
Abstract. The typically distinct phospholipid composi-
tion of the two leaflets of a membrane bilayer is generated 
and maintained by bi-directional transport (flip-flop) of 
lipids between the leaflets. Specific membrane proteins, 
termed lipid flippases, play an essential role in this trans-
port process. Energy-independent flippases allow com-
mon phospholipids to equilibrate rapidly between the 
two monolayers and also play a role in the biosynthesis 
of a variety of glycoconjugates such as glycosphingo-
lipids, N-glycoproteins, and glycosylphosphatidylinosi-
tol (GPI)-anchored proteins. ATP-dependent flippases, 

including members of a conserved subfamily of P-type 
ATPases and ATP-binding cassette transporters, mediate 
the net transfer of specific phospholipids to one leaflet of 
a membrane and are involved in the creation and main-
tenance of transbilayer lipid asymmetry of membranes 
such as the plasma membrane of eukaryotes. Energy-
dependent flippases also play a role in the biosynthesis 
of glycoconjugates such as bacterial lipopolysaccharide. 
This review summarizes recent progress on the identifi-
cation and characterization of the various flippases and 
the demonstration of their biological functions.
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Introduction

Eukaryotic cells are compartmentalized into distinct or-
ganelles by lipid bilayers. Assembly and maintenance of 
the various organellar membranes requires translocation 
of lipids from one leaflet of the bilayer to the opposing 
leaflet. Most phospholipids are synthesized in the endo-
plasmic reticulum (ER) membrane: since synthesis oc-
curs at the cytoplasmic leaflet of the ER, roughly half of 
the newly synthesized lipid molecules must flip to the 
other side of the membrane to enable uniform propaga-
tion of the bilayer. A similar situation occurs in bacteria 
where phospholipids are synthesized on the inner face of 
the bacterial cytoplasmic membrane (bCM), and must be 
flipped to the external face for bilayer propagation. Mito-

chondria derive most of their membrane lipids from the 
ER through a non-vesicular pathway that exploits regions 
of close membrane contact between the two organelles [1, 
2]: ER-derived lipids arriving at the mitochondrion’s sur-
face must flip across the mitochondrial outer membrane 
to gain access to the organelle interior [3]. Lipids are 
unequally distributed across both leaflets of the plasma 
membrane (PM), with aminophospholipids concentrated 
in the cytoplasmic leaflet. This compositional asymme-
try cannot be explained by sidedness of lipid synthesis 
or breakdown and is thought to rely on active transport 
of specific lipids across the bilayer. Current data sup-
port a role for specific membrane proteins, termed ‘lipid 
flippases’, in facilitating the energetically unfavorable 
movement of a lipid’s polar head group through the hy-
drophobic membrane interior. An ATP-independent flip-
pase operating at the ER plays a critical role in bilayer 
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propagation; ATP-dependent transporters regulate the 
transbilayer distribution of lipids between the two leaf-
lets of the PMs. This review summarizes new information 
on this topic, focusing mainly on eukaryotic cells, while 
providing an overview of what is known about flippases 
and their biological functions.

Lipid flippases and membrane assembly

Flippase-mediated glycerophospholipid flip-flop in 
biogenic membranes
Most of the enzymes of glycerophospholipid biosynthe-
sis in eukaryotic cells are membrane proteins located in 
the ER, a biogenic (self-synthesizing) membrane. (We 
use the terms glycerophospholipid and phospholipid 
interchangeably in this review. Phospholipids such as 
glycosylphosphatidylinositols, sphingomyelin or inter-
mediates in the dolichol cycle of protein N-glycosylation 
are referred to explicitly.) The enzymes have their active 
sites in the cytoplasm and use cytoplasmically synthe-
sized components for lipid synthesis. For example, cho-
linephosphotransferase, a polytopic membrane protein, 
synthesizes the abundant phospholipid phosphatidyl-
choline (PC) from diacylglycerol and cytoplasmically 
synthesized CDP-choline on the cytoplasmic face of the 
ER (Fig. 1). An identical scenario exists in other biogenic 
membranes such as the bacterial cytoplasmic membrane 
where, for example, the major bacterial phospholipid 
phosphatidylethanolamine is synthesized in two steps by 
phosphatidylserine (PS) synthase and PS decarboxylase 
on the cytoplasmic face of the bCM. The membrane to-
pology of phospholipid biosynthesis dictates that newly 
synthesized phospholipids are located in the cytoplasmic 
leaflet of biogenic membranes. At least some of these 
molecules must be translocated (flipped) across the bi-
layer to populate the exoplasmic leaflet for uniform 
membrane propagation (Fig. 1). Furthermore, flipping 
must occur rapidly, on a time-scale commensurate with 
cell growth. It is likely that lipid flipping is necessary 
even in bolalipid-rich archaebacterial membranes with a 
predominantly monolayer architecture: since tetraether 

bolalipids are synthesized by condensation of two diether 
‘conventional’ lipids, at least one of these must be flipped 
to provide a partner for the condensation reaction [4].
Transbilayer translocation (flipping) of phospholipids 
is energetically unfavorable because of the large energy 
barrier (20–50 kcal/mol) that has to be overcome to trans-
locate the polar headgroup through the hydrophobic in-
terior of the bilayer. Indeed, experiments with synthetic 
bilayers (e.g. [5–7]), or certain protein-containing non-
biogenic biomembranes (e.g. animal cell PM, viral enve-
lopes [8–10]), show that spontaneous phospholipid flip-
flop occurs very slowly (half-times in the order of hours 
to days). However, phospholipid flip-flop in biogenic 
membranes is rapid (half-times about tens of seconds to 
minutes, [11–16]), suggesting that these membranes are 
endowed with a specific transport mechanism. There is an 
ongoing debate concerning what this mechanism might 
be. It has been proposed, for example, that non-bilayer 
arrangements of phospholipids [17], transient defects 
in bilayer structure, or non-protein biogenic membrane 
components such as isoprenoid lipids could be respon-
sible for facilitating flip-flop [18]. It has also been noted 
that phospholipid flipping rates increase sharply at the 
gel-liquid crystalline phase transition in synthetic lipo-
somes composed of a single molecular species of phos-
pholipid [6, 19]. While these ‘lipid-only’ mechanisms 
are plausible, available data indicate that if they play any 
role in lipid flipping in biomembranes then it is only in 
concert with specific membrane proteins. There have 
been innovative proposals that peptides corresponding to 
transmembrane helices of membrane proteins can induce 
phospholipid flipping when incorporated into liposomes; 
however, experiments in support of this statement show 
that peptide-induced flipping is not especially fast (half-
times about tens of minutes to hours) and that only certain 
phospholipids can be flipped [20, 21]. For example, the 
peptides tested could not facilitate flipping of the com-
mon phospholipid PC, indicating that the mere presence 
of membrane-embedded helices is not sufficient to pro-
mote generalized lipid flipping. However, it is possible 
that specific transmembrane peptide sequences may be 
required to flip particular phospholipids and that a wider 
range of peptides would need to be tested to identify those 
that promote PC flip-flop. In a variation of the idea of 
peptide-induced flipping, it has been proposed that any 
membrane proteins in the ER – or the mere presence of 
many membrane proteins – could promote lipid flip-flop, 
and that this effect is eliminated at the PM due to the high 
sterol content of that membrane [21, 22]. Although there 
are convincing data that argue against the possibility that 
flipping is promoted nonspecifically by membrane pro-
teins, it remains a possibility that the sterol content of 
membranes such as the PM may play a role in reducing 
flip-flop. There are a few examples of chemically induced 
phospholipid flipping in protein-free liposomes where a 

Figure 1. Lipid flippases in biogenic membranes. In biogenic 
membranes, such as the ER or bCM, active sites of phospholipid 
synthases are oriented towards the cytoplasm. Newly synthesized 
lipids are initially located within the cytoplasmic leaflet and rapidly 
equilibrated between both leaflets by membrane proteins acting in-
dependently of ATP. The flipping machinery translocates most, if 
not all, phospholipid classes, bi-directionally across the bilayer.
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decrease in ambient pH [23–26], or the application of 
a small molecule capable of complexing specifically 
with phospholipid headgroups [27–29], reduces head-
group polarity and increases transbilayer translocation. 
Although the latter approach provides unique molecular 
tools for probing phospholipid flip-flop, it is unlikely 
that phospholipid flip-flop in a living cell proceeds by 
complexation of the lipid headgroup with a water-soluble 
molecule. Current data argue strongly for the idea that 
biogenic membranes possess a specific membrane pro-
tein, or flippase, that is capable of promoting glycero-
phospholipid flip-flop.
Phospholipid flip-flop in biogenic membranes is a rapid, 
ATP-independent, bi-directional process that is un-spe-
cific with regard to phospholipid headgroup: all the 
major phospholipids – PC, phosphatidylethanolamine 
(PE), PS, and phosphatidylinositol (PI) – are flipped 
[13, 12, 15, 30, 31]. Moreover, this process is also un-
specific towards the glycerol backbone stereochemistry 
of the lipid: PI analogs with sn-1,2 diacylglycerol or sn-
2,3-diacylglycerol backbones were recently shown to 
be flipped equally well across the ER membrane [16]. 
Attempts by many investigators to clearly establish the 
protein dependence of flipping by treating membrane 
preparations with proteases or protein modification re-
agents (such as the cysteine modifying reagent N-ethyl-
maleimide, NEM) yielded mixed results – typically no 
inhibition (e.g. [32, 33]) or only partial inhibition (e.g. 
[14, 30]) of flipping was seen. One explanation is that the 
flippase protein is largely buried in the membrane and 
that its functionally critical domains are inaccessible to 
proteases and other protein modification reagents. An-
other explanation for the non-effect or partial effect of 
protein modification reagents on flippase activity is that 
transmembrane elements of the flippase protein may be 
able to remain associated and functionally intact in the 
membrane even when exposed sequences of the protein 
are proteolytically cleaved or modified.

Biochemical reconstitution of phospholipid  
flippase activity and the search for a lipid flippases 
in biogenic membranes

Flippase activity in biogenic membranes was first de-
scribed in the late 1970s [11, 34]. Although the activity 
has been extensively characterized during the past two 
decades, the flippase has yet to be identified. A first step 
towards flippase identification was taken in the late 1980s 
when Backer and Dawidowicz demonstrated that flippase 
activity, measured via an elegant density-shift method, 
could be reconstituted from detergent-solubilized rat 
liver ER; they also showed that protein-free vesicles or 
vesicles reconstituted with proteins from a non-biogenic 
membrane source were not active [33]. This approach 

was not pursued for over a decade until a series of papers 
published in the last few years established that flippase 
activity from rat liver and yeast ER, as well as the bCM 
of Bacillus subtilis and E. coli, could be readily recon-
stituted from Triton X-100 extracts of the membranes 
[35–38]. Furthermore, fractionation of the detergent 
extract prior to reconstitution yielded protein mixtures 
enriched in flippase activity and other fractions devoid 
of activity [33, 35, 37, 39, 40]. Velocity sedimentation 
analysis revealed that flippase sedimented slowly with 
an operational sedimentation coefficient of ∼4S [35, 37]. 
Also, flippase activity could be destroyed with protein 
modification reagents (NEM and diethylpyrocarbonate) 
when the agents were applied to detergent-solubilized 
protein fractions rather than to intact vesicles [40]. The 
identification of fractions rich in membrane proteins but 
completely lacking flippase activity argues strongly that 
a specific protein is required to promote flip-flop and that 
the ‘lipid-only’ mechanisms described above are unlikely. 
Estimates from the reconstitution experiments indicate 
that flippase represents ∼0.5% by weight of detergent-
solubilized ER proteins [33, 35]. This suggests that a 200-
fold enrichment of flippase activity should yield a pure 
protein. The ability to use standard chromatographic pro-
cedures to generate flippase-enriched fractions suggests 
that the identification of this enigmatic protein cannot be 
far off.

Possible mechanism for lipid flipping  
in biogenic membranes

Although a phospholipid flippase in biogenic membranes 
has yet to be identified, it is interesting to use available 
information speculate on how such a transporter might 
work to flip-flop phospholipids. Given its lack of stereo-
specificity and its ability to flip all major phospholipids, 
it is likely that the flippase does not specifically recog-
nize the lipid it flips. An attractive mechanism [41–43] 
is that the flippase reorients phospholipids in its imme-
diate vicinity to give rise to a hairpin-like, nonbilayer 
arrangement of phospholipids. This arrangement would 
effectively connect the two membrane leaflets allowing 
phospholipids to diffuse continuously between leaflets. 
An alternative view presented by Kol et al. [44] is to con-
sider that transient defects generated by dynamic play in 
the transmembrane helices of the flippase would enable 
phospholipids to ‘slip’ into a mid-membrane transition 
state from which they could ‘pop’ into either leaflet of the 
membrane bilayer. We suggest a further variation on these 
ideas by proposing that the mechanism of action of a flip-
pase may be likened to that of swiping a card through a 
card reader (Fig. 2). In this model the polar headgroup of 
the phospholipid (the magnetic strip on the card; the strip 
denotes all common phospholipid headgroups since the 
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flippase is unspecific) is protected during passage across 
the hydrophobic interior of the membrane until it emerges 
on the other side; the acyl chains of the lipid remain in 
the hydrophobic milieu of the membrane during this pro-
cess. Thus the groove of the flippase/card-reader provides 
a low energy path for the lipid headgroup by sequestering 
it from the unfavorable hydrophobic environment of the 
membrane interior. Tests of these models awaits identifi-
cation of the flippase.

Glycolipid flipping in the ER and bCM

Flippases are also required for the ER- and bCM-localized 
biosynthesis of glycolipid precursors of cell surface gly-
coconjugates such as N-glycosylated and glycosylphos-
phatidylinositol (GPI)-anchored proteins in eukaryotes 
and O-antigen-modified lipopolysaccharide (LPS) in 
Gram-negative organisms. In each case, biosynthesis of 
the precursor glycolipid occurs via a multi-step pathway 
that starts in the cytoplasmic leaflet of the ER or bCM and 
continues in the exoplasmic/periplasmic leaflet. This split 
topology necessitates transbilayer translocation of lipid 
intermediates, such as isoprenoid-P(P)-sugars, or GPIs 
(Fig. 3). Assays developed to monitor flipping of man-
nosyl-phosphoryldolichol, glucosyl-phosphoryldolichol 
and early GPI biosynthetic intermediates (N-acetylglu-
cosamine-PI and glucosamine-PI; GlcNAc-PI and GlcN-
PI) in ER membranes and reconstituted vesicles indicate 
that transbilayer translocation of these glycolipids is pro-
tein dependent and ATP independent [45–48]. In the case 
of the GPI intermediates, the flippase involved may be 

the same protein that facilitates glycerophospholipid flip-
flop in the ER [48].
Genetic studies in yeast [49] and bacteria [50] have iden-
tified polytopic membrane proteins (Rft1p and Wzx, 
respectively) that appear to act as flippases for isopren-
oid-PP-sugar lipids during the assembly of the glycolipid 
precursor of protein N-glycans and LPS O-antigen, re-
spectively. Neither of these proteins has nucleotide bind-
ing domains, consistent with the reported ATP-indepen-
dence of flipping. The Rft1 protein is essential in yeast and 
is found in all eukaryotes that synthesize mannosylated 
dolichol-PP-oligosaccharide precursors for consumption 
in protein N-glycosylation [51]. The flippase function of 
Rft1p remains to be biochemically established. Unlike 
Rft1p, Wzx is dispensable since it participates in the syn-
thesis of a non-essential element (O-antigen) of the LPS 
structure. Using a radiolabeled, water-soluble analog of 
undecaprenol-PP-N-acetylglucosamine as reporter and 
membranes from Wzx-containing and Wzx-null bacterial 
cells, Rick and colleagues [52] provided evidence that the 
Wzx protein acts as an ATP-independent, bi-directional 
flippase in the assembly of the lipid precursor of O-an-
tigen. Recent work on bacterial glycosylation suggests 
that the Wzx protein can be functionally replaced in vivo 
with the bacterial ATP-binding cassette (ABC) trans-
porter PglK [53]. This is an unexpected result since lipid 
transport facilitated by the Wzx protein is bi-directional, 
whereas the PglK protein would be expected to function 
as a vectorial transporter. One way to reconcile these data 
is to suggest that lipid transport facilitated by Wzx is op-
erationally unidirectional since lipids flipped from the cy-
toplasmic to the periplasmic face of the membrane would 

Figure 2. Model for substrate flipping by a lipid flippase in biogenic 
membranes. The translocation mechanism is imagined to resemble 
the swiping of a card through a card reader. The magnetic strip on 
the card (= polar headgroup of the phospholipid being transported) 
is protected from the lipid environment (by passage through the 
groove in the card reader) as it transits the hydrophobic interior 
of the membrane. See text for details and for a discussion of other 
possible flippase mechanisms.

Figure 3. Glycolipids that are flipped across biogenic membranes. 
Protein and lipid glycosylation in eukaryotes and prokaryotes re-
quires flipping of biosynthetic lipid intermediates such as glyco-
sylphosphatidylinositol precursors (e.g. GlcN-acyl-PI), mannosyl-
phosphodolichol, glucosyl-phosphoryldolichol, and an oligosac-
charide-pyrophosphoryl-isoprenoid. Dol-P, dolichol phosphate; 
Acyl-PI, acyl-phosphatidylinositol; GlcNAc, N-acetylglucosamine; 
GlcN, glucosamine; Man, mannose; Glc, glucose.
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be consumed by biosynthetic enzymes oriented towards 
the periplasm.
Flipping of glycolipids is also required for the Golgi-local-
ized synthesis of glycosphingolipids. Glucosylceramide, 
the precursor of higher glycosphingolipids, is synthesized 
on the cytoplasmic face of the Golgi and must be flipped 
to the luminal face to be converted to lactosylceramide, a 
lipid that is then further elaborated in the Golgi lumen to 
generate a spectrum of glycosphingolipid species. Little 
is known about this flipping event except that it is ATP 
independent, specific for glucosylceramide (lactosylce-
ramide is not flipped), and distinct from the phospholipid 
flippase activity discussed above [54].

Lipid flippases and membrane lipid asymmetry

Phospholipid flip-flop in the PM of eukaryotic cells
Phospholipid flipping in the ER is unspecific and serves 
to randomize the transbilayer distribution of phospho-
lipids. Although there are no clear data on transbilayer 
phospholipid asymmetry in the ER [55], it is likely that 
the bulk compositional lipid asymmetry in this mem-
brane is weak. In contrast to the situation in the ER, 
flip-flop of phospholipids in the PM of eukaryotic cells 
is highly regulated so that cells are able to maintain a 
nonrandom distribution of phospholipids across the PM 
[56, 57]. In general, the aminophospholipids PS and PE 
are restricted to the cytoplasmic leaflet, whereas PC, 
sphingomyelin and glycosphingolipids are enriched in 
the exoplasmic leaflet. This asymmetric lipid arrange-
ment is thought to come about as a result of the action 
of energy-dependent flippases (P-type ATPases and 
ABC transporters; see below) that use ATP hydrolysis 
to move specific lipids against a concentration gradi-
ent (Fig. 4). In contrast to these energy-dependent flip-
pases, the PM of certain cells contains a phospholipid 
scramblase activity that, when activated (typically, al-
though not always, by elevation of cytoplasmic calcium 
concentration [58]), facilitates bi-directional movement 
of phospholipids that disrupts the PM lipid asymmetry 
set up by the ATP-dependent flippases [59–61]. Scram-
blase activity displays some lipid selectivity [62, 63]; 
this feature, together with the requirement for activation 
distinguishes scramblase activity from the constitutive 
phospholipid flippase activity found in the ER and other 
biogenic membranes.
The regulation of the nonrandom transbilayer lipid dis-
tribution at the PM of eukaryotic cells by the concerted 
action of three classes of lipid flippases is important for 
a variety of cellular functions. First, lipid asymmetry and 
its rapid change, e.g. by activation of the scramblase, pro-
vide a system to modulate the biological activity of the 
exoplasmic membrane leaflet. For example, exposure of 
PS on the cell surface signifies senescence and apoptosis, 

and results in engulfment of the cells by macrophages 
bearing PS receptors [64, 65]. There is also evidence that 
appearance of PS in the exoplasmic leaflet of erythro-
cytes invokes abnormal adherence to vascular endothelial 
cells [66]. In blood coagulation, rapid cell surface expo-
sure of PS is an essential determinant in the assembly of 
coagulation factors on the activated platelet membrane 
[67]. Surface exposure of PS at the PM has also been 
observed during sperm capacitation [68] and myotube 
formation [69], and seems to be important for these fu-
sion events. In the canalicular membrane of hepatocytes, 
lipid asymmetry is essential for preserving the specific 
phospholipid composition of bile [70]: although amino-
phospholipids and PC each represent some 35% of the 
canalicular membrane lipids, aminophospholipids are 
virtually absent from bile, whereas PC accounts for 95% 
of bile phospholipids.
Apart from these functions of an asymmetric lipid dis-
tribution in specific cells, the transfer of lipids from one 
leaflet to the other in cellular membranes appears to be 
of general significance for the functioning of individual 
cells. During cell division, PE is transiently exposed on 
the cell surface of the cleavage furrow. Immobilization 
of PE by a PE-binding peptide inhibits disassembly of 
the contractile ring, thereby preventing the final separa-
tion of daughter cells [71, 72]. These findings suggest 
that local redistribution of PE across the PM is essential 
for progression of cytokinesis. Furthermore, a dynamic 
regulation of the transbilayer lipid arrangement might act 
as a mechanism for signal transduction by modulating 
the activity of membrane proteins [73] and be crucial for 
membrane budding as discussed below.

Figure 4. Lipid flippases in the PM of eukaryotic cells. In the PM 
of eukaryotic cells, flip-flop of phospholipids is constrained owing 
to the absence of constitutive bi-directional flippases. Thus, ATP-
dependent flippases can maintain an asymmetric phospholipid 
distribution by moving specific lipids towards (P4-ATPase family 
members) or away from the cytosolic leaflet (ABC transporters). 
Alternatively, many ABC transporters might function in lipid expo-
sure to an acceptor (A) rather than in the maintenance of membrane 
lipid asymmetry. Cellular activation triggered by cytosolic calcium 
can collapse the lipid asymmetry by the transient activity of an 
ATP-independent scramblase.
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P-type ATPases as potential energy-dependent 
inward lipid flippases

Work done in the mid-1980s demonstrated that human 
erythrocytes were capable of rapidly flipping exog-
enously added PS and PE to the cytoplasmic leaflet of 
the PM. PC was not transported, indicating that the ac-
tivity was specific for aminophospholipids [10, 74]. Al-
though first discovered in erythrocytes, aminophospho-
lipid translocase activity is also found in the PM of many 
nucleated cells [75] as well as in membranes of chro-
maffin granules [76], synaptic vesicles [77], the trans 
Golgi network and post-Golgi secretory vesicles of bud-
ding yeast [78, 79]. Purification of aminophospholipid 
translocase activity from bovine chromaffin granules 
identified a protein known as ATPase II that displayed a 
striking similarity to Drs2p of Saccharomyces cerevisiae 
[80]. Drs2p is a member of the P4-ATPase subfamily 
of P-type ATPases [81]. Yeast cells in which the DRS2 
gene was deleted were shown to lack low temperature 
uptake of a fluorescently-tagged PS analog at the PM, 
further supporting a role for the ATPase II/Drs2p protein 
in aminophospholipid translocation [80, 82]. However, 
the function of Drs2p as an aminophospholipid trans-
locase was subsequently questioned, since the uptake 
defect could not be confirmed in two other independent 
studies [83, 84]. The discrepancy in these observations 
was accounted for by the finding that Drs2p is primarily 
associated with the trans Golgi rather than with the PM 
[85]. This result indicates that, while Drs2p may play a 
role in lipid translocation at the PM, it is unlikely to be 
the only phospholipid translocase in the yeast PM. It is 
more likely that Drs2p has an indirect influence on lipid 
translocation at the PM since it appears to be involved 
in protein export from the trans Golgi [85–87], and may 
regulate the delivery of other lipid translocases to the 
PM. In fact, subsequent to the identification of Drs2p, 
two other proteins of the P4-ATPase subfamily were 
identified. These proteins, Dnf1p and Dnf2p, were found 
to be essential for the ATP-dependent inward transport of 
aminophospholipids at the yeast PM [88]. Unexpectedly, 
fluorescently tagged PC was also translocated, similar to 
the situation in some mammalian cells [89–91], indicat-
ing that members of the P4-ATPase family differ in their 
substrate specificity and that not all of them are specific 
for aminophospholipids. Notably, uptake of fluorescent 
lipid analogues in yeast has been reported to depend on 
the proton electrochemical gradient across the PM [92], 
which might be required for proper functioning of Dnf1p 
and Dnf2p. Moreover, recent data suggest additional pro-
tein-dependent flip mechanisms in the yeast PM [93].
Further evidence of a role for P4-ATPases as lipid trans-
porters derives from the recent demonstration that Drs2p 
is required for translocation of aminophospholipids from 
the luminal to the cytosolic leaflet of late Golgi mem-

branes and post-Golgi secretory vesicles [78, 79]. Im-
portantly, loss of the Golgi-associated P4-ATPases Drs2p 
and Dnf3p, proved sufficient to abolish the asymmetric 
arrangement of endogenous PE in post-Golgi secretory 
vesicles [79]. These findings point to an essential role 
of P4-ATPases in generating and maintaining amino-
phospholipid asymmetry during membrane flow through 
the Golgi. Additional P4-ATPase family members have 
been identified and associated with lipid translocation 
in parasites [94], plants [82], mice spermatozoa [95] and 
mammalian cells [96]. Two members of the P4-ATPases 
(bovine ATP8A1 and murine Atp8a1) were purified and 
shown to be specifically stimulated by PS [97–99]. Col-
lectively, these data support the proposed flippase activity 
of P4-ATPases, but do not rule out the alternative model 
in which they have an indirect role in lipid translocation 
by regulating either activity or localization of the proteins 
directly responsible for lipid translocation and membrane 
asymmetry. Unequivocal demonstration for a direct role 
in lipid transport will require reconstitution of purified 
P4-ATPases in model membranes.
In yeast, interestingly, mutations of an essential gene 
family (Lem3, Cdc50 and YNR048) that encodes inte-
gral membrane proteins, result in phenotypes that are 
similar to dnf1,2 and drs2 mutations. The disruption of 
the LEM3 gene causes a defect in the uptake of fluo-
rescent analogues of PE and PC across the PM, while, 
surprisingly, translocation of the PS analogue is unaf-
fected [100, 101]. Members of this protein family show 
no significant homology with P-type ATPases or other 
known transporters. They might have a regulatory func-
tion for the P4-ATPases and represent integral compo-
nents of the translocation machinery, analogous to the 
β-subunit of Na+, K+-ATPases and H+, K+-ATPases (for 
a review see [102]). Indeed, Lem3p and Cdc50p were 
shown to interact with Dnf1p and Drs2p, respectively, 
and this association was demonstrated to be required for 
their correct localization [103]. Whether the proteins of 
the Lem3-Cdc50 family are also directly involved in the 
translocation process or in substrate recognition remains 
to be established.

ABC transporters: energy-dependent outward lipid 
flippases or lipid exporter?

A second class of ATP-dependent flippases, which may 
include members of the ABC transporter family, is appar-
ently responsible for an active outward transport of lipids 
from the cytoplasmic leaflet to the exoplasmic leaflet of 
the PMs [104–107]. ABC transporters are members of a 
large family of evolutionarily conserved transmembrane 
proteins that transport a broad range of substrates, includ-
ing ions, sugars, drugs and peptides across cellular mem-
branes. First hints for a role of some family members in 
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the outward movement of lipids across the PM came from 
the finding that PC secretion into mouse bile required 
ABCB4 [108] and that this liver transporter enhanced 
transport of newly synthesized PC to the surface of trans-
genic fibroblasts [109]. In studies on short chain lipids, 
human ABCB4 was found to be specific for PC, whereas, 
unexpectedly, the closely related multidrug transporter 
ABCB1 translocated a wide variety of short chain lipids 
[110–113], including the short chain PC platelet-activat-
ing factor [114, 115]. The glutathione-dependent multi-
drug transporter ABCC1 transported short-chain PC, 
PS, sphingomyelin, and glucosylceramide analogs and 
has been suggested to maintain the outward orientation 
of natural choline phospholipids to the PM [116–119]. 
However, whether ABCB1 and -C1 translocate natu-
ral long chain lipids and whether this is physiologically 
relevant remains unclear. Likewise, members of these 
subfamilies in yeasts translocated various short-chain 
lipids to the outer face of the PM [120, 121], and the 
overexpression of these transporters caused endogenous 
aminophospholipids to accumulate at the cell surface [88, 
122]. Many of these ABC transporters have also been im-
plicated in the development of drug resistance. This sug-
gests that the mechanism by which drugs are extruded 
from cells is closely related to the flippase mechanism by 
which lipids are translocated across membranes and that 
lipid translocation and drug transport take place through 
the same path in the transporters. However, evidence for 
this has only be provided so far with various short-chain 
fluorescent lipid derivatives [113].
Other ABC transporters are involved in sterol transport. 
This is unexpected since cholesterol with its small head-
group flips across membranes rapidly [123]. Mutations in 
ABCA1 cause impaired efflux of cholesterol and phos-
pholipids across the PM to exogenous apolipoproteins 
[124–126]. Initially, a direct role of ABCA1 in sterol ef-
flux was suggested but subsequent studies indicate that it 
might act as a PS transporter generating a microenviron-
ment to facilitate binding of apolipoproteins [127–129]. 
In this context, it is also possible to speculate that the 
function of ABCA1 is not directly related to sterol flip-
ping but rather to presentation of sterol to potential ac-
ceptors [130]. Alternatively, ABCA1 might mediate 
transport of PC as suggested by the recent demonstration 
of PC-stimulated ATPase activity of the purified protein 
[131].
Similarly, other members of the ABCA subfamily have 
been associated with the efflux of lipids. ABCA3 [132] 
is required for transporting lipid molecules, mostly satu-
rated PC, to the lung surfactant membranes filling the 
lamellar bodies in lung epithelial type II cells [133, 134]. 
ABCA7 was shown to promote efflux of phospholipid 
and, to a lesser extent, cholesterol to apolipoproteins, 
when overexpressed in a fibroblast cell line [135, 136]. 
ABCA12 is needed for the transport of lipids, mainly 

glucosylceramide, to the membranes within the lamellar 
bodies in keratinocytes [137–139]. Two half-size ABC 
transporters ABCG5 [140] and ABCG8 [141], which are 
highly expressed in epithelial cells of the intestine and 
probably act as a heterodimer [142], have been linked to 
the efflux of plant sterols and cholesterol into bile [143], 
while ABCG1 and G4 are held responsible for transport 
of cholesterol onto high density lipoprotein particles 
[144–147]. Among these subfamilies of proteins candi-
date flippases have also been identified in many other 
eukaryotes, including an ABCG-like subfamily member 
in Arabidopsis involved in wax secretion on the stem sur-
face [148], and ABCA-like members in the protozoan 
parasite Leishmania with a role in phospholipid traffick-
ing [149–151].
Eukaryotes might not only express outward directed ABC 
transporters. In the yeast Candida albicans, a subfam-
ily member (Cdr3p) has been identified that exhibits an 
inward-directed phospholipid translocase activity [121]. 
Two other ABC transporters (S. cerevisiae Aus1p and 
Pdr11p) facilitate exogenous sterol uptake by increasing 
the cycling of sterol between the PM and ER [152, 153]. 
In humans, a putative energy-dependent inward flippase 
is ABCA4. This photoreceptor cell-specific transporter 
has been associated with Stargardt macular dystrophy, a 
retinal degenerative disease that is accompanied by the 
defective transport of retinal PE derivatives from the lu-
minal to the cytosolic leaflet of the outer-segment disc 
membrane [154–156]. The presence of CFTR/ABCC7 
has been correlated with an increased uptake of the sig-
naling lipids sphingosine-1-phosphate and lysophospha-
tidic acid [157, 158].
Finally, ABC transporters are also widely expressed in 
prokaryotes and some bacterial ABC transporters are 
attractive candidates for lipid flippases. One of these 
proteins, PglK, is implicated in the transport of isopren-
oid-linked oligosaccharides as discussed above. Another 
ABC protein, MsbA [159], is an essential inner mem-
brane transporter in Gram-negative Escherichia coli that 
is genetically linked to the export of the Lipid A core 
of lipopolysaccharides to the bacterial outer membrane 
[160–162]. Although MsbA has also been suggested to 
play a role in glycerophospholipid transport [161], avail-
able data suggest that this is not likely to be the case [22, 
163].
A major unresolved question concerns the precise nature 
of lipid transport mediated by the various ABC trans-
porter candidate flippases. Depending on the type of 
transporter essentially two different mechanisms can be 
envisaged [164, 165]. The flippase could bind the lipid 
substrate in the cytoplasmic leaflet and flip its polar head 
group across the membrane to deliver the molecule to the 
exoplasmic leaflet. This type of mechanism is supported 
by a few studies on natural long chain lipids: (i) ABCB1, 
Yor1p, Pdr5p and ABCA1 expressing cells exhibit an en-
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hanced exposure of aminophospholipids on the outer PM 
leaflet, suggesting that these ABC transporter flip natural 
aminophospholipids towards the cell surface [88, 122, 
127, 129]; (ii) in erythrocytes from ABCB1- or ABCB4-
knockout mice, natural PC cell surface translocation was 
reduced [107].
Alternatively, the transporter could flip the molecule to 
present it for release to an acceptor. In this case, the trans-
porter would be involved in lipid efflux rather than in the 
maintenance of membrane lipid asymmetry and even re-
quired for rapidly flipping lipids such as cholesterol. The 
primary function of ABCG5/8 may therefore very likely 
not be cholesterol transbilayer transport across the cana-
licular membrane, but rather facilitation of luminal cho-
lesterol uptake (e.g. by mixed bile salt and PC micelles), 
possibly by pushing it partly into the aqueous phase. 
Whether such a mechanism indeed applies to ABCG5/8 
and other transporters remains to be established. Interest-
ingly, ABCA1 has been shown to directly interact with 
lipid-free apolipoproteins and this interaction is required 
for lipid efflux [128, 166].

Energy-dependent lipid flippases and vesicle 
formation

Several lines of evidence indicate that phospholipid trans-
location by ATP-dependent flippases in the PM, late Golgi 
and endosomal compartment is required for the forma-
tion of intracellular transport vesicles. For example, yeast 
lacking the two PM associated P4-ATPases, Dnf1p and 
Dnf2p, display a cold-sensitive defect in the biogenesis of 
endocytic vesicles [88] and inactivation of Drs2p results 
in a decrease in clathrin-coated vesicle budding from the 
trans-Golgi [86, 78]. Conversely, overexpression of ABC 
transporters with outward directed lipid translocase activ-
ity causes a defect in endocytosis [167, 120], and loss of 
ABCA1 function in Tangier fibroblasts is associated with 
enhanced endocytosis [168].
How would ATP-dependent transporters participate in 
vesicle biogenesis? One possibility is that a high con-
centration of specific phospholipids (PS, PE) in the cyto-
solic leaflet is required for the efficient recruitment of the 
vesicle-budding machinery. However, the requirement of 
an asymmetric PS distribution and the recruitment of PS-
binding proteins to the trans Golgi network for vesicle 
formation can be ruled out since yeast strains that are un-
able to synthesize PS transport proteins normally via the 
secretory pathway and still require Drs2p to produce a 
specific class of secretory vesicles [78]. Moreover, re-
moval of multiple P4-ATPases causes a marked decrease 
in the aminophospholipid content of cellular membranes 
[88]. This finding is hard to reconcile with the idea that 
maintenance of a high concentration of aminophospho-
lipids in the cytosolic leaflet accounts for the requirement 

of P4-ATPases in vesicle formation, as down-regulation 
of aminophospholipid levels would have a counterpro-
ductive effect.
An alternative possibility is that ATP-dependent lipid 
flippases play a more direct and mechanical role in vesi-
cle formation. The ATP-dependent transfer of lipids from 
one leaflet of the membrane to the other produces an area 
difference between the membrane leaflets (Fig. 5). Ac-
cording to the bilayer-couple mechanism [169], this area 
asymmetry will increase the spontaneous curvature of the 
bilayer, and may thus help deform the membrane during 
vesicle budding. Adopting a transbilayer lipid arrange-
ment permissive for vesicle formation might not pose a 
problem to ER and cis Golgi membranes where phospho-
lipids can rapidly cross the bilayer in both directions due 
to the presence of energy-independent, bi-directional flip-
pases. Here, assembly of a protein coat and ‘morphogenic’ 
membrane proteins may exert a force sufficient to deform 
the bilayer into a bud [170]. In the PM, the late Golgi and 
endosomes, however, the free ‘flip-flop’ of phospholipids 
across the bilayer is constrained. In these organelles, it 
would be hard to accomplish the transbilayer lipid imbal-
ance required for vesicle budding without assistance of 
ATP-dependent lipid flippases. This ATPase-dependent 
lipid transport might be particular important at low tem-

Figure 5. Potential role of ATP-dependent lipid flippases in vesicle 
formation. ATP-dependent lipid translocation might help deform 
the membrane by moving lipid mass towards the cytoplasmic leaf-
let. For P4-ATPases, proteins of the Lem3-Cdc50 family presum-
ably represent a subunit regulating their localization and activity. 
Interaction of P4-ATPases with peripheral guanine nucleotide-ex-
change factors (GEFs) might cause activation of small GTPases, 
which subsequently bind to the membrane and facilitate the assem-
bly of coat proteins such as clathrin. This would concentrate the 
vesicle budding machinery at sites of ATPase-dependent phospho-
lipid translocation.
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perature when a decreased fluidity of the membrane may 
prevent coat assembly from driving this process alone 
[79, 82, 88]. Direct participation of ATP-dependent lipid 
flippases in vesicle budding is supported by the observa-
tion that stimulation of the aminophospholipid translo-
case activity in red blood cells provokes the formation of 
endocytic vesicles [171, 172] and accelerates endocytosis 
in human erythroleukemia cells [173, 174]. In this model, 
coat assembly would determine the site on the membrane 
where budding occurs. Strikingly, family members of the 
P4-ATPases were found to interact with cytosolic pro-
teins such as guanine nucleotide exchange factors and 
small GTPases that are crucial for the recruitment of coat 
proteins during membrane budding [85, 175, 176]. This 
may help concentrate the vesicle budding machinery at 
sites of ATPase-dependent phospholipid translocation.

Concluding remarks

Lipid flip-flop in cellular membranes seems to rely on 
two classes of lipid flippases. In early secretory organ-
elles, as well as in the cytoplasmic membrane of bacteria, 
metabolic energy-independent flippases facilitate rapid 
flip-flop of lipids and allow them to equilibrate between 
the two membrane leaflets. These proteins appear to be 
absent from the PM, as well as the late Golgi and en-
dosomal compartments. In these ‘late’ secretory organ-
elles, ATP-dependent flippases are responsible for the net 
transfer of specific lipids to one side of the membrane, 
thus creating/maintaining transbilayer lipid asymmetry. 
Flippases involved in the rapid collapse of lipid asym-
metry have not been identified, but a candidate phospho-
lipid scramblase (PLSCR1) has been cloned from human 
erythrocytes [177]. Clearly, identification of the various 
lipid flippases remains a major challenge in current cell 
biology. The energy-dependent flippases belong to large 
protein families, making it necessary to map the subcel-
lular localization of each family member, identify its sub-
strates and determine how it is regulated. In many cases, 
final proof for their direct role in lipid transport remains 
to be obtained: this will require transport measurements 
of natural lipids by energy-dependent flippases reconsti-
tuted into proteoliposomes, a challenging task given the 
difficulties of purifying membrane proteins, the water in-
solubility of the substrates and the potential requirement 
for subunits and/or accessory proteins. Nevertheless, such 
studies are key to our understanding of the molecular 
mechanism of flippase action. The recent functional re-
constitution of biogenic membrane flippases offers hope 
for similar studies with the ATP-dependent transport-
ers. It will also be necessary to develop new approaches 
to measure transbilayer lipid movement such as assays 
based on shape changes of giant unilamellar vesicles that 
do not require labeled lipid analogues [178].
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