at the end of
the first exon. In the second step, this 3¢-hydroxyl group at-
tacks the phosphodiester linkage at the 3¢ splice site result-
ing in joining of the two exons and release of the lariat in-
tron. Splicing involves the stepwise assembly of five (U1,
U2, U4, U5 and U6) small ribonucleoprotein particles
(snRNPs) and a large number of proteins onto the pre-
mRNA to form a large complex called the spliceosome
[55]. The first step in spliceosome assembly is the recogni-
tion of the 5¢ splice site by U1 snRNP, binding of SF1/
mBBP and of U2 auxiliary factor (U2AF35 and U2AF65)
to the branchpoint and to the polypyrimidine tract and the
AG of the 3¢ splice site, respectively. Subsequently, U2
snRNP binds to the branchpoint and then the U4/U6*U5
tri-snRNP joins to form the spliceosome that is catalyti-
cally active upon rearrangement and destabilization of U1
and U4 snRNPs [56, 57].
Rather surprisingly, a second type of intron exists, which
is spliced by a second type of spliceosome present in
higher eukaryotes (reviewed in [58]). Here, U11, U12,
U4atac and U6atac snRNPs replace U1, U2, U4 and U6
snRNPs, respectively. U5 is shared between both splice-
somes, but several minor variant U5 snRNAs are present
in Drosophila that potentially could be involved in U12
intron splicing [59]. Although historically termed AT-AC
introns, deduced from the first known introns of this sec-
ond type in relation to the change of the consensus of GT-
AG of regular introns, systematic analysis of more introns
did not reveal such a strict consensus for splice sites of
this second type of spliceosome. Therefore, this type of
intron is now named U12 intron and is determined by the
more tightly constrained consensus sequence at the 5¢
splice site and the lack of a polypyrimidine tract in front
of the 3¢ splice site. U12 introns in humans count for less
than 1% of all introns.
At the 3¢ end, all RNA Pol II transcripts are cleaved, and
with the exception of histone RNAs and snRNAs, a
polyA tail of about 200 adenosines is added. Consensus
sequence elements for processing of polyadenylated
mRNAs in animals consist of an AAUAAA hexamer se-
quence, a CA dinucleotide after which cleavage occurs
and a U- or GU-rich downstream sequence element
(DSE). For some polyA sites, a stimulatory upstream se-
quence element (USE) has also been defined that seems
to be important for processing of weak polyA sites [60,
61]. Recognition of a 3¢end processing site occurs in a
highly cooperative fashion by the two multiprotein com-
plexes, cleavage and polyadenylation specificity factor
(CPSF), which binds to the AAUAAA hexamer, and
cleavage stimulatory factor (CstF), which binds to the
DSE. To direct cleavage, two additional multiprotein fac-
tors are recruited, cleavage factor I and II (CFI and II) in
addition with polyA polymerase (PAP). Symplekin also
stimulates 3¢end processing and is thought to connect the
multiprotein processing subunits [62]. After cleavage,

PAP together with CPSF and stimulated by polyA bind-
ing protein adds the polyA tail [63, 64]. Histone tran-
scripts are processed at the 3¢end in a single cleavage re-
action after a stem loop structure by a multiprotein com-
plex containing U7 snRNP [65]. A long-standing mystery
in 3¢end processing field has been the nature of the en-
donuclease that directs cleavage. Recently, the CPSF-73
subunit has been implicated to be the long-sought en-
donuclease due to homology to known endonucleases
and by its site-specific cross-linking to the cleavage site
in both polyA and histone transcripts [66, 67].

Combinatorial interactions define exons,
introns and polyA sites

Pre-mRNA processing occurs with high fidelity and ac-
curacy despite the high degeneracy of pre-mRNA pro-
cessing signals. Therefore, models have been proposed
that define processing sites on a basis of combinatorial
interactions among regulatory factors and pre-mRNA
processing machinery [68–71]. Key to the formulation of
the ‘exon definition model’ (Fig. 3a) was the finding by
Berget and co-workers that a downstream 5¢ splice site
can stimulate a weak upstream 3¢ splice site [68]. Further
support for this model comes from splicing stimulatory
sequences termed exonic splicing enhancers (ESEs),
which are preferentially bound by serine-arginine-rich
proteins (SR proteins), that contain an RNA recognition
motif (RRM) in addition to a arginine-serine-rich domain
(RS domain, [72, 73]). ESE-bound SR proteins mediate
cross-exon interactions and were also shown to contact
the branchpoint [72, 74]. Experimental and bioinformat-
ics approaches have revealed a number of consensus se-
quences for ESEs that were also shown to be bound by SR
proteins and are most prominently found in constitutive
exons [73, 75–78]. Regulatory elements that antagonize
exon definition are termed intronic or exonic splicing si-
lencers (ISSs or ESSs) and are bound by negative regula-
tors of splicing such as hnRNP proteins (heterogeneous
nuclear ribonucleoproteins) [79–81].
Since 5¢ and 3¢ splice sites come into proximity during
spliceosome assembly through a number of RNA-protein
and protein-protein interactions, the opposite ‘intron def-
inition model’ is also proposed (Fig. 3b, [68]). This model
most likely applies for short introns. Interestingly, short
introns are also centered around an ‘ideal’ length of about
60 nt in Drosophila, suggesting that this is the space oc-
cupied by the spliceosome [82]. In the case of bigger in-
trons, this model has been proposed when splice sites are
brought into proximity through extensive RNA folding or
through multimerization of hnRNP proteins (see below).
To define the first and last exon of a transcript, the exon
definition model has been extended. The cap structure has
been shown to interact with the first 5¢ splice site and stim-
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ulates splicing [36, 40]. At the other end of a transcript, the
3¢ splice site from the last exon is important for cross-talk
between splicing and 3¢end formation to define the last
exon [83–87]. Here, interaction of the 3¢ splice site
through U2AF 65 with polyA polymerase has been found
to stimulate 3¢end processing [88, 89]. In addition, com-
ponents involved in the recognition of 5¢ splice sites, such
as U1A have also been found to stimulate 3¢end process-
ing by binding to a USE and interaction with the CPSF
160-kDa subunit [90]. The role of U1 snRNP, or its com-
ponents U1A and U1 70K alone in defining 3¢end pro-
cessing sites, however, is ambiguous as they can also in-
hibit 3¢end processing from either USEs or DSEs [91, 92].

Regulators of alternative pre-mRNA processing

The most prominent regulators of alternative splicing
comprise a large group of RNA binding proteins. RNA
binding proteins have a modular composition consisting
of one or more RNA binding domains and mostly at least
one additional auxiliary domain [93–96]. The RRM is
the most prevalent RNA binding domain and one of the
most frequent protein domains in eukaryotes [93, 97,
98]. The ~80 amino acid RRM contains two highly con-
served short motifs, RNP1 and RNP2, and folds into a
characteristic structure of a four-stranded antiparallel b-
sheet and two a-helices that binds 4–7 nt [98, 99]. In ad-
dition to the RRM, the KH, RGG and double-stranded
RNA binding domain are other common RNA binding
domains, but a number of other, less frequently found
RNA binding domains are also known [93, 100, 101].
Binding specificities for many RNA binding proteins
have been studied in detail with short sequences in vitro

[93, 96, 102–105]. Using such short binding motifs in
bioinformatics approaches has resulted in identification
of regulated genes in some instances (e.g. [106, 107]). In
most cases, however, predicting sequence specific bind-
ing in a larger context based on short binding motifs is
difficult due to sequence redundancy and therefore relies
mainly on experimental determination of binding sites
(e.g. [105, 108–111]). A key role in achieving binding
specificity in vivo has been attributed to either multiple
RNA binding domains in a single protein or to protein-
protein interactions among RNA binding proteins, or to
both. Although many RNA binding proteins engage in
homo- and heterophilic interactions and are present in
large RNPs in vivo (e.g. [93, 112]), elucidating combi-
natorial codes that explain binding specificity in a com-
plex cellular environment is challenging due to difficul-
ties in recapitulating the assembly of macromolecular
complexes. In the case of the gene-specific RNA binding
protein ELAV, a defined multimeric complex assembles
on its target sequence from the Drosophila ewg gene in
vitro and confines sequence specificity by binding to
multiple short and spaced binding motifs. This array of
evolutionarily conserved binding motifs is also required
for splicing regulation in Drosophila neurons [113].
Multiple ISI and ESI elements are also important for hn-
RNP A1-mediated regulation of intron 3 alternative
splicing from human immunodeficiency virus (HIV) tat
transcripts [114–116]. Current models of this scenario
propose that multimerization of hnRNP A1 in the con-
text of RNA secondary structure is key to hnRNP A1-
mediated repression [115, 116]. Regulators of alterna-
tive pre-mRNA processing also often form alternative
complexes with components of processing machinery
(eg. [117–121]).
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Figure 3. Splice site localization in pre-mRNA via exon definition (a) or intron definition (b) models. (a) Splice site recognition in the
exon definition model is enhanced across the exon by exon bound proteins, e.g. SR proteins (SRp, green) bound to splicing enhancers
(ESE), that interact with spliceosomal components (yellow) to stabilize their interaction with the pre-mRNA. Exons are shown as red boxes,
introns as solid lines and ESEs as green boxes. (b) In the intron definition model, cross intron interactions, e.g. mediated by hnRNP pro-
teins (blue) bound to intronic splicing enhancers (ISE), or mediated by SRm160 or SRm300 proteins (purple), that interact with U1 snRNP,
U2snRNP (yellow) and SR proteins (green), stabilize spliceosomal components.



A further class of proteins involved in RNA processing
are RNA helicases, mostly containing a DEAD or DEXH
motif [122]. These proteins have also been termed ‘un-
windases’ as they can alter RNA structure by hydrolysing
ATP, and some of them are essential for conformational
changes in the spliceosome during splicing [56]. The ac-
tion of RNA helicases is not restricted to remodeling dou-
ble-stranded regions in RNA alone, and they can interupt
RNA-protein interactions independent of duplex unwind-
ing [123]. Distinct RNA helicases are involved in a num-
ber of constitutive cellular processes such as splicing,
processing of ribosomal RNA or snoRNAs (small nucle-
olar RNAs), but have also been shown regulatory roles in
development and have been implicated in alternative
splicing [124, 125]. How RNA helicases recognize spe-
cific target RNAs, however, is not clear.
An additional class of proteins involved in pre-mRNA
processing do not bind RNA directly, but associate with
RNA binding proteins or subunits of processing ma-
chineries as scaffolding factors. Examples of such pro-
teins are PRP31p, which is essential for the association of
pre-spliceosomes with U4/U6*U5 snRNPs, SRm300, an
SR protein that lacks an RNA binding moiety and stimu-
lates splicing or the 3¢end processing factor symplekin
that connects the multiprotein processing subunits in-
volved in cleavage and polyadenylation [62, 126–128]. A
prominent coupling function has also been attributed to
the C-terminal domain of RNA Pol II (CTD) as it con-
nects pre-mRNA processing with transcription (see be-
low, [12, 129]).

Combinatorial interactions regulate alternative 
pre-mRNA processing

Central to the regulation of alternative splicing is the
recognition of splice sites by the splicing machinery. A
common theme regarding the recognition of splice sites
includes ‘weak’ splice sites or splicing enhancers that are
less well recognized since they diverge from the consen-
sus sequence. When a constitutive splice site is put in a
competitive context with other splice sites, often little is
needed to switch a particular splice site from a constitu-
tive to an alternative one. Numerous examples of this sce-
nario have been described leading to alternative 5¢ or 3¢
splice site usage or to skipping of an exon (Fig. 1) [130,
131] or acquisition of new exons from repetitive Alu ele-
ments [54, 132]. Of further importance in the regulation
of alternative splicing is the interplay of positive (ESEs
and ISEs) and negative (ESSs and ISSs) regulatory ele-
ments, and differential concentrations of antagonistic
factors have been found to be important for alternative
splice site choice [133]. Based on results from a number
of in vitro systems, SR proteins have mostly been associ-
ated with binding to ESEs and stimulate splicing, while

hnRNP proteins were mostly found to be negative regula-
tors by binding to ISSs [115, 134–137]. For hnRNP I (or
polypyrimidine tract binding protein, PTB), a prominent
role has been found to bind to ESSs and antagonize exon
definition [138, 139] and 3¢end processing [140]. As in-
dicated by the mostly non-overlapping binding sites of
antagonistic factors, this view of a set of positive and neg-
ative splicing regulators seems to be too simplistic. Con-
sequently, SR proteins have also been shown to act as
negative splicing regulators [141]. In addition, a global
analysis of alternative splicing using mutants for either
SR proteins or hnRNP proteins also supports both posi-
tive and negative functions for either of the two classes
[111].
Since sequences of whole genomes have become avail-
able, a number of bioinformatic approaches in combina-
tion with experimental validation have addressed the dis-
tribution of regulatory sequences with respect to alterna-
tive splicing (e.g. [106, 107, 142, 143]). In addition,
sequence comparison of multiple closely related species
allows for the identification of conserved elements in al-
ternatively processed genes (e.g. [113, 144, 145]). Re-
cently, as more features of alternatively spliced exons be-
come evident, machine learning techniques are being ap-
plied for alternative splicing predictions [146, 147] and
promise progress in defining combinatorial codes that
operate in alternative pre-mRNA processing.
A common theme in regulating alternative splicing in-
volves the presence of tissue-specific factors in one cell
type, but not in another, and numerous examples have
been described for antagonistic situations where these
factors either enhance or repress use of a particular splice
site [71, 130, 148–150]. CELF (CUG-BP and ETR3-like
factors), Fox and raver1 family proteins, for example, re-
lieve the repressive activity of PTB, resulting in the in-
clusion of a regulated exon in a number of transcripts in
muscles or neurons [151–157]. Similar situations have
also been described for neuron-specific NOVA proteins
[158, 159].
Examples of complete activation or repression of splice
sites (activator and repressor models) for tissue-specific
factors are most well known from the Drosophila sex de-
termination pathway [130, 148, 149, 160]. Here, the fe-
male-specific RNA binding protein Sex-lethal (Sxl) au-
toregulates splicing of its own transcript and splicing of
the RNA binding protein transformer (tra). In both cases,
binding of Sxl results in blockage of the male-specific
splicing mode. In the Sxl gene, a male-specific exon is
skipped in females, and in the tra gene, Sxl binding
blocks the use of a 3¢ splice site, resulting in expression
of Sxl and Tra proteins in females, but not in males. Sxl
is also required for dosage compensation in females by
blocking splicing of an intron in male-specific-lethal-2
(msl-2), and also translation of msl-2, to prevent upregu-
lation of transcription on the X chromosome as occurs in
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males [161]. Tra is then required together with constitu-
tive factors Tra-2 and RBP1, among others, to activate a
weak 3¢ splice site in the doublesex (dsx) gene that leads
to the inclusion of a female-specific exon and results in
female differentiation in the fly. Regulation of dsx by tra
illustrates an example of an activator model. An addi-
tional branch in the sex-determination pathway required
for establishing sex-specific courtship behavior of the
male fly is also regulated at the level of splicing. In the
fruitless ( fru) gene, Tra together with Tra-2 activates a 5¢
splice site in females, resulting in a switch to a fru splice-
form that does not translate into a protein. Strikingly, the
Fru protein from the male spliceform is both necessary
and sufficient, if expressed in females, to induce male
courtship behavior [162–164].
In case of Tra-regulated sex-specific splicing of dsx and
fru, multiple Tra binding sites are found adjacent to the
regulated splice sites. In contrast, binding sites for many
other tissue-specific RNA binding proteins have been
found in places where regulatory mechanisms are not
readily obvious, and in many cases multiple binding sites
are distributed in the vicinity of processing signals [110,
165]. For the auto-regulatory skipping of the male-spe-
cific exon in Sxl transcripts, several Sxl binding sites
flanking the regulated exon are important [166–168]. Al-
though Sxl seems to interfere with recognition of the
3¢splice site of the skipped exon here by regulating the
second step of splicing in an in vitro system [169], the sit-
uation in the female fly seems to be more complicated
and also involves Sxl-mediated interactions of U1 snRNP
and U2AF [170]. In Drosophila nrg transcripts, where
ELAV regulates skipping of the terminal exon, several
ELAV binding sites are spread over the regulated intron
and locate in the proximity of processing signals [171]. In
the case of Nova-1 regulated splicing of a GlyRa2 intron,
the Nova-1 binding sites are clustered ~1 kb upstream of
the regulated exon, and the presence of Nova-1 leads to
inclusion of the regulated exon [158]. Interestingly,
Nova-1 also auto-regulates inclusion of an exon in its own
gene by binding to this exon, which is then skipped [159].
Hence, as illustrated by the role of Nova-1 in auto-regu-
lation and neuron-specific splicing of GlyRa2, it is not a
factor per se that determines the splicing mode; rather,
the output is determined by the context-dependent inte-
gration of exonic and intronic regulatory elements via
bound trans-acting factors.
A further extension to the regulation of splicing has been
the unexpected finding that expression levels of spliceoso-
mal components attributed to constitutive functions vary
during development in Drosophila [172]. Conversely, to
maintain the delicate balance of positive and negative
splicing signals, many RNA binding proteins auto-regulate
their expression [159, 160, 173–179]. Consequently, over-
expression of RNA binding proteins in Drosophila is
mostly deleterious for the organism [180, 181]. Thus, tight

control of expression or activity levels of the proteins in-
volved in pre-mRNA processing is also required to com-
pensate for the sequence degeneracy of binding sites.
A further mechanism to vary the information content of
transcripts is the regulated use of 3¢end processing sites,
and many genes have alternative 3¢ exons, or alternative
polyA sites in the 3¢UTR [4, 182]. Although much less is
known about alternative polyA site choice and the mech-
anisms that coordinate 3¢end processing and splicing in
alternative situations, similar principles as for alternative
splicing apply. In immunoglobulin M (IgM) pre-mRNA
processing, splicing of the last intron resulting in mem-
brane-bound IgM is prevented by use of an intronic pA
site to produce secreted IgM in later stages of B-cell de-
velopment (reviewed in [183]). Here, a competitive situ-
ation in polyA site recognition mediated by increased ac-
tivity and concentrations of CstF64 and counteracted by
hnRNP F and U1A have been attributed to premature
3¢end formation versus splicing [184–188]. In addition,
U1A also binds upstream of the regulated polyA site and
affects polyA tail length, thus further reducing levels of
secreted IgM by reducing mRNA stability [189, 190]. In-
hibition of polyA tail length by U1A occurs through a di-
rect interaction with PAP, and this interaction is also im-
portant for U1A auto-regulation [176, 191]. In addition to
U1A, another component of U1 snRNP, U1 70K, can also
inhibit PAP [192] and U1 snRNP or U1A can also prevent
cleavage if the binding site confers a DSE [92, 188]. A
further mechanism to favor intronic 3¢end processing of
IgM transcripts has been attributed to an RNA Pol II
pause site following the intronic polyA site [193]. An-
other type of regulating 3¢end processing has been de-
scribed for a polyA site in the last intron of the Droso-
phila ewg gene. This intronic polyA site is used in non-
neuronal tissue, while in neurons splicing of the last
intron is induced [117, 194]. In neurons, the tissue-spe-
cific RNA binding protein ELAV inhibits cleavage by
binding to a DSE. In contrast to the situation in the IgM
gene, however, ELAV does not interfere with polyA site
recognition, but inhibits cleavage at later steps and as a
consequence allows for splicing. Interestingly, binding of
a partial polyA complex together with ELAV is further
important for 3¢splice site choice [117], indicating that
deliberate combinatorial interactions operate to coordi-
nate splicing and 3¢end processing.
In addition to the numerous combinatorial interactions of
RNA processing factors their regulatory potential can be
further increased by post-translational modifications, for
example, phosphorylation or methylation, to regulate
properties involved in binding RNA or interacting with
other proteins (for review see [195–197]). The most
prominent phosphorylated RNA binding proteins are SR
proteins [72]. Phosphorylation is required for the activity
of SR proteins and can result in the regulation of alterna-
tive splicing [198]. Dephosphorylation of the SR protein
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SRp38 has also been linked to the shutdown of all splic-
ing upon heat shock [199]. In recent years the number
of post-translational modifications identified in RNA
binding proteins has increased, but only in a few exam-
ples have these modifications been connected to cellular
signaling pathways or to the regulation of pre-mRNA
processing. One of the most-studied examples is the reg-
ulated inclusion of exon v5 of CD44 by the ras-Erk path-
way [200, 201]. Here, phosphorylation of SAM68 regu-
lates binding to target RNA and inclusion of exon v5 in
CD44 [202]. A broader involvement of the ras-Erk path-
way in the regulation of RNA processing is further in-
dicated, as it also phosphorylates hnRNP K [203]. In
other instances, sequence elements but no trans-acting
factors have been identified that regulate alternative
splicing through cellular signaling as in slowpoke Ca2+

and voltage-gated K+ channels expressed in neurons.
Here, inclusion of the STREX exon is inhibited by CaMK
IV upon stress hormone-induced depolarization that in-
creases intracellular Ca2+ levels [204]. Interestingly, the
STREX exon enhances the signaling strength of the chan-
nel, and thus exclusion of the STREX exon provides an
adaptive feedback regulation to increased stimulation.
Genetic polymorphisms are a further factor that can af-
fect the regulation of pre-mRNA processing [28]. The po-
tential impact of genetic polymorphisms is illustrated by
the allele-specific alternative splicing in the human growth
hormone receptor gene [205]. Here exon 3 is skipped de-
pending on the allele present.

Splicing of large introns:
regulatory mechanisms at genomic dimensions

A common feature of genes in higher eukaryotes is the
presence of very large introns, often extending over tens
of kilobases. In the human neurexin 3 gene, which spans
1600 kb, the largest constitutively and alternatively
spliced introns are 292 kb (between exon 16 and 17) and
347 kb (between exon 1 and 5), respectively (Fig. 2a)
[18], and an intron in a Drosophila fertility gene on the Y
chromosome has a size of 3000 kb [206]. Frequently hid-
den in such large introns are very short alternatively
spliced exons (cassette exons, Fig. 1) such as the 12 nt
exon 4 in the neurexin 3 gene (Fig. 2a). Furthermore,
large introns can also harbor entire additional genes (7%
in Drosophila), or large genes overlap with ones that are
transcribed in the opposite direction (15% in Drosophila
[207]).
One mechanism to facilitate splicing of large introns in-
volves an extension of the intron definition model. As
RNA is single stranded, it folds into elaborate secondary
and tertiary structures. Superimposing structural con-
straints on intron sequences can therefore result in loop-
ing out of intronic sequences and bring splice sites into

proximity (Fig. 4a). An example for the importance of
RNA folding for correct pre-mRNA processing is found
in para sodium channel transcripts. In a temperature-sen-
sitive allele of a DEADbox-helicase (napts) in Droso-
phila, pre-mRNAs do not correctly fold, as detected by
the absence of A-I editing at a specific site, and misfold-
ing causes a splicing catastrophe in para transcripts
[208]. Using a complementary RNA to sequences flank-
ing both sides of an exon has also been shown to induce
exon skipping of an in-frame exon in a gene-therapy ap-
proach to correct mutations in the b-globin gene [209]. In
a model for splicing in the mutually exclusive exon 6
cluster in the Dscam gene (Fig. 2c), long-range interac-
tions together with splicing repression have been pro-
posed key to selection of a single exon from the 48 vari-
ants [144]. Here, pairing between a docking site close to
the 5¢ splice site in intron 6 and a complementary se-
quence in front of every exon in the intron 6 cluster brings
the 3¢ splice site of a single exon into the proximity of the
5¢ splice site. Splicing of the proximal intron is then pro-
posed to relieve the repressed state of the selected exon 6
variant and allow for splicing of the distal intron to join to
the constant exon 7.
Another way to bring splice sites into proximity by loop-
ing out intronic sequence is through protein-protein in-
teractions. Of particular relevance for this scenario are a
number of abundant hnRNP proteins that co-transcrip-
tionally cover native transcripts, associate into multimers
[93, 94, 96, 210] and can bring splice sites into proximity,
according to the intron definition model (Fig. 4b). As this
scenario can also apply to alternative splicing, such a
loop-out model has been proposed for auto-regulatory
exon skipping in hnRNP A1 transcripts when hnRNP A1
concentrations increase [174]. A similar model has been
described for the regulated skipping of a neuronal exon in
cSrc splicing, where PTB binds to sites flanking the reg-
ulated exon and loops it out. In neurons, a neuronal form
of PTB, nPTB, has been implicated in disrupting PTB
multimeric interactions that loop out the neuronal exon
[119, 211, 212]. Skipping of the regulated exon, however,
also involves PTB interference with intron definition
(Fig. 3b) by preventing the assembly of U2AF to the con-
stitutive 3¢ splice site to form a pre-spliceosomal complex
with U1 snRNP from the regulated exon [120].
Besides looping-out of intronic sequences, splicing of
large introns can occur by three additional mechanisms:
recursive, intra- and trans-splicing. In the Drosophila
Ubx gene, two cassette exons of 51 nt that are also alter-
natively spliced are located in a total of 73.5 kb of in-
tronic sequence (individual intron sizes are 7.4, 15.6 and
51.5 [213]). Splicing of this large intron involves recur-
sive splicing: after splicing of an intron, the 5¢ splice site
is regenerated and is used again (Fig. 4c). Bioinformatic,
phylogenetic and experimental evidence suggests that re-
cursive splicing is a general mechanism in Drosophila to
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splice large introns of 10 kb and more, and also includes
the use of non-exonic splice sites [214].
As suggested by bioinformatic analysis, but not yet exper-
imentally proven, the size of large introns might also be re-
duced by intra-splicing (Fig. 4d) [215]: splicing of one or
more introns within an intron. Intra-splicing might also
occur in nested genes that are transcribed in the same di-
rection, as it would exclude ambiguity of splice sites be-
tween the two transcription units. In contrast to recursive
splicing, where splice sites can be used as they appear on
native transcripts, intra-splicing involves two 5¢ splice
sites that potentially could compete. Intra-splicing might
therefore involve a protecting mechanism for the first 5¢
splice site to reserve it for the last splice. Alternatively, in-

tra-splicing could lead to the generation of functional
splice sites and sequential removal of nested introns, as
was demonstrated in an artificial system in yeast [216].
A third possibility to overcome processing of large introns
is trans-splicing of exons that are transcribed separately.
Trans-splicing is used for all transcripts in trypanosomes
and in about 15% of the genes in C. elegans to add a 5¢
leader sequence, which is transcribed from a separate
gene, to the open reading frame encoding part of a pre-
mRNA [217, 218]. In Drosophila, trans-splicing has been
demonstrated as a mechanism to generate molecular di-
versity in the mod(mdg4) gene (Fig. 4e) and in the lola
gene (Fig. 2d). In the mod(mdg4) gene, a total of 31 ter-
minal exons are present in the C-terminal part of this tran-
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Figure 4. Mechanisms involved in splicing of large introns. RNA structure (a) or multimerization of hnRNP proteins (b) can support the
intron definition model by looping out intronic sequence. Recursive splicing (c) can sequentially shorten introns as they are synthesized by
RNA Pol II through splice sites that are regenerated after splicing (RP, ratcheting point). In intra-splicing (d) a nested intron is first spliced
before flanking splice sites are used. Trans-splicing (e) of two separately transcribed RNAs from a constant (black) or variable region (white
and grey) generates mod(mdg4) mRNA isoforms in Drosophila (bottom). White exons are encoded on the same DNA strand as the con-
stant region and grey exons are encoded by the opposite DNA strand (modified from [219]).



scription factor that encode zinc finger DNA binding do-
mains, and intriguingly, some are transcribed in the oppo-
site direction relative to the constant 5¢ part of the gene
that encodes a BTB dimerization domain (Fig. 4e, [219,
220]). Trans-splicing of exons encoded on both strands
has been shown by transgene experiments [220, 221].
Transgenes containing a series of variable exons inserted
at different chromosomal locations can rescue mod(mdg4)
mutants, and expression of protein is detected in these
flies. A further example of functionally relevant trans-
splicing has been found in the lola gene, another BTB zinc
finger transcription factor, where intragenic complemen-
tation of two otherwise lethal mutations was observed
[222]. Since intragenic complementation has been re-
ported in many other large genes in Drosophila, trans-
splicing might be more common than anticipated. In ver-
tebrates, trans-splicing has been detected in several genes,
but might not be functionally relevant as it occurs at very
low levels and no protein has been detected for these iso-
forms, and may therefore rather comprise ‘splicing noise’
[148, 223]. A reason why trans-splicing might be more fa-
vored in Drosophila compared with vertebrates could be
explained in the pairing of chromosomes in interphase nu-
clei [224] and the presence of multiple chromosomal
copies (polyteny), giving the potential that several tran-
scripts are available for splicing at the same time. Never-
theless, trans-splicing has proven successful in gene ther-
apy approaches by expressing a corrected version of an
exon that pairs with the native transcript through an artifi-
cially introduced complementary sequence in the intron,
thus competing with the endogenous exon for splicing
[31]. Potentially, trans-splicing between two pre-mRNAs
could also occur from an intrachromosomal configuration
to overcome transcription of large introns either by tran-
scription from two separate promoters upstream of spliced
exons or by the presence of transcripts from consecutive
polymerases. Such a mechanism, however, likely requires
spatial organization of transcription and pre-mRNA pro-
cessing into an ‘mRNA factory’ to preserve transcription
units (see below and Fig. 5).
Another complication observed in genes with large in-
trons is the frequent presence of consensus AAUAAA
polyA recognition sites. Premature 3¢end processing in
introns would generate a truncated protein and probably
also lead to abortion of transcription by the torpedoing 5¢-
3¢ exonuclease Xrn2 involved in transcriptional termina-
tion [225]. Intron sequences are generally AU-rich, and
many of the AAUAAA sequences also have downstream
U-rich sequences that could be recognized by CstF and
lead to cooperative formation of a CPSF-CstF polyA
recognition complex necessary to initiate 3¢end process-
ing. In addition, about 7% of Drosophila genes encode
nested genes in introns that are transcribed in the same di-
rection and ergo, contain functional cleavage sites [207].
Many of these nested genes are also polyadenylated

genes. As aberrant proteins from such internally trun-
cated transcripts are not recognized by the cell’s quality
control machinery according to the current understand-
ing, presence of such truncated proteins would likely re-
sult in deleterious effects (see below). Thus, mechanisms
must exist that distinguish intronic 3¢end processing sites
in internal introns from processing sites following the ter-
minal exon. Possible roles in inhibiting intronic 3¢end
processing could be attributed to the CTD of RNA Pol II,
as it has been shown to bind to AC-rich RNA and sup-
presses transcription-coupled 3¢end formation [226].
Also, presence of a strong 5¢ splice site can inhibit 3¢end
processing through U1 snRNP as described earlier, and in
simplified systems the presence of an artificially inserted
polyA site in an efficiently spliced intron is ignored [61].
In large introns, however, often several consensus
AAUAAA polyA recognition sites are present, eluding
the unique effect of a single 5¢ splice site. Therefore, it is
likely that in larger introns several regulatory backups
may operate to prevent premature 3¢end processing. In
contrast to regulated polyA sites, however, 3¢end process-
ing at intronic sites must be completely inhibited, but no
such rigorous mechanisms have been described yet.
A prominent class of intron encoded genes are snoRNAs
that are mainly involved in post-transcriptional modifica-
tion of rRNAs [227, 228]. In mammals, one class of
snoRNA genes is preferentially located about 70 nt up-
stream of the 3¢ splice site, and processing is coupled to
late steps in splicing [229, 230]. In a second class of
snoRNAs, an external stem-loop structure is required for
processing, but processing is independent of splicing and
exhibits no restriction on intronal position [230].
A further intriguing situation regarding the definition of
a transcription unit is observed in the functionally unre-
lated NUP62 and IL41 genes, which have become con-
nected through ‘promoter sharing’ [231]. The NUP62
gene is ubiquitously expressed, while the following IL41
gene, transcribed in the same direction, is only expressed
in B cells. In neurons and testes, however, transcripts ini-
tiate at the NUP62 promoter and splice out the NUP62
open reading frame to express the IL41 gene, likely rep-
resenting the acquisition of an evolutionarily new func-
tion of IL41 in these tissues through regulation of splic-
ing and 3¢end processing.

Coupling of transcription with pre-mRNA
processing

Initially, the ability to perform all pre-mRNA processing
reactions individually in vitro as well as the efficient
splicing of pre-mRNAs injected into Xenopus eggs has
suggested that first, all pre-mRNA processing reactions
occur relatively autonomously from each other in vivo,
and second, that they occur post-transcriptionally. Several
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recent findings, however, point out that pre-mRNA pro-
cessing is highly coupled to transcription. One of the
first indications was the observation that transcription
of snRNA genes, which have a RNA Pol II promoter but
are not polyadenylated, from promoters coding for poly-
adenylated genes results in 3¢end processing defects
[232]. Subsequently, 3¢end processing factors were found

to associate with promoters [233]: CPSF interacts with
general transcription factor TFIID bound to the core
promoter, and CstF interacts with the transcriptional co-
activator PC4, suggesting that also remote regulatory se-
quences are involved in coupling of pre-mRNA process-
ing with transcription (Fig. 5a). Besides these interac-
tions, numerous other factors with roles in pre-mRNA
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Figure 5. Depiction of a model for an ‘mRNA factory’ through the coupling of transcription with pre-mRNA processing during one cycle
starting with the initiation of transcription at the promoter (a) and association with pre-mRNA processing factors (yellow), elongation of
the synthesized pre-mRNA by RNA Pol II (brown, b–e) concomitant with splicing of introns (c and d) and deposition of the exon junction
complex (EJC, pink, d) followed by 3¢end processing (e and f ), transcriptional termination involving the 5¢-3¢ exonuclease Xrn2 (dark
green, f ) and recycling of RNA Pol II and pre-mRNA processing factors as proposed by a gene loop model ( f and a). The model has been
drawn according to numerous published interactions (see text [129, 233, 237]) and also incorporates structural information from Wetter-
berg et al. [315]. Transcriptional regulators are shown in light green, the cap binding complex in light blue, hnRNP proteins in blue, SR
proteins in green, 3¢end processing factors in red and polyA binding protein in dark red.



processing have also been found to interact with pro-
moter-associated factors [15, 234]. A major integrating
function is attributed to a unique feature of RNA Pol II,
the CTD, to orchestrate pre-mRNA processing through
its interaction with many RNA processing factors and
recruitment to sites of transcription [235, 236]. Sequen-
tial appearance of processing signals when nascent tran-
scripts are synthesized by RNA Pol II for co-transcrip-
tional processing also adds restriction on the choice of
processing sites and counteracts sequence degeneracy.
The coupling of transcription with pre-mRNA processing
has also led to the model of ‘RNA-factories’ (Fig. 5) [13,
237], which might even be gene-specific due to the pro-
moter-specific effects on pre-mRNA processing (see be-
low and [15, 234]).
The CTD of RNA Pol II is composed of 52 imperfect tan-
dem repeats of the heptad consensus sequence YSPTSPS
and is subject to differential regulatory phosphorylation
during transcription. Ser5 is highly phosphorylated when
transcription is initiated, while during elongation Ser2 is
phosphorylated [237]. The efficiency of all major pre-
mRNA processing reactions (capping, editing, splicing
and 3¢end processing) is enhanced by the CTD in vivo (re-
viewed in [12, 129, 238]). As a consequence, shortening
of the CTD, or transcription with other polymerases that
lack a CTD (RNA Pol I or III, or T7 RNA Pol) results in
severe processing defects [232, 234]. Intriguingly, differ-
ent portions of the CTD were also found to support dif-
ferent pre-mRNA processing reactions [239, 240]. The
N-terminus supports only capping, while the C-terminus
supports all reactions, and this activity is attributed to 10
additional amino acids at the C-terminus of the CTD. This
portion of the CTD might integrate several functions and
also confers stability to RNA Pol II [241]. Central to the
coupling function of RNA Pol II is the dynamic associa-
tion of RNA processing factors with the CTD [12, 129].
In particular, phosphorylation of Ser2 that promotes elon-
gation has been implicated to regulate the association
with processing factors [242]. A further level of control in
RNA Pol II CTD function has been indicated by the in-
volvement of Pin1 in regulating the isomerization state of
prolyl residues that affects the structure of the CTD and
determines the degree of CTD phosphorylation [243].
The CTD also enhances the efficiency of in vitro splicing
and polyadenylation reactions [244, 245]. In in vitro
splicing assays, the effect of the CTD is strongest if the
splicing substrate contains two introns [246]. Hence, the
CTD enhances exon definition, most likely by stabilizing
combinatorial interactions of various factors bound to the
exon to facilitate formation of the spliceosome.
Current models suggest that RNA processing factors are
loaded onto the RNA Pol II CTD and deposited on native
transcripts as they are synthesized. These models also im-
ply that specific promoters might differentially affect al-
ternative pre-mRNA processing by interaction with differ-

ent factors. Indeed, promoter dependence has been
demonstrated for alternative splicing of the EDI exon in
fibronectin transcripts [14, 247]. Here, the promoter de-
termines processivity of RNA Pol II. A fast polymerase
leads to skipping of the EDI exon, while a slow poly-
merase allows for inclusion of the regulated exon, pre-
sumably by giving more time for splice site recognition.
This mechanism also involves a polar effect. Inclusion of
distal alternative exons coordinately stimulates inclusion
of proximal alternative exons, but not vice versa [248].
The degree of exon skipping inversely correlates with the
strength of the 3¢ splice site of the skipped exon. RNA Pol
II processivity as measured by exon skipping is further
regulated by its phosphorylation state and chromatin
structure. Similar results regarding Pol II phosphorylation
and chromatin structure have also been obtained in a yeast
system [249]. Recently, intragenic DNA methylation was
shown to reduce RNA Pol II processivity through a closer
chromatin structure [250], indicating that alternative
splicing might also be subject to epigenetic regulation.
The effect of promoters on alternative splicing is medi-
ated through associated factors. Several co-regulators of
nuclear hormone receptors showed different effects on al-
ternative splicing of steroid hormone-regulated genes,
but had no effect on alternative splicing of other genes
[251, 252]. In case of the co-regulator TRBP/ASC-2,
which is recruited to regulatory regions on the DNA by
steroid hormone-activated nuclear hormone receptors,
the effects on alternative splicing are mediated by inter-
action with the co-activator CoAA, an hnRNP-like pro-
tein [253]. The functions in transcriptional regulation and
alternative splicing could also be attributed to different
parts of the U2AF65-related protein CAPERb [254]. In
addition, transcriptional activators were shown to affect
the efficiency of constitutive splicing in a promoter and
RNA Pol II CTD-dependent manner [255].
Transcription of a pre-mRNA involves co-transcriptional
packaging with RNA binding proteins. Packaging occurs
mostly with the ubiquitously present hnRNP-type pro-
teins and plays an important role in the regulation of pre-
mRNA processing and formation of an export-competent
mRNP particle [93, 210, 256–258]. Co-transcriptional
packaging of nascent transcripts with the THO/TREX ex-
port factor complex in yeast or with the SR protein ASF/
SF2 in mammalian cells is also important to prevent hy-
perrecombination of transcribed genes [259, 260]. Pack-
aging defects result in heteroduplex formation of the
nascent transcript with the DNA template (R-loop) be-
hind the elongating RNA Pol II. R-loop formation stimu-
lates recombination and, as a result of decreased elonga-
tion rates, causes pre-mRNA processing defects such as
pre-mature termination [261, 262].
Coupled to transcription are mechanisms that control the
quality of transcripts. Premature stop codons (PTCs) in
mammals or failure to form an export-competent RNP
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due to defective 3¢ ends in yeast can lead to an accumula-
tion of transcripts at the site of transcription which are de-
graded by the exosome in yeast [263, 264]. Currently a
controversial issue is if and how these PTCs are recog-
nized in the nucleus and whether this involves nuclear
translation (for pro and contra arguments see refs. in
[265]). PTC-containing transcripts can be degraded in a
process called nonsense mediated decay (NMD), and this
involves a pioneer round of translation in mammals,
where mRNAs are still bound by the nuclear cap binding
complex and nuclear polyA binding protein [266]. This
pioneer round of translation removes a protein complex
termed exon junction complex (EJC) which has been de-
posited after splicing 20–24 nt upstream of a splice junc-
tion [265, 267]. If a stop codon is located 50–55 nt up-
stream of an EJC, then NMD can be triggered in mam-
mals. Many alternatively spliced exons introduce PTCs
and might be subject to degradation [268]. This mecha-
nism is in fact used for auto-regulation of PTB, TIA-1 and
TIAR expression [178, 179]. Not all PTCs, however, trig-
ger NMD, as transcript levels of apoB mRNAs in which a
PTC is introduced by editing remain unchanged [269].
The nuclear events leading to co-transcriptional forma-
tion of an export-competent mRNP particle can also de-
termine the fate of mRNPs in the cytoplasm [270]. Splic-
ing-dependent deposition of an EJC complex, together
with 3¢UTR sequences has been shown to be important
for localization of oskar RNA to the posterior pole of
Drosophila oocytes, suggesting that splicing can deter-
mine the architecture of the oskar mRNP [271].
Transcription is coupled to 3¢end processing by polyA
factors that interact with promoters and with the CTD of
RNA Pol II [233]. Although a functional polyA signal is
a prerequisite for transcriptional termination, 3¢end pro-
cessing and transcriptional termination are not coincident
events, and several models of how transcriptional termi-
nation is realized exist [63]. Unlike in prokaryotes, where
transcription is terminated shortly after the protein cod-
ing sequence either by specific sequences forming a stem
loop structure (anti-terminator model) or by the exonu-
cleolytic Rho terminator protein (torpedo model) [272],
the situation in eukaryotes is less clear as termination oc-
curs at several sites extending over several kilobase pairs.
Clearly, mechanisms must exist that keep RNA Pol II
transcribing through large introns, but then stop tran-
scription at the end of a gene, as transcription into neigh-
boring genes is likely deleterious. While the presence of
5¢ introns has a stimulatory effect on transcription [273],
functional polyA sites result in the opposite effect [63].
PolyA site recognition has been associated with a reduc-
tion in elongation rates of RNA Pol II as a consequence
of downloading polyA factors from the CTD and with a
change in the phosphorylation state of the CTD [274–
278]. Pause sites following polyA sites have also been
associated with termination [279], and a pause site fol-

lowing an intronic polyA site has been attributed to alter-
native regulation of the IgM processing in favor of an up-
stream polyA site [193]. A particular role in transcrip-
tional termination at pause sites has been revealed for
Pcf11, a subunit of cleavage factor II, in triggering tran-
script release from Pol II through an interaction with the
CTD [280]. Pause sites per se, however, are not sufficient
to trigger termination as seen in Drosophila heat shock
genes [281]. Chromatin remodeling has also been im-
plicated in transcriptional termination by reducing RNA
Pol II processivity through a closer chromatin structure
[282].
Recent support of the ‘torpedo’ model has come from the
identification of a conserved 5¢-3¢ exonuclease that uses
the cleavage site as entry point to catch up with RNA Pol
II through its high processivty to displace it [225, 283].
Intriguingly, a phenomenon termed co-transcriptional
cleavage (CoTC) has been described in the intergenic re-
gion of the b-globin gene [284]. This region where CoTC
occurs has been shown to encode a ribozyme activity that
leads to self-cleavage of nascent transcripts and thus gen-
erates the entry point for the torpedoing exonuclease
[285]. Hence, given this recent support of the ‘torpedo’
model, cleavage at intronic sites likely is deleterious and
must be efficiently inhibited (see above).
An increase in regulatory potential at genomic levels cou-
pled to transcription arises in regions with overlapping
genes. This situation is encountered in 22% of Droso-
phila genes, and in about 10 and 7% of human and Ara-
bidopsis genes, respectively [207, 286, 287]. In Arabi-
dopsis, a large portion of overlapping genes are co-ex-
pressed, and despite that overlapping genes could form
double-stranded RNA subject to degradation by the
RNAi pathway (reviewed in [288]), transcripts from these
genes are not underrepresented. In contrast, alternative
splicing and polyadenylation are increased in regions
where introns or 3¢UTRs are overlapping, respectively
[287]. Evidence for direct involvement of anti-sense tran-
scripts in the regulation of alternative splicing is indi-
cated in the thyroid hormone receptor ErbAa [289].
Given that large portions of the human and fly genomes
are expressed at low levels into non-coding and anti-sense
RNAs holds great potential for the regulation of alterna-
tive pre-mRNA processing [8, 290].

Defining processing units: nuclear compartments,
alternative promoters, gene loops

Despite the high sequence degeneracy of pre-mRNA pro-
cessing signals, pre-mRNA processing occurs with high
fidelity and accuracy in a complex cellular environment.
Spatial organization of processing units would greatly re-
duce sequence complexity and the number of processing
choices. Several distinct compartments have been de-
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scribed in the nucleus such as the nucleolus, which is the
site of transcription and processing of ribosomal RNAs,
the nuclear ‘speckles’, which are the assembly/storage
site for spliceosomal components and the Cajal body, a
proposed site for snRNP assembly [291–293]. Chromo-
somes are also organized into distinct nuclear territories
and many co-expressed genes reside in neighborhoods or
are clustered such as genes for ribosomal RNAs (rRNAs),
or transfer RNAs (tRNAs) [294]. The highly dynamic or-
ganization of the nucleus in living cells resulting, for ex-
ample, in only very short interactions of transcription fac-
tors with sites of transcription and the lack of a static nu-
clear skeleton, however, have indicated that much of the
interactions in the nucleus are stochastic. The presence of
compartments in a highly dynamic environment, which
can also be generated artificially as introducing a plasmid
with ribosomal genes results in the formation of addi-
tional nucleoli, has led to the suggestion that the nucleus
may be a self-organizing entity [295–297]. Despite the
highly dynamic organization of the nucleus, essential
functions to orchestrate spatial and temporal control of
gene expression have also been attributed to nuclear
matrix and scaffolding factors such as SAF-A/hnRNP U,
SAF-B, SATB1 and ARBP [298]. Attachment of chro-
matin to the nuclear matrix, for example by SAF-B shown
to stimulate transcription-dependent splicing, might thus
provide a framework for organizing spatially restricted
gene expression factories [13, 237, 299].
The strong connection between pre-mRNA processing
and gene promoters also suggests that promoters might
define units that can determine alternative processing of
a pre-mRNA. Hence, differential loading of pre-mRNA
processing factors depending on the promoter would also
greatly reduce the sequence complexity pre-mRNA pro-
cessing factors could potentially encounter. Although
only a handful of examples of nuclear hormone receptor-
regulated alternative pre-mRNA processing are currently
known (see above [14, 15]), the high number of these
types of transcriptional regulators present in the human
genome and the frequent presence of alternative promot-
ers offers a large potential for this type of coordinated
regulation of pre-mRNA processing. Furthermore, this
sort of regulation would also contribute to the generation
of a ‘nuclear history’ of transcripts relevant for the diver-
sification of fates in the cytoplasm.
A further possibility to define processing units is the use
of the second type of intron. U12-type introns are spliced
about sixfold slower, and the slow speed might be impor-
tant in rate-limiting steps [300]. Functional relevance for
U12-type introns is indicated by their conserved position
in homologous genes or presence in paralogous genes
[58]. In another instance found in the Drosophila pros-
pero gene, a minor class U12 intron flanks a major class
U2 intron, and splicing occurs by one or the other path-
way, resulting in a five amino acid difference in the func-

tionally important homeodomain [301]. How different
spliceosomes are recruited, however, is currently un-
known.
An interesting connection between the beginning and the
end of a gene has been revealed by the association of
3¢end processing factors with promoters [233]. A contrast
to the idea that 3¢end processing factors are loaded on
RNA Pol II at the promoter and then deposited at the end
of the gene is provided by results from ChIP analysis
(chromatin immuno-precipitation) with 3¢end processing
factors. In several analyzed yeast genes, 3¢end processing
factors only localized to the terminator region [302]. An
alternative explanation to the association of 3¢end pro-
cessing factors with the promoter could also be the juxta-
position of the terminator with the promoter region to
form a ‘gene loop’ as demonstrated for yeast genes [303].
Similar loop structures have also been shown for en-
hancer-promoter interactions in the b-globin locus [304–
306]. Given the interaction of CstF with enhancer-associ-
ated PC4 [233], all control regions of a gene might en-
gage in physical interactions to define a processing unit
and enhance recycling of processing factors (Fig. 5a, e).
Although these interactions could be mediated by spe-
cific, yet to be identified sequence elements, chromatin
structure could also contribute to this phenomenon. Fur-
thermore, long-range interactions mediated by chromatin
structure have been demonstrated through their effect
on expression levels of genes in trans in the Drosophila
brown locus [224]. Strikingly, an RNA-mediated mecha-
nism in the nucleus was recently shown to locally modify
chromatin structure (reviewed in [307]), and non-coding
anti-sense transcripts might be important for defining
transcription units [8, 290].

Perspectives

The availability of whole genome sequences has very
much facilitated the analysis of gene expression, starting
with transcription of the DNA template under the control
of transcription factors, followed by the processing of
nascent transcripts into an mRNA and, after transport to
the cytoplasm, translation into a protein. As indicated by
the diverse organization of genes, numerous possibilities
exist to regulate the expression of a gene into a protein at
the level of RNA processing, ranging from changes in the
primary sequence to spatiotemporal control of expres-
sion. Particularly overwhelming are the numerous exam-
ples for generating proteomic diversity through alterna-
tive pre-mRNA processing. Although our understanding
of the principles that operate in pre-mRNA processing
and its regulation has much increased in recent years, the
degeneracy of regulatory elements suggests that highly
combinatorial mechanisms must operate, as illustrated by
the huge machineries involved in executing pre-mRNA
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processing reactions to provide the great fidelity and ac-
curacy. Deciphering the combinatorial codes that operate
in localizing processing sites will certainly be one of the
challenges in the coming years. The availability of whole
genome sequences now allows for global analysis using
experimental and bioinformatics approaches to RNA pro-
cessing and its regulation, and will no doubt contribute to
this goal.
The huge effort a cell puts into processing large genes
into a mRNA involving many different proteins makes
this process also vulnerable to genetic mutations that
cause human disease [26–29]. In addition, as alternative
splicing is particularly widespread in the brain, genetic
polymorphisms or misregulation of feedback-enforced
alternative splicing through neuronal activity might be a
source of many psychiatric conditions and mood disor-
ders [23, 33, 204]. Of particular interest regarding thera-
peutic approaches to interfere with these conditions are
RNA binding proteins as regulators of alternative RNA
processing. RNA binding proteins have specific sets of
target genes and participate in distinct functional path-
ways as illustrated for the targets regulated by Nova-2 that
are specifically enriched in synapses [308] and required
for a novel form of synaptic plasticity, the cellular corre-
late of learning and memory [309]. Hence, the combina-
torial interactions of factors involved in alternative RNA
processing provide the setup to post-transcriptionally co-
ordinate the expression of functionally related genes and
also provide unique signatures for the regulation of a par-
ticular event [310]. Knowing the combinatorial codes
therefore promises a high degree of specificity to thera-
peutically interfere with small molecule approaches in al-
ternative pre-mRNA processing.
Further potential for pharmacological applications is also
indicated by the numerous tissue-specific alternative spliced
isoforms that can be targeted by specific drugs. An exam-
ple of such applications is illustrated by non-steroidal anti-
inflammatory cyclooxygenase inhibitors (e.g. aspirin, ibu-
profen) which affect prostaglandine synthesis. Here, iso-
form-specific drugs such as acetaminophen that inhibit a
brain-specific alternative splice isoform of the COX1 gene
are of interest, as general inhibition of COX results in
upper gastrointestinal complications [31].
Recent discovery of microRNAs and their impact on the
regulation of gene expression in the cytoplasm (reviewed
in [288]), as well as transcription of much of the human
genome into mostly non-coding RNAs [8, 290], indicates
unexpected regulatory potential at the level of RNA pro-
cessing. Furthermore, large portions of non-protein-cod-
ing parts of a Drosophila genome show selective adapta-
tions arguing against previous assumptions that non-pro-
tein-coding regions are just ‘junk’ DNA [311]. Although
the origin of life had been attributed to an ‘RNA world’,
research from recent decades mainly focused on the im-
pact of proteins. Clearly, protein function can be readily

revealed with easily introduced point mutations that
change an amino acid essential for protein function. RNA
or DNA regulatory elements, however, are mostly im-
mune to this type of mutational analysis. Hence, our view
about the regulation of gene expression and pre-mRNA
processing important for a functional genome has been
very much biased [312].
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