
Abstract. HLA-G is expressed by tumors, in which it 
contributes to the evasion of immunosurveillance. NF-κ B 
appears to be a candidate for regulating HLA-G expres-
sion, since it is considered to be a hallmark of cancer. We 
investigated the role of NF-κ B in modulating HLA-G ex-
pression in HLA-G-positive tumor cells, JEG-3 (chorio-
carcinoma), FON (melanoma), and M8-HLA-G1 (HLA-
G1-transfected melanoma). The treatment of tumor cells 
with two NF-κ B inducers, tumor necrosis factor-α and 
phorbol 12-myristate 13-acetate, decreased HLA-G1 cell 
surface expression but increased intracytoplasmic HLA-

G proteins. Reduction in HLA-G1 cell surface expression 
is driven by NF-κ B and involves a proteolytic shedding 
process dependent on metalloproteinase activity. In con-
trast, an increase in intracytoplasmic HLA-G proteins 
involves post-transcriptional mechanisms that are inde-
pendent of NF-κ B. These results, and the fact that soluble 
HLA-G1 reduces the cytotoxicity of the NKL cell line, 
lead us to propose a novel regulatory pathway for HLA-G 
expression by tumor cells that may have particular rel-
evance in tumor escape. 
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HLA-G molecules play a major role in immune tolerance 
and are frequently expressed in malignant lesions [1, 2]. 
The NF-κ B transcription factor plays a pivotal role in both 
innate and adaptive immunity, leading to the induction of 
multiple genes that regulate immune and inflammatory 
responses [3, 4]. Moreover, NF-κ B is constitutively acti-
vated in various cancers [4]. Therefore, in attempting to 
identify mechanisms involved in the regulation of HLA-
G expression in tumor cells, we investigated the role of 
NF-κ B as a potential HLA-G regulator. 
HLA-G molecules are selectively expressed in healthy 
tissues of the placenta, thymus, and cornea and are se-
creted by erythroblasts from primitive to definitive he-
matopoiesis [1, 5]. However, during malignant transfor-

mation, HLA-G expression may be extended to various 
tissues in both tumors and tumor-infiltrating cells [2]. 
Increased soluble HLA-G levels are also observed in se-
rum and in ascites from patients with malignancies [6, 7]. 
Functionally, HLA-G inhibits the cytotoxicity of natural 
killer (NK) cells and T lymphocytes [8–11] and inhibits 
alloproliferative responses [12–15] through interaction 
with inhibitory receptors such as KIR2DL4 (CD158d), 
ILT2 (CD85j), and ILT4 (CD85d) [16–20]. HLA-G mol-
ecules are generated by alternative splicing of the HLA-
G primary transcript. Four of them, HLA-G1, HLA-G2, 
HLA-G3, and HLA-G4, are membrane-bound proteins, 
whereas HLA-G5, HLA-G6, and HLA-G7 are soluble 
forms [1]. Functionally shed forms of HLA-G1 have also 
been described [21]. HLA-G molecules are involved in 
maternofetal tolerance [22, 23], embryo implantation 
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[24–29], and graft acceptance [30–34], and based on 
these immunotolerant properties may be employed by tu-
mor cells to escape the immune system [35–37]. 
NF-κ B is a ubiquitous transcription factor present in the 
cytoplasm as homo- or heterodimers of a family of struc-
turally related proteins. Most predominant is the p50-
RelA dimer, present in an inactive form in association 
with the inhibitory protein Iκ B-α [38]. NF-κ B responds 
to a wide variety of agents [39], the most well known of 
which are phorbol esters [40] and tumor necrosis factor-
α (TNF-α), which is produced by many tumor cells [41]. 
These agents lead to phosphorylation and degradation of 
Iκ B-α by the 26S proteasome, thus releasing the NF-κ B 
dimer [42]. This free NF-κ B translocates from the cy-
toplasm to the nucleus, where it mediates transcription 
of target genes involved in immunity [43], inflamma-
tion [44], apoptosis [45] and the cell cycle [46]. NF-κ B 
is also associated with cancers [4], especially with he-
matopoietic malignancies, cancers of the breast, colon, 
ovary, prostate, liver, and pancreas, and melanoma [47]. 
In particularly, activation of NF-κ B is a crucial mediator 
of inflammation-induced tumor growth and progression, 
and may predict the metastatic potential of tumors [48]. 
NF-κ B factors are known to regulate the expression of 
classical HLA class I molecules because of the presence 
of two κ B sites within the proximal promoter gene region 
[49]. This is not the case for HLA-G [50], which exhibits 
an unusual promoter region, since HLA class I cis-acting 
regulatory elements are disrupted or non-functional [51, 
52]. Despite the fact that the HLA-G proximal promoter 
gene is unresponsive to NF-κ B [53], we cannot exclude 
the presence of other κ B target sites outside this promoter 
region, or the possible indirect effect of NF-κ B-mediated 
post-transcriptional or post-translational events in modu-
lating HLA-G expression. Since NF-κ B may be a target 
candidate in cancer treatment, it is critically important to 
define whether such NF-κ B-targeted therapy strategies 
might modulate HLA-G, thereby favoring immune toler-
ance of tumor cells. 
In the present report, we demonstrate that the NF-κ B 
inducers TNF-α and phorbol 12-myristate 13-acetate 
(PMA) reduce HLA-G1 expression at the cell surface 
in choriocarcinoma and melanoma cell lines. Such a 
decrease in HLA-G1 surface expression is regulated by 
NF-κ B and involves proteolytic shedding of membrane-
bound HLA-G1 molecules. On the other hand, intracy-
toplasmic HLA-G protein expression in these tumor cell 
lines is enhanced by post-transcriptional mechanisms that 
are independent of NF-κ B activation. 

Materials and methods

Antibodies and reagents. The following antibodies 
were used for flow cytometry studies: anti-HLA-G 

MEM-G/9 (mouse IgG1; Exbio, Prague, Czech Repub-
lic) and 87G (mouse IgG2a; Exbio) [54]; anti-HLA-A, 
-B, -C SV99-86 (mouse IgG kindly provided by Dr. S. 
Ferrone, Roswell Park Cancer Institute, Buffalo, N.Y.); 
anti-CD54-FITC (anti-ICAM-1; Immunotech, Mar-
seille, France) and PE-conjugated F(ab′)2 fragment goat 
anti-mouse IgG (Immunotech) as a secondary antibody. 
The following antibodies were used for immunoblot-
ting: Iκ B-α (C-21) sc-371 (Santa Cruz Biotechnol-
ogy, Santa Cruz, Calif.), anti-pan HLA-G mAb 4H84 
(mouse IgG1; M. McMaster, University of California, 
San Francisco, Calif.), anti-tubulin mAb (Sigma, Saint-
Quentin Fallavier, France), horseradish peroxidase-con-
jugated anti-rabbit and anti-mouse secondary antibod-
ies (Sigma). For ELISA, we used anti-HLA-G MEM-
G/9, a rabbit polyclonal anti-human β2-microglobulin 
conjugated to horseradish peroxidase (DAKO, Trappes, 
France) as a detection antibody. Iκ B-α inhibitor BAY 
11-7082 [55], metalloproteinase inhibitor GM6001 
was supplied by Calbiochem (Darmstadt, Germany); 
PMA, cycloheximide, interleukin (IL)-2, PI3K inhibi-
tor LY-294.002, and MEK inhibitor PD-98.059 were 
from Sigma; complete protease inhibitor cocktail was 
from Roche (Meylan, France); TNF-α was purchased 
from Santa Cruz Biotechnology and interferon (IFN)-β 
from Tebu-Bio (Perray en Yvelines, France). PMA and 
BAY 11-7082 were reconstituted in dimethyl sulfoxide 
(DMSO).

Cell lines and culture. The JEG-3 choriocarcinoma cell 
line (American Type Culture Collection) was maintained 
in Dulbecco’s modified Eagle’s medium (D-MEM) sup-
plemented with 10% fetal bovine serum (FBS; Invitro-
gen, Cergy Pontoise, France) at 37 °C under 5% CO2. 
The FON melanoma cell line derived from a primary 
melanoma lesion (kindly provided by Dr. F. Faure, Insti-
tut Curie, Paris, France) was cultured in RPMI 1640 me-
dium with 10% heat-inactivated fetal calf serum (FCS) 
and 2 mM L-glutamine (Invitrogen). Both JEG-3 and 
FON (FONG1+) naturally express HLA-G molecules at 
the cell surface [56]. We used also FONG1– cells, which 
do not express HLA-G1 at their membranes and strongly 
express the HLA-G2 isoform [56]. M8 melanoma cells 
transfected with HLA-G1 (M8-HLA-G1) as described 
previously [57] were cultured in RPMI 1640 medium 
with 10% FCS, 2 mM L-glutamine, and 100 µg/ml 
hygromycin B. The NKL cell line, kindly provided by 
E. H. Weiss (Munich, Germany) was maintained in 
RPMI medium supplemented with 10% FCS, 2 mM L-
glutamine and 50 U/ml IL-2 (Sigma-Aldrich). This cell 
line established from a patient with an aggressive NK 
cell leukemia expresses a large range of NK antigens 
and exhibits cytolytic activity [58]. All maintenance 
media contained 10 µg/ml gentamicin and 0.25 µg/ml 
fungizone (Invitrogen). 
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Cell treatments. For NF-κ B activation, cells were 
exposed in complete medium, or in medium without 
serum in some experiments, to 50 ng/ml recombinant 
human TNF-α (Santa Cruz Biotechnology) or to 10 ng/
ml PMA (Sigma) for 12 h. For NF-κ B inhibition, cells 
were treated with 5 µM BAY 11-7082 (Calbiochem), 
which inhibits the phosphorylation of Iκ B-α [55, 59, 
60]. For metalloproteinase inhibition, we treated cells 
with commonly used reagents: EDTA [21] at 10 mM or 
GM6001 [61] at 10 µM (Calbiochem). Cycloheximide 
at 20 µg/ml (Sigma) was used for protein synthesis in-
hibition. Inhibition of PI3K/Akt and MAPK/ERK path-
ways was carried out as previously reported [62, 63] by 
using, respectively, LY-294.002 at 50 µM (Sigma) and 
PD-98.059 at 30 µM (Sigma). Control experiments were 
carried out in the presence of the solvent reagent alone: 
DMSO for PMA, BAY 11-7082, and PD-98.059; etha-
nol for LY-294.002; H2O for TNF-α. After treatment, 
cell viability was checked with trypan blue exclusion. 
The responsiveness of the HLA-G gene upon treatment 
for 12 h was validated by stimulating cells with 2000 U/
ml IFN-β.

Flow cytometry. After washing the cells in PBS contain-
ing 2% FBS, they were incubated with primary antibodies 
for 20 min at 4 °C, followed by two washes. When nec-
essary, PE-conjugated F(ab′)2 fragment goat anti-mouse 
IgG was used as a secondary antibody. Isotype-matched 
control antibodies were systematically used to evaluate 
non-specific binding. Flow cytometry analysis was car-
ried out using an Epics XL cytometer (Beckman Coul-
ter) and EXPO32 software (Beckman Coulter). Specific 
fluorescence indexes (SFIs) were calculated by dividing 
the mean fluorescence obtained with specific antibody 
by the mean fluorescence obtained with the isotypic con-
trol antibody. The effect of treatment was calculated by 
the variation rate in the SFI: ∆SFI = (SFI T – SFI NT)/
SFI NT, where SFI T = SFI of treated cells and SFI NT = 
SFI of untreated cells.

Western blot analysis. Cells were lysed in a buffer con-
taining 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM 
EDTA, 10% glycerol, 1% Nonidet P-40, and com-
plete protease inhibitor (Roche, Basel, Switzerland) for 
20 min at 4 °C. The lysates were centrifuged at 14,000 g 
for 20 min at 4 °C to remove the insoluble debris. Equal 
amounts of cell lysates were subjected to SDS-polyacryl-
amide gel electrophoresis and transferred electrophoreti-
cally onto polyvinylidene difluoride membranes (Bio-
Rad). The membranes were analyzed by immunoblot, as 
previously described [64]. Intensities of the HLA-G bands 
were analyzed using AlphaEaseFC software (fluorchem 
8800 imaging) and normalized according to the amounts 
of tubulin. 

ELISA. Shed HLA-G1 (sHLA-G1) concentrations in 
the culture supernatants of M8-HLA-G1 cells were mea-
sured by sandwich ELISA, according to the workshop 
procedure (Essen, Germany, 2005) [65]. Briefly, 100 µl 
of the culture supernatants (in duplicate) was incubated 
with 10 µg/ml capture antibody (MEM-G/9) overnight at 
4 °C. The detection antibody (anti-human β2-microglob-
ulin conjugated to horseradish peroxidase) was added for 
1 h at 37 °C, followed by addition of the substrate (tetra-
methylbenzidine; Sigma) for 30 min in the dark. The re-
action was stopped with 1 N HCl. The optical density 
was measured at 450 nm. The ELISA detection limit was 
5 ng/ml. 

Quantitative and classical RT-PCR. Total RNA was 
extracted from cells using TRIzol reagent (Invitrogen) 
according to the manufacturer’s instructions. QRT-PCR 
targeting all HLA-G mRNA was carried out with an ABI 
Prism 7000 SDS (Applied Biosystems, Courtabœuf, 
France) in a duplex PCR with GAPDH as an endogenous 
control, as previously described [66]. 
Classical RT-PCR was carried out by coamplification of 
HLA-G cDNAs using the G.257F/G.1004R pan-HLA-G 
primers and β-actin according to the 13th HLA workshop, 
as previously described [57]. 

NKL cytotoxicity. Analysis of NKL cytotoxicity was 
performed by 51Cr release assays using M8-pcDNA 
target cells incubated with culture supernatants from 
M8-HLA-G1 cells either treated or not with TNF-α 
(50 ng/ml) for 12 h. NKL cells were previously stimu-
lated with IL-2 (Sigma) at 100 U/ml for 18 h at 37 °C 
under 5% CO2 and then incubated for 1 h with culture 
supernatants. M8-pcDNA target cells were labeled for 
1 h at 37 °C with 100 µCi 51Cr and incubated with NKL 
cells for 4 h at 37 °C and 5% CO2 at effector/target cell 
ratios of 20 : 1, 10 : 1 and 5 : 1. After incubation, 50 µl 
of the supernatants from cell cocultures were harvested 
for scintillation counting (Wallac 1450 Microbeta; EGG 
Instruments, Evry, France). All experiments were per-
formed in triplicate in a final volume of 200 µl. The per-
centage of specific lysis was calculated as follows: [(ex-
perimental release – spontaneous release)/(maximum 
release – spontaneous release)] × 100. For maximum 
and spontaneous release, targets cells were incubated 
with 100 µl of HCl 0.1 M or with 80 µl of medium, 
respectively. Blockage experiments of sHLA-G1 were 
carried out by adding either 87G anti-HLA-G or IgG2a-
isotype antibodies (irrelevant) in culture supernatants 
from TNF-α-treated M8-HLA-G1 cells during 30 min 
before cytotoxic assay.

Statistical analysis. Statistical significance was assessed 
using a paired t-test and differences were considered to be 
statistically significant at p < 0.05. 
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Results

NF-κ B inducers decrease HLA-G1 cell surface ex-
pression on tumor cells. TNF-α or PMA were added to 
cultures of JEG-3 choriocarcinoma and FON melanoma 
cells, both of which constitutively express HLA-G1 at the 
cell surface. In Figure 1, NF-κ B activation through TNF-
α and PMA treatment of JEG-3 and FON cells is verified 
by SDS-PAGE analysis of Iκ B-α, the inhibitory subunit 
of NF-κ B. As expected, Iκ B-α degradation was observed 
only a few minutes after these treatments. 
HLA-G expression on JEG-3 and FON cells following 
TNF-α stimulation (n = 15 and n = 8, respectively) or 
PMA stimulation (n = 18 and n = 10, respectively) was 
analyzed by flow cytometry. We observed that cell expo-
sure to NF-κ B inducers for 12 h generated a significant 
and reproducible decrease in HLA-G1 cell surface ex-
pression on JEG-3 and FON cells (Fig. 2a, b). The TNF-
α-induced decrease in HLA-G1 surface expression was 
also observed on M8 melanoma cells transfected with 
HLA-G1 cDNA (M8-HLA-G1; Fig. 2a, n = 7). Con-
versely, an increase in classical HLA-A, -B, and -C mol-
ecules was observed at the cell surface of M8-HLA-G1 
and FON cells. The observed variations in HLA-G1 and 
classical class I cell surface expression were not affected 
by treating M8-HLA-G1 and FON with TNF-α either in 
serum-free medium (Fig. 3b) or in medium containing 
serum (Fig. 3a), thus excluding a role for serum.
To investigate the involvement of NF-κ B in the modula-
tion of HLA-G expression by TNF-α or PMA in JEG-
3, FON, and M8-HLA-G1 cells, we examined the effect 
of BAY 11-7082, a chemical inhibitor of Iκ B-α phos-

phorylation that sequestrates NF-κ B in the cytoplasm. 
The efficiency of inhibition by BAY 11-7082 has been 
demonstrated previously [55, 59, 60] and was validated in 
our experiments by blockage of PMA-induced up-regula-
tion of ICAM-1 (data not shown) [67]. We observed that 
pre-treatment with BAY 11-7082 reverses or moderates 
the HLA-G1 cell surface decrease mediated by TNF-α 
or PMA (Fig. 4). In some experiments, BAY 11-7082 
treatment even boosted constitutive HLA-G1 surface 
expression. The same observations were made with M8-
HLA-G1 cells, using specific inhibitors of PI3K/Akt and 
MAPK/ERK pathways (namely, LY and PD), which are 
involved in NF-κ B activation [68, 69] (Fig. 5). The de-
crease in HLA-G1 at the surfaces of JEG-3, FON, and 
M8-HLA-G1 cells upon TNF-α and PMA treatment ap-
pears to be mediated by NF-κ B activation. 

Stimulation with TNF-α and PMA enhances the in-
tracytoplasmic HLA-G protein content. Next, we ex-
amined the effect of TNF-α and PMA on the total HLA-
G protein expression in JEG-3, FON, and M8-HLA-G1 
cells by Western blot analysis. We found an up to twofold 
increase in the total HLA-G1 protein level expression af-
ter 12 h of induction by both activators in each cell line 
(Fig. 6a). Notably, this result was still observed in the 
presence of BAY 11-7082, suggesting that the increase in 
HLA-G protein level is independent of NF-κ B activation 
(data not shown). To analyze whether treatment with NF-
κ B inducers also modified the expression of the HLA-G2 
isoform, we used FON cells lacking HLA-G1 (FONG1–), 
but that strongly express this isoform [56]. In this con-
text, we noted a similar effect on HLA-G2 expression as 
seen before with HLA-G1 (Fig. 6b). Quantification of 
HLA-G2 bands revealed an increase close to fourfold af-
ter treatment by PMA. Thus, TNF-α or PMA treatments 
involve at least two distinct pathways to regulate HLA-G 
expression. One is dependent on NF-κ B activation and 
controls the presence of HLA-G1 at the cell surface; the 
other is independent of the NF-κ B pathway and enhances 
the level of HLA-G proteins in the cell.

Modulation of HLA-G expression involves post-tran-
scriptional processes. The fact that TNF-α modulates 
HLA-G1 expression in M8 melanoma cells transfected 
with HLA-G1 cDNA without the HLA-G gene promoter 
region suggests that the process that controls HLA-G ex-
pression is not transcriptional. To confirm this in cells 
that constitutively express HLA-G mRNA, we carried out 
quantitative RT-PCR on JEG-3 cells, which demonstrated 
no significant change in HLA-G transcript levels in cells 
treated or untreated with TNF-α and PMA (Fig. 7a) 
whereas an increase in HLA-G gene transcriptional ac-
tivity was induced by IFN-β in JEG-3 cells (Fig. 7c). In 
addition, classical RT-PCR revealed no change in the al-
ternative splicing of the HLA-G primary transcript, thus 

Figure 1. Activation of NF-κ B in JEG-3 and FON cells by PMA 
(a) or TNF-α (b) treatment. Lysates were prepared and assessed by 
Western blot analysis using anti-Iκ B-α antibody to analyze NF-
κ B activation and anti-tubulin antibody to control protein loading. 
Iκ B-α degradation peaking at 10–15 min certifies that NF-κ B acti-
vation has been rapidly achieved in both cell lines upon treatment. 
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supporting the involvement of a regulatory mechanism 
acting at a post-transcriptional level (Fig. 7b). Then, to 
determine whether the modulation of HLA-G proteins 
upon NF-κ B stimulation involved ongoing HLA-G or 
was dependent on other protein synthesis, JEG-3 cells 

were treated with TNF-α in the presence or absence of 
the protein synthesis inhibitor cycloheximide. The results 
in Figure 8 indicate that a TNF-α-mediated decrease in 
HLA-G1 cell surface expression involves de novo protein 
synthesis. 

Figure 2. Stimulation of JEG-3, FON, and M8-HLA-G1 cells by NF-κ B inducers decreases cell surface HLA-G1 expression. Flow cyto-
metric analysis of cell surface expression of HLA-G1 after 12 h stimulation or not (NT) with 50 ng/ml TNF-α (a) or 10 ng/ml PMA (b). 
Cells were stained with MEM-G/9, a specific anti-HLA-G antibody [54]. Representative flow cytometric analyses are presented on the 
left. The specificity of MEM-G/9 staining (filled curve) was established using an isotype-matched control (empty curve). The inserted 
numbers represent the SFI. Histograms on the right are the mean of the fluorescence intensity of all experiments; error bars indicate the 
SE. Significant differences (*p < 0.01; **p < 0.005; ***p < 0.001; ****p < 0.0001) are observed in the HLA-G1 cell surface expression 
of TNF-α- and PMA-stimulated cells, compared with unstimulated cells (NT). 
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Figure 3. Differential effect of TNF-α on HLA-G and classical HLA class I expression is independent of the presence of serum in the cul-
ture medium. Flow cytometric analysis of HLA-G1 and classical HLA class I molecules at the cell surface of M8-HLA-G1 and FON treated 
or not (NT) with TNF-α in the presence (a) or absence (b) of serum (FCS) in the culture medium. Representative histograms (n = 2 of each) 
obtained with MEM-G/9 (anti-HLA-G antibody), SV99-86 (anti- HLA-A, -B, -C antibody) and isotype control staining are shown.

Figure 4. Decrease in HLA-G1 on JEG-3, FON, and M8-HLA-G1 cell surfaces after TNF-α treatment is NF-κ B dependent. Flow cy-
tometry analysis of HLA-G1 (MEM-G/9 antibody) at the cell surface of HLA-G-positive cells treated or not (NT) with TNF-α and PMA 
in the presence or absence of NF-κ B inhibitor BAY 11-7082. Each diagram represents ∆SFI obtained from 1 (n = 1) or the mean of 2 
(n = 2) independent experiments. NF-κ B inhibitor BAY 11-7082 alone was used as a control for cells pre-treated with BAY 11-7082 for 
1 h before stimulation with TNF-α (BAY versus BAY+TNF-α) or PMA (BAY versus BAY+PMA) for 12 h. DMSO is a control solvent for 
PMA. Negative or positive values of ∆SFI indicate the decrease or increase, respectively, in HLA-G1 cell surface expression following cell 
treatments. ∆SFI obtained in the presence of BAY 11-7082 indicates that the NF-κ B inhibitor reverses or reduces the decrease in HLA-G1 
cell surface expression upon TNF-α and PMA treatment.
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The increase in the entire HLA-G protein content fol-
lowing TNF-α and PMA treatments and the concomitant 
decrease of HLA-G1 expression at the cell surface of 
tumor cell lines are therefore controlled by post-tran-
scriptional/translational mechanisms. To investigate 
such mechanisms, we first analyzed whether β2-micro-
globulin molecule levels were modified after TNF-α 
treatment of JEG-3 and FON cells, but found no change 
(data not shown). Next, to investigate whether NF-κ B 
activation by TNF-α or PMA influences proteolytic 
shedding of HLA-G1 cell surface molecules, JEG-3 
and FON cells were treated with the metalloprotein-
ase inhibitor GM6001. We observed that this inhib-
itor markedly reduced the TNF-α-induced decrease in 
HLA-G1 cell surface expression (Fig. 9A). In addition, 
FON treatment with EDTA, another metalloproteinase 
inhibitor, exerted the same effect with either TNF-α 
or PMA induction (Fig. 9b). These results suggest that 
the decrease in HLA-G1 cell surface expression is 
caused by an increase in proteolytic shedding of the 
molecule. 
Finally, we investigated by ELISA the proteolytic shed-
ding of membrane-bound HLA-G1 molecules (sHLA-
G1) in culture medium. For this purpose, we chose to 
work with M8-HLA-G1, which expresses high levels of 
HLA-G1. The use of this cell line also excludes HLA-
G5 detection by antibodies used in the ELISA. Figure 10 
shows that both TNF-α and PMA treatments significantly 
enhance proteolytic shedding of cell surface HLA-G1 

Figure 5. Decrease in HLA-G1 at the cell surface of M8-HLA-G1 
by TNF-α is dependent on PI3K/Akt and MAPK/ERK pathways. 
Flow cytometry analysis carried out with the MEM-G/9 antibody on 
untreated (NT) M8-HLA-G1 cells compared with cells treated with 
TNF-α to validate the effect of TNF-α alone (top of Figure). HLA-G 
cell surface expression was analyzed on cells treated with PI3K inhib-
itor (LY: LY-294.002) or MEK inhibitor (PD: PD-98.059) alone and 
compared with cells pre-treated with LY (one representative experi-
ment; n = 2) or PD (n = 1) for 1 h and then stimulated by TNF-α for 
12 h. The inserted numbers are the SFI and indicate that LY and PD 
reverse the TNF-α-induced decrease in HLA-G1 at the cell surface. 

Figure 6. Increase in the intracytoplasmic HLA-G protein pool after 12 h exposure to NF-κ B inducers in tumor cell lines. Representative 
Western blot analysis carried out with JEG-3 (n = 3 with TNF-α; n = 3 with PMA), FON (n = 1 with TNF-α), and M8-HLA-G1 (n = 1 
with TNF-α) cells (a) and FONG1– cells (n = 1 with TNF-α ; n = 1 with PMA) (b). Cell lysates were separated on 10% SDS-PAGE and 
immunoblotted with 4H84 antibody to detect all HLA-G isoforms and anti-tubulin antibody to control protein loading. PMA or TNF-α 
treatments carried out for 12 h increase HLA-G expression, mostly HLA-G1 in JEG-3 and FON, and HLA-G2 in FONG1–. – untreated cells; 
+ treated cells. DMSO was added to the control cell medium for PMA. 
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proteins. Altogether, these results indicate that the de-
crease in HLA-G1 at the cell surface of tumor cells upon 
TNF-α and PMA treatments corresponds to an increase 
in HLA-G1 proteolytic shedding. 

TNF-α-induced HLA-G1 proteolytic shedding in-
hibits the cytotoxicity of NKL cells. To determine the 
functional relevance of sHLA-G1 produced upon TNF-α 
treatment, we tested its effect on NK cell cytolytic activ-
ity, using NKL as effector and M8-pcDNA as target cells. 
For this purpose, cells were cocultured with supernatants 
of M8-HLA-G1 cells treated or not with 50 ng/ml TNF-
α for 12 h. Supernatants from TNF-α-induced cells pro-
duced a decrease in the cytolytic activity of NKL cells 
estimated at 18.6 ± 2.7% (mean ± SE, n = 9, p < 0.018) 
compared with supernatants without treatment. The most 
illustrative experiment is shown in Figure 11a. To further 
demonstrate that TNF-α-induced sHLA-G1 is involved 
in the decrease of NKL cell cytotoxicity against M8 cell 

Figure 7. The quantities of HLA-G transcripts and pattern of HLA-G alternative splicing are not affected by TNF-α and PMA. (a) Quanti-
tative HLA-G-specific RT-PCR carried out on JEG-3 cells treated or not with NF-κ B inducers. Cells were treated or not (NT) with TNF-α 
for 1 h (n = 1), 3 h (n = 1), 6 h (n = 1), and 12 h (n = 2) without affecting the HLA-G transcript level. The changes observed following 
PMA treatment for 12 h (n = 8) are not statistically significant (*p > 0.05). Means of the level of HLA-G transcripts ± SE are shown. (b) 
Representative Southern blots (n = 4) obtained by classical RT-PCR carried out on JEG-3 samples treated (+) or not (–) with PMA for 
12 h. β-actin levels were used as an internal control. Alternatively spliced transcripts are indicated. We noted no qualitative or quantitative 
change in HLA-G mRNA following PMA treatment. (c) Quantitative HLA-G-specific RT-PCR performed on JEG-3 cells treated or not 
with 2000 U/ml IFN-β for 12 h (positive control of modulation of HLA-G transcription). 

Figure 8. Inhibition of protein synthesis reduces the TNF-α-induced 
decrease in HLA-G1 at the surface of JEG-3 cells. Representative 
flow cytometry experiments (n = 2) carried out with MEM-G/9 anti-
body on JEG-3 cells pre-treated with cycloheximide at 20 µg/ml for 
1 h and then stimulated by TNF-α for 12 h. The inserted numbers re-
present the SFI. TNF-α efficiency was also checked (top of Figure). 
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lines, we performed one experiment using anti-HLA-G 
87G as blocking antibody. Figure 11B shows that 87G 
lead to a significant enhancement of NK lysis in com-
parison with irrelevant antibodies. Thus, the cytolytic po-
tential of NKL cells is impaired when the culture medium 
contains TNF-α-induced sHLA-G1.

Discussion

This study provides new insight into mechanisms that 
regulate HLA-G expression in tumor cells. We previously 
demonstrated that HLA-G gene transcription activity is 
dependent on cis-acting epigenetic changes, including 
CpG demethylation and histone acetylation [70]. Here, 
we show that post-transcriptional/translational mecha-
nisms, some of which are controlled by NF-κ B, modulate 
HLA-G expression in three tumor cell lines, two consti-

tutively expressing HLA-G, the other being transfected 
with HLA-G1 cDNA.
First, analysis of HLA-G gene transcriptional activity 
upon treatment with TNF-α or PMA, both of which stim-
ulate NF-κ B activity, confirms previous data demonstrat-
ing that the HLA-G gene is not targeted by the classical 
NF-κ B pathway, thus excluding the presence of a puta-
tive functional target site outside the proximal promoter 
region of HLA-G. Secondly, we observed a decrease 

Figure 9. Metalloproteinases inhibition reduces the TNF-α-induced 
decrease in HLA-G1 at the JEG-3 and FON cell surfaces. (a) Flow 
cytometry analysis of the effect of the metalloproteinase inhibitor 
GM6001 on the expression of HLA-G1 cell surface expression was 
checked by comparing ∆SFI values between NT versus TNF-α and 
GM6001 versus GM6001+ TNF-α. (b) Flow cytometry analysis of 
the effect of the metalloproteinase inhibitor EDTA on the expres-
sion of HLA-G1 cell surface expression was checked by compari-
son of ∆SFI: NT versus TNF-α and EDTA versus EDTA+ TNF-α. 
Each diagram represents the ∆SFI obtained from 1 (n = 1) or the 
mean of 2 (n = 2) independent experiments. Negative and positive 
values for ∆SFI indicate the decrease and the increase, respectively, 
in HLA-G1 cell surface expression following cell treatments. ∆SFI 
obtained in the presence of GM6001 or EDTA indicates that metal-
loproteinase inhibitors reverse or reduce the decrease in HLA-G1 
cell surface expression upon TNF-α and PMA treatments.

Figure 10. Soluble HLA-G1 resulting from proteolytic shedding in 
M8-HLA-G1 cells is enhanced by TNF-α and PMA. M8-HLA-G1 
cells were treated or not (NT) with TNF-α (n = 8) or PMA (n = 3) 
for 12 h and the supernatants subjected to ELISA to evaluate sHLA-
G1. The observed variations between mean sHLA-G1 concentra-
tions of treated and untreated cells are statistically significant using 
the paired t test: **p < 0.001 and *p < 0.01 for TNF-α and PMA 
treatments, respectively. Error bars indicate the SE. 

Figure 11. Soluble HLA-G1 resulting from TNF-α -induced pro-
teolytic shedding in M8-HLA-G1 cells impaired NKL cytotoxic-
ity function. (a) Illustrative experiment of 51Cr release assay (from 
n = 9) performed with IL-2-stimulated (100 U/ml) NKL added 
to chromium-labeled M8-pcDNA cells at effector/target ratios of 
10 : 1. Coculture was performed either in the absence (SN NT) or 
in the presence (SN TNF-α) of supernatant containing TNF-α-in-
duced soluble HLA-G1. (b) One experiment of sHLA-G1 blockage 
with anti-HLA-G (87G) (triplicate) or irrelevant (IRR) (duplicate) 
antibodies performed on supernatants obtained after TNF-α stimu-
lation of M8-HLA-G1 cells.
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in HLA-G1 at the cell surface of three tumor cell lines 
treated with either TNF-α or PMA. This effect was spe-
cific to HLA-G, since expression of classical HLA class 
I molecules was enhanced, a result in agreement with 
previous work showing that TNF-α induces the expres-
sion of HLA class I molecules [71, 72]. Third, we found 
an enhancement of intracytoplasmic HLA-G proteins in 
the three cell lines upon exposure to TNF-α and PMA. 
Fourth, we observed that NF-κ B inducers increase the 
amounts of sHLA-G1 in M8-HLA-G1 cell culture me-
dium. The enhancement of sHLA-G1 is of particular rel-
evance, as it impairs NK cell cytolysis against melanoma 
target cells (M8-pcDNA).
The use of the NF-κ B inhibitor BAY 11-7082 indicates 
that this transcription factor drives the decrease in cell 
surface HLA-G1. Not only does the addition of BAY 11-
7082 block or moderate this effect, but in some cases it 
could enhance HLA-G cell surface expression. Such a 
result may be related to previous data showing that IL-10 
could up-regulate HLA-G cell surface expression of pe-
ripheral blood monocytes [73]. Indeed, IL-10 has recently 
been demonstrated to inhibit NF-κ B activity, a mecha-
nism that involves suppression of the PI3K/Akt pathway 
and Iκ B kinase activity in dendritic cells [74]. 
On the other hand, TNF-α and PMA treatments increase 
the intracytoplasmic cell content of at least HLA-G1 and 
HLA-G2. This occurred independently of the NF-κ B 
pathway, since BAY 11-7082 did not block the increase in 
the HLA-G protein expression level. Signaling induced by 
TNF-α and PMA is known to activate a number of path-
ways that are different from that of NF-κ B, which there-
fore might be involved in the observed enhancement of 
HLA-G expression [75]. Then, when NF-κ B activation is 
blocked, these NF-κ B-independent pathways might drive 
the observed HLA-G enhancement upon PMA and TNF-
α treatments. In the absence of up-regulation of HLA-
G mRNA levels following TNF-α and PMA treatments, 
the mechanisms involved might therefore affect HLA-G 
protein stability and/or the efficiency of HLA-G mRNA 
translation. Nevertheless, the factors and mechanisms in-
volved remain to be investigated. 
We next analyzed how cell surface HLA-G1 molecules 
decrease while the intracytoplasmic content of HLA-G1 
proteins increases. One hypothesis could be that TNF-α 
and PMA treatments of HLA-G-positive tumor cell lines 
may affect the stability/degradation of HLA-G proteins 
on the cell surface. However, this hypothesis is not sup-
ported by the fact that ELISA, performed with MEM-G/9 
and anti-β2m antibody, can only detect conformational 
sHLA-G1 molecules in cell culture medium. Second, pre-
vious work carried out with antigen-presenting cells re-
vealed that even though HLA-G1 could be detected in to-
tal cell extract, HLA-G1 could not be detected at the cell 
surface [76], suggesting that either HLA-G1 is retained in 
the cell or is secreted by proteolysis [21]. A possible de-

fect in HLA-G1 transport to the cell surface upon TNF-α 
and PMA treatment is not supported by the fact that NF-
κ B activation may up-regulate several antigen-process-
ing machinery components as well as β2-microglobulin 
proteins [77, 78], which more likely favors cell surface 
expression. In particular, we did not reveal any down-reg-
ulation in the level of β2-microglobulin after treatment 
with NF-κ B inducers (data not shown). Conversely, our 
data strongly support the notion that the NF-κ B-mediated 
HLA-G1 decrease at the cell surface is generated by the 
enhancement of HLA-G1 proteolytic shedding following 
an increase in metalloproteinase activity. Indeed, we ob-
served an inhibition in the TNF-α-induced decrease in cell 
surface HLA-G1 using metalloproteinase inhibitors, and 
an increase in levels of sHLA-G1 forms in the superna-
tant of M8-HLA-G1 cells treated with TNF-α or PMA. It 
is of note that the HLA-G1 cell surface decrease was also 
obtained in serum-free culture medium, suggesting that 
proteases are solely coming from the NF-κ B modulated 
cells rather than being present in the cell culture medium. 
In accordance with our observations, metalloproteinases 
have recently been demonstrated to be responsible for the 
release of sHLA-G1 at the cell surface of LCL 721.221 
and K562 transfectants [21]. NF-κ B was demonstrated 
to be involved in the up-regulation of metalloproteinases 
particularly MMP-9 [79]. Moreover, several studies have 
monitored the induction of the MMP-9 gene by TNF-α 
and the implication of PMA in the activation of MMPs 
[80, 81]. These data are in agreement with results ob-
tained in stimulating JEG-3 cells with cycloheximide. In 
fact, we found that this treatment diminished the decrease 
in HLA-G1 proteins at the cell surface, suggesting that 
having blocked protein synthesis, we also stopped metal-
loproteinase production. Therefore, the decrease in HLA-
G1 at the cell surface upon TNF-α and PMA treatment is 
consistent with NF-κ B-mediated enhancement of HLA-
G1 proteolytic shedding. 
Previous studies have mentioned that PMA, which acti-
vates protein kinase C in vivo and in vitro, is an extremely 
potent mouse skin tumor promoter [82]. TNF-α, a pro-
inflammatory cytokine that plays a critical role in diverse 
cellular events, such as septic shock, cell proliferation, 
differentiation, and apoptosis, also acts to promote tumor 
growth and progression [83]. Accordingly, several reports 
have detected abnormally high levels of TNF-α protein 
in the blood of cancer patients exhibiting various tumor 
types [84]. On the other hand, high levels of sHLA-G 
have been detected in the serum of melanoma patients, 
as well as in various lymphoproliferative disorders, such 
as chronic B lymphocytic leukemia and non-Hodgkins 
B lymphoma [6, 7, 85]. In particular, plasma levels of 
soluble HLA-G were recently reported to be higher in 
patients with HLA-G-positive B cell chronic lymphocytic 
leukemia than in patients with HLA-G-negative leuke-
mia. In addition, the authors observed that HLA-G was 
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associated with unfavorable outcome [86]. Since metal-
loproteinases are known to be involved in invasion and 
genesis of cancer cells [87], those that are generated by 
NF-κ B activators could therefore play an important role 
in tumor invasion by generating proteolytic shedding of 
HLA-G molecules. sHLA-G1 produced by this process 
could act by interacting with the inhibitory receptors of 
immune cells, notably NK cells that are the major com-
ponent of the innate immune system through their rapid 
activation and their potent cytolytic response against tu-
mor cells. In agreement, our results show that the soluble 
shedding form of HLA-G1 produced by TNF-α is able to 
inhibit NK cell cytotoxicity in vitro. This can be reversed 
by the addition of 87G blocking antibody. 
In conclusion, the data presented here introduce a new 
concept concerning the post-transcriptional regulation of 
HLA-G expression via NF-κ B inducers. The increase of 
HLA-G1 expression and its release in the form of pro-
teolytic shedding could potentially have an impact on the 
progression of tumor cells and should be considered in 
new therapeutic strategies aimed at targeting NF-κ B.
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