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Abstract. The biological system is a complex phys-
icochemical system consisting of numerous dynamic
networks of biochemical reactions and signaling
interactions between cellular components. This com-
plexity makes it virtually unanalyzable by traditional
methods. Hence, biological networks have been
developed as a platform for integrating information
from high- to low-throughput experiments for analysis
of biological systems. The network analysis approach

is vital for successful quantitative modeling of bio-
logical systems. The numerous online pathway data-
bases vary widely in coverage and representation of
biological processes. An integrated network-based
information system for querying, visualization and
analysis promised successful integration of data on a
large scale. Such integrated systems will greatly
facilitate the understanding of biological interactions
and experimental verification.

Keywords. Pathway, pathway database, biological networks, information system, networks biology, drug
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Introduction

Biologists have always been interested in understand-
ing the fundamental chemical features of biological
processes and in ascertaining all aspects of the
components through experimental design. This ap-
proach will continue to be a major aspect of basic
biological research, and very much of that of modern
biology. The goal is to reduce biological phenomena to
the behavior of molecules as interactions between
molecules to determine of the function of enormously
complex machinery, both in isolation and when
surrounded by other cells. Moreover, biologists are
also increasingly interested in a systems-level over-
view where relationships among system components
and processes can be investigated. This desire to gain
detailed understanding of the components of a bio-
logical organism inevitably leads to a quest for better
tools for visualing of how these components interact

with each other in the environment in which the
organism or phenomenon is embedded.
Themain interest of molecular biologists is to under-
stand interactions among the various systems of a cell,
including DNA, RNA and protein and how these
interactions are regulated. Researchers have uncov-
ered a multitude of biological facts, such as protein
properties and genome sequences. But this alone is not
sufficient to interpret biological systems and under-
stand their robustness, which is one of the fundamen-
tal properties of living systems at different levels [1].
Cell, tissues, organs, organisms or any other biological
systems defined by evolution are essentially complex
physicochemical systems. They consist of numerous
dynamic networks of biochemical reactions and
signaling interactions between active cellular compo-
nents. This cellular complexity has made it difficult to
build a complete understanding of cellular machinery
to achieve a specific purpose [2].
As advancement in accurate, quantitative experimen-
tal approaches will doubtless continue [3– 6], insights
into the functioning of biological systems must be
augmented with information from other sources due* Corresponding author.

Cell. Mol. Life Sci. 64 (2007) 1739 – 1751
1420-682X/07/141739-13
DOI 10.1007/s00018-007-7053-7
� Birkh�user Verlag, Basel, 2007

Cellular and Molecular Life Sciences

\C�Birkh�user Verlag, Basel, �<!?show =1?^[fish 0,Pool]20$0,-2,'0'^[perl ${CAP::kurzname}=~/(\d\d)$/; return $1]>�<?show =1?^(?=^[perl ${CAP::kurzname}=~/OD(\d\d)/; return $1],")$^{^11502_jahr}>�<?show =0?^(?=^[perl ${CAP::kurzname}=~/OD(\d\d)/; return $1],")20$0,-2,'0'^[perl ${CAP::kurzname}=~/OD(\d\d)/; return $1]>�<!?show =0?^[fish 0,Pool]$^{^11502_jahr}>�


to the intrinsic complexity of biological systems. Such
efforts will require a combination of experimental and
computational approaches in understanding biology
as complex systems: systems biology and biological
networks.
Systems biology is an academic field that seeks to
integrate high-throughput biological studies to under-
stand how biological systems function. It is aimed at
interpreting and contextualizong large, diverse sets of
biological data and elucidating the mechanisms under-
lying complex biological processes through an inte-
grated perspective, eventually generating the ability
to develop an understandable model of the whole
system [7 –9].
In contrast to molecular biology, systems biology does
not seek to break a system down into all of its parts and
study one part of the process at a time; it commonly
uses controlled theoretic approaches in the hope of
being able to reassemble all the parts into a whole.
Some systems biologists have argued that the reduc-
tionist approach to biology must always fail, either
because of nature�s redundancy and complexity, or
because we have not understood all the parts of the
processes. In principle, all the information necessary
to define the structure of the biological system of
interest should be provided by its genome sequence.
However, a master global reaction network could still
be formulated to represent the complete repertoire of
possible biochemical reaction systems within the cell
based on our current resources and understanding
[7 – 9].
Biological networks, also know as pathways, are
systems that begin with the knowledge of known
genes and proteins in an organism, and then use either
high-throughput techniques such as microarrays to
measure the changes in all messenger mRNAs
(mRNA), or proteomics methods to measure changes
in protein concentration, in response to a given
perturbation [10, 11]. A crucial part of this process is
to model the inherent stochastic nature of the system
[7 – 9]. This information on functional molecular
interactions [12], is also known as pathway databases
facilitates a variety of analysis and simulation techni-
ques to enrich our understanding of cellular systems
[13].
Although the biological networks and systems biology
approaches are very similar, biological networks are
based more on the �interactome� (dynamic network of
biochemical reactions and signaling interactions
among active proteins). Hence, they rely more heavily
on systemic network analysis and other data-mining
techniques compared with systems biology, which
emphasizes statistical learning. There are several
advantages to viewing biological interactions globally
as a network over viewing these interactions as

statistical learning based on binary datasets. First,
confidence levels for individual interactions can be
increased by analysing of networks. Previously un-
known set of biological interactions can also be
discovered by analysis. These often result in uncover-
ing new interactions that may unexpectedly link
diverse cellular processes or indicate crosstalk be-
tween cellular compartments [14]. The resultant
molecular interaction map provides a tremendously
useful framework for annotation of new knowledge.
Perhaps more important, it suggests new interpreta-
tions and frames questions for productive experimen-
tation.
In recent years, laboratory techniques such as auto-
mated DNA sequencing, global gene expression
measurements, proteomics and metabonomics tech-
niques developed for the study of molecular biology
and systems biology have generated immense
amounts of data. However, such data are poorly
utilized because of the lack of adequate methods for
interpretation in the context of biological function. To
address the issue, it is useful to review the current
landscape of biological networks, pathway data and
work on data integration and propose techniques for
efficient analysis and modeling for understanding
biological function [15].

Coverage and reliability of experimental data

Historically, studies of cellular complexity as a man-
ifestation of the enormous diversity of molecules and
reaction processes needed to carry out cellular
functions for growth, division, differentiation and
response to extracellular factors are done through
study of the functions of genes by analysis of mutant
phenotypes, genetic interactions, biochemical activ-
ities, and inference by homology to other proteins of
known function, and physical interactions with other
proteins. These highly complex processes are con-
trolled and regulated mainly by interactions among
proteins, DNA, RNA and other compounds. Such
interactions are the building blocks of the biological
networks. Earlier experimental strategies were tar-
geted at protein interactions, as most cell biological
functions are mediated through proteins and protein
interactions. Now, however, it has diversified [16].
Large-scale experiments have the potential to discov-
er previously unknown functional connections among
components of the cell, and thus promise to rapidly
expand our knowledge of biology. The high-through-
put automated strategies used to generate protein
interaction maps can be classified into classical and
reverse proteomics. The distinction between these two
approaches is similar to the difference between
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forward and reverse genetics. In classical proteomics,
the starting material is generally the organism of
interest. Protein complexes are isolated and then
analyzed, and complete genome sequences are used to
identify complex components. In reverse proteomics,
the starting point is the DNA sequence of the genome
of an organism. First, the transcriptome (complete set
of transcripts) and proteome (complete set of pro-
teins) are predicted in silico. Subsequently, this
information is used to generate reagents for their
analysis [17]. Even though all of these approaches may
be used to predict protein interactions, their directions
and goals are different. Yeast two-hybrid and mass
spectrometry techniques aim to detect physical bind-
ing between proteins, whereas genetic interactions,
mRNA co-expression and in silico methods seek to
predict functional associations, for example, between
a transcriptional regulator and the pathway it controls.
In many cases, however, such functional associations
do take the form of physical binding [18, 19].
Data quality is of paramount importance in this
knowledge expansion. Although technologies have
accelerated the pace of discovery for biomolecular
interactions, experimental interaction data obtained
using different methods remain dismal. Large-scale
techniques also have not shown enough internal
consistency to warrant complete acceptance of the
resulting data. Experiments have to be repeated
before achieving high enough data quality for a
particular method [20]. For instance, over 80,000
protein-protein interactions were detected in yeast by
six high throughput experimental methods, but only
2400 of these interactions were supported by more
than one method. Such a low overlap limits the
applicability of a direct comparison between high-
throughput interaction datasets of different experi-
mental origin. The discrepancies between the inter-
acting partners identified in high-throughput studies
and those identified in small-scale experiments high-
light the need for caution when interpreting results
from high-throughput studies [21– 23]. Therefore,
enhancing the confidence of interactions by assess-
ment and minimization of false negatives and pos-
itives will be the key issue in interpreting the results of
high-throughput experimental technologies [24 – 26]
and iterative query (hypothesis) generation, with
confidence and retrospective analysis for query re-
finement and additional experiment designs.
Many statistical methods have been developed for
enhancing the confidence of interactions derived from
low confidence data and for analyzing the general
parameters of the interaction datasets. One of the
more direct and effective methods is to combined
evidence of interaction between two or more datasets
generated from different high-throughput techniques

but to consider only interactions supported by agree-
ment of two or three of any of the methods shown.
However, there is normally a trade-off between
coverage and accuracy when such filtering methods
are used [21]. Protein microarrays, biological knowl-
edge and biological networks (pathways) can be used
as complementary methods to increase and improve
both coverage and confidence in detected or predicted
interactions. With the development of confidence
measures and existence of a correlation distance,
datasets with different interactions can be merged.
Pathway information, high-throughput proteomics
and genetic data can also be merged for better
biological investigation. The presence of a genetic
interaction between proteins close together in a
network would suggest that these proteins have a
high probability of being in the same complex.
Proteins that are separated by one or two physical
interaction links and connected by genetic interaction,
together with their bridging proteins, are likely related
and belong to a single complex. Subnetworks built
from high-confidence interactions suggest intercom-
plex connections that would otherwise be obscured by
low-confidence, spurious interactions. Static network
topology is not sufficient to define protein function;
incorporating time-dependent expression data is im-
portant for understanding pathway function. Merging
expression data with proteomics data enables the
function of the protein to be inferred by identifying
protein complexes and pathways via clustering of
expression profiles [27 – 29]. This filtering method will
increase the confidence of the information. Even with
such filtering methods to validate interactions, real
success is only achievable based on iterative expert
intervention with knowledge of manually curated
physical protein interactions extracted from original
small-scale experiments and the literature.

Network analysis approach for biology

The main motivation for building pathway databases
at various detail levels managed by information
systems is to facilitate merging of information from
physical interactions and the literature, and qualita-
tive and quantitative modeling of biological systems
using software on powerful computers, in short using
pathway data to answer biological questions. A wide
range of techniques have been developed that use
such pathway data to answer specific biological
questions.
The overview of a framework for the network analysis
approach to studying biology is shown in Figure 1. The
system incorporates preprocessing to recognize and
analyze quires of interest called functional snapshots.
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These glimpses of information can range from co-
occurrence of biological entities (V) to more complex
subnetworks (S) from data. The data may represent
processed information such as profiles from micro-
array experiments that have gone through clustering
[30] and feature selection processes, or textural input
such as that extracted by natural language processing
or entered by biologists (or investigators). The system
will than use a certain scoring scheme to determine the
best candidate list of corresponding networks (N)
from the knowledge databases. Experimental data
from model organisms, cell lines and human tissues
can be uploaded and mapped onto the networks. New
hypotheses can be made about the pathways connect-
ing the protein of interest. This in turn can be used to
guide analyses of massive data with prior/tacit knowl-
edge, and to provide reliability indicators to the user
for further actions, such as treatment or drug design
with additional experiments or investigations, em-
phazing the iterative approach. Such systems will be
able to support construction of computational models
to explain cellular processes at various levels and to
make testable predictions of behavior. Experimental
results are compared with these predictions and used
to refine the model and to design additional experi-
ment.
Figure 2 shows collection of biological knowledge
from a variety of sources. These sources include
molecular interaction information, such as that in
pathway databases, and is the cleanest form of
information. Raw experimental data, such as molec-
ular and genetic profiles representing experiments
from microarray, ELISA and other proteomics inves-
tigations must be transformed into understandable
and computationally tractable protein interaction
networks with bioinformatics support in several key
processing steps [24]. Biological knowledge of pro-
tein, gene and other relevant interactions obtained by
text mining the extensive published literature in the

MEDLINE database must be processed, prepared
and stored in an information system. The end result is
a network representation of the published data as
support for pathways in multi-resolution networks in
accordance with basic standards [31, 32]. The infor-
mation systems are primarily for data and knowledge
storage besides these primary requirements, they
should support query, visualization, and analysis and
classification. Mapping network abstractions and
information from distributed data sources is essential
for information tracing and to support investigative
queries of the data sources.
The network of interacting networks allows interplay
between the behavior, structure and function of
biological system to be identified and quantified.
The cell can be approached from the bottom up,
moving from molecules to motifs and modules, or
from top to bottom, moving to organism-specific
modules and molecules. Structure, topology and net-
work topology must be tightly interlinked, thus
providing a more integrated approaches for analysis.

Biological networks databases

Despite tremendous variety in the cellular processes
described as pathways, several pathway representa-
tion patterns have become standards in current
practice. There are many structured databases that
store interaction data collected from high-throughput
experiments. These databases have been made pub-
licly available on the Internet. They contain results of
experimental data, diverse inference by computa-
tional methods and a great deal of manually curated
information. The on-line resource center Pathguides
(see http://www.pathguide.org/) [16] contains infor-
mation about 219 biological pathway resources. These
databases have been grouped into four major, slightly
overlapping categories: protein interactions, metabol-

Figure 1. A framework for Net-
work Analysis Approach to an-
swer biological questions.
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ic pathways, signaling pathways, and transcription
factors/gene regulatory networks. It also has a specific
category called Pathway Diagrams.

Pathway Diagrams
In these databases, interaction is represented by its
two protein partners, sometimes accompanied by
basic annotations or cross-references to other data-
bases. Some databases have further identified the
most reliable subsets of interaction data. Such devel-
opments are crucial for further standardization of
interaction datasets and data-exchange formats as
well as for integration of the database with other
bioinformatics resources [13, 33 – 35].
Biological networks, also know as pathways, with their
non-random nature, are associated with the biological
function of nodes (V) and edges (E), where Ei is {Vj,
Vk}. A network is a set of interactions, or functional
relationships, between the physical and/or genetic
components of the cell [36], which operate in concert
to carry out a biological process. Despite tremendous
variety in the cellular processes described as networks,
several network representation patterns are prevalent
in current practice. We use these patterns to categorize
network databases into four major categories: protein
networks, genetic networks, metabolic networks and
signaling networks. A description of the major fea-
tures will provide better insight to these categories.

Protein networks
Proteins are traditionally identified on the basis of
their function, which they exert based on three tertiary
structures. The tertiary structure of the protein is
stabilized by key residues acting as hubs in the
network of interaction. Protein structure networks
exhibit small-world, single-scale and, to some degree,
scale-free properties when amino acids are represent-
ed by nodes, whereas edges are used to represent
spatial proximity. The average shortest path-lengths
are highly correlated with the residue fluctuations,
providing a link between the spatial arrangement of
the residues and protein dynamics. Such networks will
provide a priority list of candidate residues that are
most likely to affect the stability of the target protein
[37, 38].
In post-genomic science, proteins are recognized as
elements in complex protein interaction networks, as
opposed to having a single function. In a large-scale
Y2H screen, a fairly small set of highly connected
proteins and domains shapes the topology of the
underlying network [10, 11]. Protein networks can be
generated by combining pairwise interactions as
predicted by the conserved co-occurrence of their
genes during expression. By quantifying the correla-
tions between connectivities of interacting nodes and
comparing them with a randomized network, the links
between highly connected proteins are systematically
suppressed, whereas those between highly connected
and less-connected pairs of proteins are favored. This
pattern decreases the likelihood of crosstalk between
the different functional modules of the cell and

Figure 2. Knowledge processing,
where data and text mining and
pathways information are ana-
lysed, extracted, content under-
stood and represented in a struc-
tural indexed database ware-
house and stored.
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increases the overall robustness of the network by
localizing the effects of deleterious perturbations
[39 – 41].

Genetic networks
Gene expression networks possess a more complicat-
ed hierarchical structure. The transcription regulatory
network comprise a set of direct and indirect regu-
latory interactions between the genes. The topology of
gene expression networks indicate the presence of
regulatory hubs, while at the local level, network
substructures such as motifs and modules are identi-
fied. Network topologies derived from gene expres-
sion data might be used to characterize entire cellular
states using the global pattern of gene co-expression
events instead of the frequently used fold change
measure [42]. Such networks would also be useful for
identifying of biological nexuses and providing new
priority lists for pharmaceutical modulation, based on
their importance for network structure.

Metabolic networks
Metabolic networks contain three major, fully con-
nected subsets: a substrate, a product and a third
composite subnetwork. The largest fully connected
subset of every metabolic network is scale free and
contains less than one-third of the nodes. Its average
length approximates quite well the average path
length of the whole network. The small-world archi-
tecture of metabolic networks was selected by evolu-
tion to minimize the transition times between meta-
bolic states, while the unevenly distributed number of
enzymatic reactions per metabolite ensured the
stability of the system to random mutation. The
restricted list of �hubs� provides the key nodes that
control the behavior of the whole system [43, 44].

Signaling networks
Signaling pathways propagate information from one
part or subprocess of the cell to another via a series of
protein covalent modifications, such as protein phos-
phorylation. Any aberrant signaling in the pathways
could cause dysregulation of biological processes,
resulting in diseases such as cancer and diabetes [45].
Due to the complexity of such pathways, only a
relatively few networks are currently being construct-
ed. As many signaling pathways are present only in
multi-cellular organisms, signaling databases tend to
focus on eukaryotes. These organisms are much more
complex and harder to study than bacteria. These
types of networks are more diverse than metabolic
pathways and tend to use higher-level abstractions
compared to metabolic databases
The modular architecture of biological networks has
unraveled new perspectives in the interaction and

control of biological entities. This evidence shows that
the cellular phenotypes observed at the macroscopic
level depend on the collective characteristics of the
underlying networks [38, 46], and thus must be
studied/investigated simultaneously across scales.
As these interaction data models grow more complex,
other biological information can be added. This
information includes background information, and
gene and proteome expression levels. None of these
networks are independent, as they are interconnected,
forming a network of networks that is responsible for
the behavior of the cell. Therefore, the major chal-
lenge will be to integrate theoretical and experimental
approaches to map out, understand and model in
quantifiable terms the topological and dynamic prop-
erties of various networks.

Some popular databases
Table 1 lists popular websites in the on-line resource
centre Pathguides (http://www.pathguide.org/) as in-
dexed by Google.

Network defination and theories

Basic network nomenclature
The behavior of most complex systems emerges from
the coordinated activity of many components inter-
acting pairwise each other. These components can be
reduced to a series of nodes (V) that are connected to
each other by links or edges (E), with each link
representing the interactions between two compo-
nents. The nodes connected edges together form the
basic components of networks. Physical interactions
between cellular molecules are easily conceptualized
using the node-link nomenclature. Nevertheless, more
complex functional interactions can also be consid-
ered within this representation. Depending on the
type of underlying data and interaction mechanism,
edges can have associated weights and directions
(directed or undirected) [24]. One of our implemen-
tations of a Web-based network for the study of
cytokines in the most popular signaling pathways –
COPE:Cytokines and Cells Online Pathfinder Ency-
clopaedia (http://www.copewithcytokines.de/) is
shown in Figure 3. The data model uses a quaternary
relation (node1, node2, nature of interaction, catalyst
or environment). The main objective is to provide
pathway visualization functionalities for intercytokine
relationships, as well as for other types of relation-
ships, with other cells for a specific cytokine(s) of
interest. A natural language processor is first used to
extract information from Web pages that concerns the
cytokine(s) of interest. The results obtained are then
further processed and displayed graphically to the
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user. Useful information such as the type of reaction
and catalyst involved, if any, are also displayed. In
addition, the system also offers functionalities for
graphical manipulation of the visualized pathways.
The system has been shown to provide a better
overview, and hence improved learning to readers
who are new to this field by virtue of accurate inputs
obtained from the natural language processing mod-
ule [47].
When represented as interaction graphs, genome-
scale data offer the possibility of performing various
types of analyses. At the most abstract level, a
simplified network can only provide very basic bio-
logical knowledge. This type of graph has allowed
biologists to visually examine the graph and map onto
it various types of information, such as functional
annotation, cellular localization and expression level.
This mapped information allows definition of func-
tional context, from which the biological role of
individual proteins or genes can be inferred [22, 23].
Networks generated using such data cannot be
analyzed mathematically. At a more sophistical
level, the power of graph theory is exploited by
performing various analyses that yield useful insights
for each different type of complex network [15]. These
binary data are generated using differential and
quantified values from the experimental data. The
protein interactions are converted into binary data

using the matrix mode, which puts edges between all
possible pairs of interactions in the same protein
complex. The use of the matrix model facilitates the
search for possible network motifs, modules and
pathways found in complex protein networks. There
are three basic types of binary data, each generated
from different experimental techniques. (i) Binary
interaction is based on pairwise, direct and transient
associations. It is a direct measurement of physical
interaction generated from two-hybrid systems and
co-IP. (ii) Protein complex is based on characteriza-
tion of protein complexes. It is an indirect measure-
ment of physical interaction. Such data are generation
by affinity purification-mass spectrometry (MS) ap-
proaches such as TAP and HMS-PCI. (iii) Co-
expression is based on the characterization of expres-
sion patterns. This is an indirect measurement of
interaction generated using microarrays and protein
arrays.

Network modules
Biological networks can be broken down into groups
of interacting molecules or modules. They are the
elementary units of cellular networks. Modular theory
states that various kinds of cellular functionality are
provided by relatively small, transient but tightly
connected networks of molecules that are engaged in
performing specific functions. In a highly clustered

Table 1. List of popular websites in the on-line resource centre Pathguides as indexed by Google.

Hits Resource URL

Protein-Protein Interactions

492 DIP – Database of Interacting Proteins http://dip.doe-mbi.ucla.edu/

435 AfCS – Alliance for Cellular Signaling Molecule Pages Database http://www.signaling-gateway.org/

283 HPRD – Human Protein Reference Database http://www.hprd.org/

Metabolic Pathways

4690 KEGG – Kyoto Encyclopedia of Genes and Genomes http://www.genome.ad.jp/kegg/

485 BRENDA – Comprehensive Enzyme Information System http://www.brenda.uni-koeln.de/

430 PharmGKB – The Pharmacogenetics and Pharmacogenomics Knowledge Base http://www.pharmgkb.org/

Signaling Pathways

2830 COPE – Cytokines Online Pathfinder Encyclopedia http://www.copewithcytokines.de/

435 AfCS – Alliance for Cellular Signaling Molecule Pages Database http://www.signaling-gateway.org/

262 CST – Cell Signaling Technology Pathway Database http://www.cellsignal.com/

Pathway Diagrams

4690 KEGG – Kyoto Encyclopedia of Genes and Genomes http://www.genome.ad.jp/kegg/

430 PharmGKB – The Pharmacogenetics and Pharmacogenomics Knowledge Base http://www.pharmgkb.org/

403 MPB – Metabolic Pathways of Biochemistry http://www.gwu.edu/~mpb/

Transcription Factors / Gene Regulatory Networks

305 TRANSFAC – Transcription Factor Database http://www.gene-regulation.com/

219 ooTFD – Object Oriented Transcription Factors Database http://www.ifti.org/

145 PRODORIC – Prokaryotic database of gene regulation http://prodoric.tu-bs.de/
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network, functional modules can be isolated by
identifying various modules of highly interlinked
groups of nodes. At a local level, modules reveal
specific patterns of interconnections which character-
ize a given network. However, not all modules are
equally significant in real networks. Each real network
is characterized by its own set of distinct motifs (types
of module), the identification of which provides
information about the typical local interconnection
patterns in the network [15, 48].
In order to identify and understand the modules and
their relationships in a given network, tools have been
developed to identify the modularity of the networks.
Figure 4 displays a snapshot of a subnetwork from
PathwayBlast, software developed by the authors for
matching networks in KEGG, the most popular
pathway diagram [KEGG: Kyoto Encyclopedia of
Genes and Genomes (http://www.genome.ad.jp/kegg/
)]. Note that marking the genes IL1 and STK3 in the
query, hilights intermediate node CASP (caspase 14,
apoptosis-related cysteine peptidase) between the
genes. The system identified and uses the IL1!
CASP!STK3 relationship for ranking the list of
probable networks. Identification of such modules is a
non-trivial problem, as complex networks can be

parsed into subsets in many different ways, potentially
generating billions of combinations. The hierarchical
modularity has indicated that modules do not have a
characteristic size. The network is as likely to be
partitioned in a set of clusters of 10 – 20 components as
into fewer, but larger modules. Each network is
characterized by its own set of distinct motifs, the
identification of which provides information about the
typical local interconnection patterns in the network
[49, 50]. Analysis of a network of subset of 35,000
experimentally proved human signaling interactions
revealed about 2 billion linear five-step networks
paths that were all physically possible. It is clear that
only few of these paths are realized in any cell and at
any particular time as active pathways. The conver-
gent evolution that is seen in the transcription-
regulatory network of diverse species towards the
same motif types further indicate that motifs are
indeed of direct biological relevance [18, 24– 26, 51].
Proteins or genes of interest can be identified with
biological network analysis by determining the related
nodes, modules and pathways in a given condition.

Figure 3. Cytokine Information System and Pathway Visualization: (a) is a basic quaternary-attribute edge; (b) is a screen snapshot of the
implemented Cytokine Information System.
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Discussion: networks analysis of biological system

In this current stage of information explosion,
massive scale experimental datasets are only
meaningful when scrupulously interpreted in the
context of biological processes. This interpreta-
tion, relying on the biological knowledge base,
visualization, analysis and techniques of knowl-
edge management, aided by the computation
power in information systems has emerged as a
crucial step in understanding the dynamic nature of
cellular interactions.
In nature, the dynamics of cellular components is
constantly balancing and changing depending on the
state of the cell, such as undergoing differentiation,,
division and apoptosis, or its present environment,
such as response to external biological signal, physical/
chemical stress and virus/bacteria attacks. Therefore,
at any given time, only a fraction of all possible
interactions are activated and only a fraction of the
cellular protein pool is active. At different time and
under different conditions, different subsets of genes
and proteins will be activated or repressed [14]. These
functional snapshots of cellular response can be
captured by high-throughput experiments, such as

global gene expression, proteomics and metabonom-
ics profiles.
The biological system is a multi-level highly complex
network of information flowing between a gene and
an active protein it encodes – a network of networks –
to the physiological effect. This information flows
from gene expression, mRNA processing, protein
transport, post-translational modifications, folding
and assembly into active complexes [17]. Eventually,
active proteins perform certain cellular functions,
which can be represented as a one-step interaction in
the space of thousands of metabolic transformations
regulated at multiple levels from cell membrane
receptors to transcription factors. This information is
tightly regulated within the cell.
Therefore, when analyzed separately, datasets ob-
tained from these experiments cannot explain the
whole picture. Intersection of the experimental data
with the interaction content of the networks has to be
used in order to provide the closest possible view of
the activated molecular machinery in a cell. As all
objects on the networks are annotated, they can be
associated with one or more cellular functions, such as
apoptosis, DNA repair, cell cycle checkpoints and
fatty acid metabolism [52].

Figure 4. PathwayBlast is a soft-
ware development by authors for
matching of networks with given
snapshot of sub-network, note
that given the 2 genes IL1 and
STK3 are marked in the query,
this intermediate node CASP
(caspase 14, apoptosis-related
cysteine peptidase) between the
2 genes is also marked. The
system identified and uses the
IL1!CASP!STK3 relation-
ship (coloured in the graph) for
ranking the list of probable net-
works.
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Biological networks are not the only method available
for analysis of high-throughput data such as micro-
array and expression, proteomic and metabomic
profiles. Other methods, such as statistical clustering,
linking to pathway databases, process ontologies,
pathway maps and cross-species comparisons, have
also been used to reduce the number of variables in
data analysis [10, 11, 53– 55]. However, biological
networks are the most suitable platform for functional
mining of large, inherently noisy experimental data-
sets by their ability to provide primary information
about physical connectivity between proteins, their
subunits, DNA sequences and compounds via the
networks� edges.
Any experimental or literature-derived datasets with
recognizable gene or protein identities can be visual-
ized, mapped and compared against each other in the
same network. Experimental adjustment such as
tissue type, different time points, disease and experi-
ment-specific interaction mechanisms, and linking
orthologous genes from other species are used to
further enhance the common and different features
between two or more different parameters. Such
approaches have been widely used to identify gene(s)
and protein(s) responsible for diseases [56]. The
biological networks when assembled from a complete
set of interactions will represented the potential of a
cell to form multi-step pathways, signaling cascades
and protein complexes representing the core machi-
nery of cellular life in health and disease.
This paper has presented a summary of the current
landscape of biological networks and examples of data
visualization, and discussed the shape of desirable
features to further facilitate biological investigation
and experimental verification. Next, we will touch on
the potential benefits of the network analysis ap-
proach.

Potential applications of network analysis

Drug discovery
Throughout the centuries, drug discovery has been
successful through trial and error. Treatments with
positive effects were retained, and unsuccessful rem-
edies were discarded. With the advent of knowledge
came new regulations. New drugs with positive effects
are required to provide explanations for those effects,
which requires scientifically rigorous testing of the
biological mechanisms. Pharmaceutical researchers
are under pressure to identify novel, promising
therapeutic areas and targets quickly, while keeping
costs under control. Identification of the �right hit(s)�
has became a critical part of the process because of the
cost of the drug discovery. Compounding this situation

is the fact that the pharmaceutical industry faces a
further challenge of sustaining current and historical
growth rates. In this environment, it is imperative to
make highly qualified decisions about which targets to
select for further development [57 – 61]. With the
successful completion of the human genome project,
biotech and pharmaceutical industries have recently
turned to mapping of the human proteome, hoping
that it will provide a faster and economical path in
drug discovery. The development of the drug is a long
and difficult process that involves numerous steps:
target identification and validation; lead compound
screening and design; compound optimization; com-
pound purification and synthesis; and clinical trials
[56, 60].

Study of diseases
Biological network analysis aims to describe and
understand the operation of complex biological sys-
tems and eventually develop predictive models of
human disease. The analysis of biological networks
can define the elements of the system and characterize
the flow of information that links these elements, and
their networks, to any emergent biological process.
Therefore, from a broad range of disease-relevant
human biology, almost any high-throughput experi-
ment, metabolic test and genetic profile data which
can be linked to a gene, protein or compound can be
recognized by the input parsers, visualized, analyzed
and integrated into the network analyses. Most
importantl, all these different datasets can be proc-
essed as networks. This data-driven dynamic modeling
will play a pivotal role in the study of disease.
Networks thus represent the universal platform for
data integration and analysis, which has always been
the major objective of bioinformatics technology.
Network analysis of complex human diseases can be
broadly applied throughout drug discovery and its
development pipeline. Patient data (specific DNA
sequences, expression microarrays, metabolites from
body fluids) can be mapped onto the networks and
compares with preclinical data and published experi-
ments. Such networks built during clinical and pre-
clinical studies can also be used to monitor patients
undergoing treatment after the clinical trial. These
will be extremely useful for monitoring patients
undergoing customized drug treatment in the future
[59, 62, 63].

Target identification
Large datasets can be acquired for genomic and
proteomic analyses. These various types of data can be
integrated into a network model of how a particular
biological system operates. The upstream target
identification phase concentrates on discovering
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novel biological systems that are associated with a
common disease through shared pathways or regu-
latory networks. Through genetic and environmental
perturbations of system elements and comprehensive
analyses of gene products, one can clarify the structure
of the system network and delineate key nodal points
(proteins). From this process, inferences can be drawn
about the importance of individual proteins in the
disease process. Proteins that are found to interact
with members of a known disease process, and meet a
more or less stringent set of criteria, thus provide good
target candidates [24, 57, 62, 64]. Experimental data
from model organisms, cell lines and human tissues
can be uploaded and mapped onto the networks. New
hypotheses can be made regarding the pathways
connecting the protein of interest.

Biomarker for disease and toxicity
Drugs typically fail because they lack appropriate
pharmaceutical properties. They either manifest defi-
ciencies in absorption or pharmacokinetics of yield
metabolites that have unfavorable effects. Biomarkers
can be identified as �signature networks�, condition-
specific conserved sets of nodes supported by differ-
ential gene expression and protein abundance data.
Such signature networks can also be derived from
toxic genomics data. With development of new
spectroscopic tools that permit the simultaneous
enumeration of thousands of metabolic products in
biological fluids, the metabolic profiles assembled
using these spectra could identify off-target toxicity
profiles with patterns of accumulation of certain
metabolites [57]. Such data can be integrated into
relevant networks during the lead optimization phase.

The future

Despite recent advancements, analysis of biological
networks and its applications are only in their infancy.
As different technologies from various fields are
required for generating and analyzing networks,
further evolution of the networks will depended on
the development of technologies surrounding them.
New theoretical methods are required to characterize
network topology into the dynamics of nodes, motifs,
modules, pathways and biological functions. In order
to increase our level of understand and knowledge,
data collection abilities must be enhanced by develop-
ment of highly sensitive tools for identifying and
quantifying various types interactions within the bio-
logical networks and �signature networks�.
The main advantage of biological network analysis for
drug discovery in the ability to analyse different
biological networks (systems) at different levels under

different functional and temporal states. As technol-
ogy progresses, network analysis will scaled up to
accommodate large sets of disease-related molecular
data, such as gene, proteomic and metabolic expres-
sion profiling and other new measurement of the
biological system. More advanced mathematical and
mapping models to integrate, investigate and analyze
these large, complex sets of biological networks will
provide an accurate and detailed understanding of
biological pathways. These will subsequently form the
basis of a better understanding of disease, tracking of
its progression, and new drug discovery, development
and application strategies.
When this happens, drug targets will shift from single
proteins, to functional protein complexes, to whole
networks. Together with new tools to prioritize
biochemical experiments, targets and leads, single
active molecule therapeutics will be replaced by
molecular cocktails with components that target
protein hubs in disease-associated molecular net-
works. Drug cocktails can further be specially cus-
tomized for each different individual to maximize the
drug effect and minimize side effects.
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