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Abstract. Sphingolipids and glycosphingolipids are
emerging as major players in many facets of cell
physiology and pathophysiology. We now present an
overview of sphingolipid biochemistry and physiol-
ogy, followed by a brief presentation of recent
advances in translational research related to sphingo-
lipids. In discussing sphingolipid biochemistry, we
focus on the structure of sphingolipids, and their
biosynthetic pathways – the recent identification of
most of the enzymes in this pathway has led to
significant advances and better characterization of a
number of the biosynthetic steps, and the relationship

between them. We then discuss some roles of sphin-
golipids in cell physiology, particularly those of
ceramide and sphingosine-1-phosphate, and mention
current views about how these lipids act in signal
transduction pathways. We end with a discussion of
sphingolipids and glycosphingolipids in the etiology
and pathology of a number of diseases, such as cancer,
immunity, cystic fibrosis, emphysema, diabetes, and
sepsis, areas in which sphingolipids are beginning to
take a central position, even though many of the
details remain to be elucidated.
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Introduction

All eukaryotic cells are surrounded by a membrane
composed of a lipid bilayer, whose chemical nature
and essential role in cell permeability were first
proposed around a hundred years ago. Today it is
known that there are three major classes of lipids in
eukaryotic cell membranes, namely glycerolipids,
sphingolipids (SLs), and sterols, whose biochemical
and biophysical properties vary considerably and
impact upon their function. Progress over the past
two or three decades in elucidating the components of

lipid bilayers and their roles in signaling, and over the
past few years in �lipidomics�, as well as advances in
understanding the biophysical properties of lipids, has
led to a major rethink of the structural and functional
complexity of lipid bilayers and the role that specific
lipids play in defined biological events. Clearly, the
classical and simplistic cartoon of a membrane,
containing a hydrophilic head group (often depicted
as a ball) with two fatty acyl chains attached (depicted
as two sticks) does not do justice to the intricacies of
bilayer structure. Indeed, the number of possible lipid
species, as well as the number observed experimen-
tally to date (see for instance �Lipid Maps� at http://
www.lipidmaps.org) implies previously unsuspected
complexity [1]. Moreover, since many of these lipids* Corresponding author.
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are bioactive and turn over in signaling pathways,
combinatorial aspects of lipid structure and function
are bound to play increasingly important roles in
models of membrane structure.
Having briefly introduced the enormous combinato-
rial diversity of lipids, we will focus in this review on
one particular class of lipids, the SLs, and their
glycosylated derivatives, the glycosphingolipids
(GSLs). Our rationale is that a reductionist approach
to understanding lipid complexity is the most reason-
able lead-in, and a required first step, to appreciate the
complexity of lipid bilayers and how this complexity
impacts upon their biological functions. Thus, we will
first describe the structure and biosynthesis of SLs,
and then discuss their major cellular functions, partic-
ularly those of two important bioactive SLs, ceramide
and sphingosine-1-phophate (S1P). We will then
discuss some aspects of translational research con-
cerning SLs and GSLs; this latter issue is rapidly
developing and moving toward clinical manipulation
of SL levels as a novel therapeutic approach in human
diseases.

SL structure

The backbone of all SLs, and the compound from
which SLs derive their name, is the sphingoid long-
chain base, the most common of which are sphinga-
nine and sphingosine (Fig. 1). Sphinganine differs
from sphingosine inasmuch as the latter contains a
trans 4 – 5 double bond, which is essential for some of
the bioactive roles in which sphingosine-based SLs are
involved. A number of other sphingoid long-chain
bases exist, such as phytosphingosine (4-hydroxy-
sphinganine) with a hydroxyl group at C-4, and the less
common methylsphingosine, which has a methyl
group at C-15, and sphingoid bases containing 20
carbon atoms which are found at high levels in brain
gangliosides. In rare cases, sphingoid bases containing
14 carbons have been described [2].
Ceramide, the simplest SL, consists of a sphingoid
base to which a fatty acid is attached at C-2 via N-
acylation (Fig. 1). SLs usually contain saturated fatty
acids of varying chain length and degree of hydrox-
ylation, although monounsaturated fatty acids, partic-
ularly with very long chains, can also be found in SLs
[3]. Ceramide is the backbone of all complex SLs,
which are formed by attachment of different head
groups at C-1. Attachment of phosphorylcholine

Figure 1. The structure of SLs
and GSLs. S1P, sphingosine 1-
phosphate; SM, sphingomyelin;
GlcCer, glucosyl ceramide. The
inset shows the numbering of the
first five carbon atoms of the
sphingoid long chain base. The
sphingoid base is in the D-erythro
(2S, 3R) conformation.
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forms sphingomyelin (SM), and attachment of glucose
or galactose is the first step in the formation of GSLs
(Fig. 1). The GSLs are the most structurally diverse
class of complex SLs, and are normally classified as
acidic or neutral. More than 500 different carbohy-
drate structures have been described in GSLs [4, 5],
with the main sugars being glucose, galactose, fucose,
N-acetylglucosamine (GlcNAc), N-acetylgalactosa-
mine (GalNAc) and sialic acid (N-acetylneuraminic
acid). GSLs containing sialic acid are the major class
of acidic GSLs, but other acidic GSLs exist, such as
those that contain glucuronic acid or sulfatides [6].
The complexity of SLs is thus based on three structural
components, the sphingoid base, the fatty acid, and the
head group. The reason for such a variety of SL
structures is not known, but implies an as-yet un-
known degree of functional complexity. It is not clear
whether each particular SL or GSL structure has a
unique role of its own, or whether the roles of SLs and
GSLs are defined by their combinatorial patterns at
any one time and their distribution (or segregation)
over the plasma membrane (PM) surface. In addition,
although the basic pathways of SL synthesis have been
established (see below), little is known about how
these pathways are regulated at the transcriptional,
translational or post-translational levels, each of
which could determine the SL pattern of a cell or
tissue at any one time.

SL metabolism and intracellular transport

The biochemical pathways of SL metabolism are well
described [7, 8], and the intracellular sites of synthesis
and degradation, in the endoplasmic reticulum (ER)/
Golgi apparatus and lysosomes, respectively, have
been characterized extensively over the past couple of
decades [7, 9]. As might be expected from the lipidic
nature of their substrates, the enzymes in the SL
biosynthetic pathway are integral membrane proteins
that span the membrane bilayer one or multiple times;
in contrast, many of the lysosomal hydrolases involved
in SL degradation are peripheral membrane proteins
that require the presence of activating proteins for
maximal activity in vivo [7, 10].
SL synthesis begins with the condensation of serine
and palmitoyl CoA by serine palmitoyl transferase
[11] to form 3-ketosphinganine, which is subsequently
reduced by 3-ketosphinganine reductase to produce
sphinganine. Dihydroceramide synthase (sphinganine
N-acyl transferase) [12] next acylates sphinganine to
form dihydroceramide. Recently, a mammalian gene
family of (dihydro)ceramide synthases [the ceramide
synthase (CerS) genes, formerly known as longevity
assurance (Lass) genes] has been described. The

proteins encoded by these genes are integral mem-
brane proteins that span the membrane lipid bilayer
multiple times. Each member of the family has a
unique tissue distribution and uses a unique subset of
acyl CoAs for dihydroceramide synthesis [12]. Ce-
ramide is subsequently formed by dihydroceramide
desaturase/reductase, which inserts a trans 4– 5 double
bond. All of these reactions occur at the cytosolic
leaflet of the ER [13 –15].
Ceramide is the key hub in the SL biosynthetic
pathway, and is the precursor of at least five different
products (Fig. 2):
a) Ceramide is glycosylated to galactosylceramide
(GalCer) at the lumenal leaflet of the ER by the
transfer of galactose from a UDP-galactose donor
[16].
b) Ceramide can be phosphorylated by ceramide
kinase to produce ceramide-1-phosphate. The subcel-
lular localization of this enzyme is unresolved, and has
been suggested to be the PM [17, 18], Golgi apparatus
[19], and the cytoplasm [18].
c) Ceramide can be deacylated to sphingosine and
free fatty acid by ceramidases, of which various forms
are known, acting at either neutral, alkaline, or acidic
pH. Neutral ceramidase is located at the PM [20, 21],
acid ceramidase is lysosomal [22], and the alkaline
ceramidase is located at the ER/Golgi complex [23 –
25]. Ceramidase activity has also been reported in
mitochondria [21].
d) The synthesis of SM from ceramide occurs at the
lumenal leaflet of the Golgi apparatus [26, 27] by
transfer of phosphorylcholine from phosphatidylcho-
line (PC) to ceramide, with diacylglycerol formed as a
by-product [28]. Recently two SM synthases (SMs)
have been identified; SMS1 is located at the Golgi
apparatus, and SMS2 at the PM [29, 30]. Since
ceramide is synthesized in the ER, a mechanism
must exist for transferring ceramide to the Golgi
apparatus for its metabolism to SM. It was earlier
assumed that vesicular transport would be responsible
for ceramide transfer; however, a ceramide transport
protein, CERT, which transfers ceramides of relative-
ly short acyl chain length (C16 – 20) from the ER
specifically for SM synthesis in the Golgi apparatus
[31], has recently been discovered and is absolutely
required for SM synthesis [32] by SMS1.
e) The final fate of ceramide is its glycosylation to
glucosylceramide (GlcCer), which unlike glycosyla-
tion to GalCer, occurs in the Golgi apparatus. More-
over, and in contrast to the topology of SM synthesis,
GlcCer is synthesized on the cytosolic leaflet of the
Golgi apparatus [33, 34]. Furthermore, and again in
contrast to SM synthesis, the ceramide used for
GlcCer synthesis is delivered to the Golgi apparatus
by vesicular transport, which is independent of the
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activity of CERT [32, 35]. Thus, even though the same
ceramide is substrate for both GlcCer synthase and
SM synthase, the mechanism of transport of ceramide,
and the topology of synthesis, differ.
Little is known about the modes of regulation that
channel ceramide into these distinct pathways. Pre-
sumably, the compartmentalized nature of ceramide
metabolism in the ER and Golgi apparatus allows
additional levels of regulation of, for example, GlcCer
and SM synthesis (by regulating vesicular transport
and CERT, respectively), but the details of this
regulation are not known. With the exception of
ceramide-1-phosphate and SM, which are metabolic
end-products, the metabolites produced in the path-
ways outlined above are all metabolized further. Thus,
GalCer and GlcCer are the precursors of the hundreds

of known GSLs, which are formed by the sequential
transfer of sugars by galactosyltransferases, sialyl-
transferases, GalNAc transferases and GalCer sulfo-
tranferase (Fig. 2), all of which are located in the Golgi
apparatus [5]. After their synthesis, GSLs move by
vesicular transport to the PM, where they reside. The
topology and intracellular modes of transport of SLs
have been recently reviewed [7].
The sphingosine produced from ceramide by ceram-
idases can be phosphorylated to S1P by sphingosine
kinase (SK). Two mammalian isoforms of SK are
known, SK1 which is predominantly cytosolic [36],
and SK2 which is cytosolic and also associated with the
nucleus [37]. SK1 can be secreted [38, 39], although
the physiological relevance of secreted SK1 is not
clear. Since S1P is an important first and second

Figure 2. The metabolism of SLs
in the ER and Golgi apparatus.
SLs synthesized in the ER are in
green, and those synthesized in
the Golgi apparatus are in red.
Enzymes are shown in italics,
with those that reside in the ER
in black and those that reside in
the Golgi apparatus in blue. Gal-
NacT, N-acetylgalactosamine
transferase; GalT, galactosyl-
transferase; SAT, sialyl transfer-
ase.
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messenger, regulation of its levels is critical, and this is
also achieved by the activity of a microsomal S1P
phosphatase [40]. Alternatively, S1P can be degraded
by S1P lyase [41, 42], which yields two non-SL
products, hexadecanal and ethanolamine phosphate.
The production of these two compounds is the only
known exit route from the pathways of SL metabo-
lism, since lysosomal degradation of SLs produces SL
metabolites that are recycled back into the SL path-
way [43], some of which can be subsequently reutil-
ized in the salvage pathway of SL synthesis [44]. Thus,
sphingosine formed from ceramide can be recycled
back into the pathway of SL synthesis [45] via the
action of ceramide synthase, which can use either
sphingosine or sphinganine [46].
Study of the lysosomal hydrolysis of SLs and GSLs has
been motivated by their involvement in a number of
human inherited diseases, the lysosomal storage
diseases. Indeed, a disease is associated with essen-
tially every enzyme in the pathway of GSL degrada-
tion, and for acid SMase [47]. It should be emphasized
that the pathways leading from lysosomal accumula-
tion of SLs to disease have not been well established,
although it appears highly likely that signaling func-
tions of SLs will be implicated in the etiology of these
diseases [48]. Non-lysosomal hydrolysis of SLs also
occurs, by hydrolases that work at neutral or alkaline
pH. For example, a neutral SMase is located at the PM
[49], an alkaline SMase is found in the Golgi apparatus
and in endosomes [50, 51], and a neutral b-glucosidase
has been recently reported [52] whose deficiency leads
to impaired male fertility [53].
In summary, the biochemical pathways of SL and GSL
metabolism have been fully described, and most of the
enzymes have been identified, as have, for the most
part, their intracellular locations. The next challenge
in this area is to understand how these pathways are
regulated and integrated in metabolism [54, 55] and in
signaling: the age of combinatorial sphingolipidomics
is truly upon us.

Role of SLs in cell physiology

The past couple of decades have proved beyond
reasonable doubt that SLs, and for that matter, many
other membrane lipids, are not merely structural
components of biological membranes, but also play
other vital roles, particularly in signaling. Moreover, a
large variety of specific SLs have been shown to
function in intracellular signaling pathways, and some
conflict has arisen as researchers attempt to grapple
with the new roles applied to simpler SLs, such as
ceramide and S1P, compared to the more classical
roles ascribed to complex GSLs, such as the ganglio-

sides. The field has swung from opinions stating that
only the GSLs are important, to those that state that
only the simpler SLs are important. Neither of these
extreme views is correct, and current opinion would
support the notion that both simple SLs and more
complex GSLs play roles in signaling, sometimes in
the same cell type even under similar conditions.
Determining the relationship between roles of specific
SLs and GSLs in signaling pathways is one of the
current challenges in the field of SL and GSL biology.
Of the simple SLs, ceramide, ceramide-1-phosphate,
sphingosine, and S1P have been shown to be involved
in a number of cellular events such as proliferation,
differentiation, motility, growth, senescence, and
apoptosis, and ceramide and S1P have been proposed
to have opposite roles in these processes (Fig. 3), with
entrance into one or other of these pathways being
determined by the balance between ceramide and S1P,
which are metabolically interconnected (Fig. 2).
Complex GSLs are involved in cell physiology by
acting as antigens, as mediators of cell adhesion,
binding agents for microbial toxins and growth factors,
and as modulators of signal transduction.

Functions of ceramide as an apoptotic mediator
Much work on SLs in signal transduction pathways has
focused on the role of ceramide in apoptosis (Fig. 3). A
large number of extracellular signals or stimuli elevate
intracellular ceramide levels and induce apoptosis,
including heat shock, ionizing radiation, oxidative
stress, progesterone, vitamin D3, daunorubicin, tumor
necrosis factor (TNF)-a, interleukin (IL)-1a, IL-1b,
interferon-g, Fas ligand, fenretinide, oxidized low-
density lipoprotein (LDL) and nitric oxide [56, 57].
When the ceramide pathway was first discovered,
there was considerable debate about the mechanism
by which ceramide is formed, but it is now agreed that
intracellular ceramide levels can be elevated as a
result of either de novo synthesis [58, 59], or of SM
hydrolysis by acid [60] or neutral [61] SMase. How-
ever, there is no evidence that ceramide formed by
GSL degradation acts in signaling pathways.
Two major possibilities have been proposed concern-
ing the mechanism by which ceramide induces apop-
tosis [62]. In the first, ceramide would act as a typical
second messenger, inasmuch as upon its production in
the PM, it would bind to proteins whose activity it
regulates. Among the proteins shown to be regulated
by ceramide are a ceramide-activated protein phos-
phatase [63, 64], protein kinase Cz [65, 66], kinase
suppressor of Ras [67, 68], phospholipase A2 [69, 70],
cathepsin D [71, 72], Jun-N-terminal kinases (JNKs)
[68, 73], c-Raf-1 [74, 75], the small G-proteins Ras [76]
and Rac [77, 78], and Src-like tyrosine kinases [79, 80].
In the second possibility, the unique biophysical
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properties of ceramide would be responsible for its
ability to act as a signaling lipid. Ceramide can self-
associate in the plane of the membrane lipid bilayer
[81], and by so doing provide the driving force that
results in the fusion of GSL- and cholesterol-contain-
ing rafts into large signaling macrodomains (signaling
platforms) [82]. For example, many of the above
stimuli activate A-SMase at the PM resulting in
formation of ceramide-enriched membrane platforms
that trap and cluster signaling proteins, thus allowing
for signal initiation and amplification via concentra-
tion and oligomerization of proteins associated with
apoptotic signaling mechanisms [83]. Such clustering
has been shown for Fas receptors, which become
concentrated in these macrodomains, for downstream
effecter proteins such as Fas-associated death domain-
containing protein (FADD), and for caspase 8 [83].
Another mechanism by which ceramide might induce
apoptosis is via its direct interaction with, and
modulation of, the properties of mitochondria. Ce-
ramide can form membrane channels in mitochondria

which are large enough to transport cytochrome c and
small proteins [84, 85], leading to activation of the
caspase-dependent apoptotic pathway. Whether ce-
ramide is transported to mitochondria from its site of
synthesis in the ER is currently unknown [9], but
recent work has suggested that some lipids can be
transported between ER and mitochondria [86] at
zones of apposition and contact between the two
membranes. Interestingly, there is some evidence
suggesting that ganglioside GD3 can be trafficked to
mitochondria, and that its arrival at the mitochondria
can also induce apoptosis [87].

Functions of S1P and ceramide-1-phosphate
S1P is the most intriguing SL inasmuch as it acts as
both a first and second messenger [88] (Fig. 3). As a
first messenger (or paracrine agent), S1P regulates
processes such as cytoskeletal rearrangement [89], cell
migration [90, 91], angiogenesis [92], vascular matu-
ration [93], embryonic development of the heart [88],
and immunity and lymphocyte trafficking [94]. As an

Figure 3. A simplified view of the role of ceramide and S1P in cell death and survival. A number of different signaling mechanisms
regulated by ceramide (Cer) and S1P are depicted. Whether a cell dies or survives depends, among other things, on the balance between
ceramide-activated and S1P-activated signaling pathways. For simplicity, the schemes do not show all the signaling and metabolic pathways
involving ceramide and S1P. Blue arrows are metabolic interconversions, orange arrows are transport steps, and black dotted arrows are
signaling interactions. AC, adenylate cyclase; Ca, calcium; CAPP, ceramide-activated protein phosphatase; CerS, ceramide synthase;
CytC, cytochrome c; G, G-proteins; ERK, extracellular signal-regulated kinase; FADD, Fas-associated death domain-containing protein;
JNK, Jun-N-terminal kinase; PI3K, phosphatidylinositol 3-kinase; PLC, phospholipase C; PKC, protein kinase C; S1PR, S1P receptors; Sa,
sphinganine; So, sphingosine; SMase, sphingomyelinase; TNF, tumor necrosis factor.
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intracellular second messenger, S1P mediates calcium
homeostasis [88], cell growth [88], tumorogenesis [95]
and suppression of apoptosis [88]. S1P can trigger
signal transduction pathways by acting on the same
cell from which it is secreted, by acting in an autocrine
manner [96].
Inducers of cell proliferation and differentiation,
including growth factors, GPCR agonists, cytokines,
phorbol esters, vitamin D3, and antigens, increase
intracellular S1P levels by activation of SK [96, 97].
The downstream effectors of S1P in intracellular
pathways include IP3-independent calcium mobiliza-
tion and DNA synthesis [88, 98].
S1P is secreted from a variety of cells, such as platelets,
monocytes, and mast cells, perhaps via ATP-binding
cassette (ABC) transporters [99], and subsequently
binds a family of G-protein-coupled receptors, the S1P
receptors (S1PRs) [88, 100, 101] (formerly known as
Edg receptors). Five S1PRs have been identified and
are expressed in a wide variety of tissues [96, 102].
Some downstream effectors have been identified,
such as adenylate cyclase, phospholipase C, extra-ACHTUNGTRENNUNGcellular-signal-regulated kinase (ERK), JNK, phos-
phatidylinositol 3-kinase (PI3K), Rac, and Rho [88,
102].
S1P appears to have opposite effects to ceramide in
many of the pathways in which it is involved,
particularly in those relating to cell growth and
survival, with ceramide implicated in growth-inhib-
itory and pro-apoptotic effects, and S1P implicated in
cell growth and inhibition of ceramide-mediated
apoptosis. Moreover, sphingosine appears to act in a
similar fashion to ceramide, whereas ceramide-1-
phosphate shares similar functions with S1P [103].
This suggests that the balance between survival and
death may depend on a delicate equilibrium (Fig. 3)
between intracellular levels of each of these inter-
convertible SLs, the equilibrium itself being control-
led by the enzymes that either produce or degrade
specific SLs. SK1 may be a vital player in this pathway,
as it increases levels of S1P, a pro-survival molecule,
and reduces levels of ceramide and sphingosine, which
are pro-apoptotic. Thus, SK1-over-expressing cells not
only have higher growth rates but are also protected
from apoptosis induced by serum withdrawal, TNF-a,
or exogenously added ceramide [104, 105]. Ceramide-
1-phosphate is also anti-apoptotic, via its inhibitory
action on protein phosphatase 1 [103], which has been
attributed to ceramide-induced apoptosis [106]. Thus
both ceramide kinase and SK1 are emerging as key
determinants of the balance between cell death and
survival.

Functions of GSLs
Early studies on complex GSLs were mainly devoted
to attempting to understand their roles in the nervous
system where GSLs, particularly gangliosides, are
expressed at different levels in different regions of the
brain during development, suggesting functional roles
for gangliosides in brain development [107]. For
example, during embryogenesis, and during the post-
natal period, the hemato-series gangliosides, GM3,
GD3, and 9-O-acetyl GD3, are highly expressed in the
brain. In adult tissue, these gangliosides are found at
much lower levels, so that the ganglioside composition
of adult brain differs significantly from that of
embryonic brain, with adult brain expressing a much
wider range of complex gangliosides, GM1, GD1a,
GD1b, and GT1b being predominant [108]. However,
it was not until the cloning of the glycosyltransferases
responsible for GSL synthesis, and subsequent avail-
ability of genetically engineered mice, that specific
functions for specific gangliosides, or at least classes of
gangliosides, began to emerge.
The essential nature of GSLs for sustaining life was first
shown in knock-out mice lacking GlcCer synthase, the
first enzyme in the pathway of GSL biosynthesis (Fig.
2); these mice showed embryonic lethality [109], but
whether this was caused by ceramide accumulation, or
due to lack of complex GSLs, is unclear. Mice lacking
the GM2/GD2 synthase gene contain high levels of
GM3 and GD3, but no complex gangliosides [110].
Surprisingly, these mice are viable and the nervous
system is only mildly affected, although male fertility is
severely disrupted due to aspermatogenesis [111]. A
number of other knock-out mice have been produced in
the ganglioside biosynthetic pathway, and the overall
consensus is that there is considerable functional
redundancy between different gangliosides, and that
there may be considerable overlap in the roles of
individual gangliosides.
Gangliosides can act as toxin receptors. In order for
toxins to reach their intracellular targets, they bind to
cell surface receptors, which are then internalized
together with the toxins. Two toxins, namely cholera
toxin from Vibrio cholera, and Escherichia coli heat-
labile enterotoxin bind to ganglioside GM1 [112], and
Shiga toxin from Shigella dysenteriae binds to the
neutral GSL, globotriaosylceramide (Gb3) [113]. The
B subunit of the toxins binds to their respective GSL
receptors, and is internalized together with the A
subunit, which carries the catalytic domain. Lipid rafts
have been implicated in the internalization mecha-
nism, and although there is some disagreement about
the precise internalization itinerary undertaken by the
toxins, they are eventually targeted to the Golgi
apparatus and then to the ER, where the A subunit is
released and initiates toxicity [114].
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GSLs at the cell surface are also involved in recog-
nition events that are beneficial, rather than the toxic
effects caused by toxin binding. Thus, a large body of
data has shown roles for GSLs as antigens [115], as
mediators of cell adhesion, and as modulators of signal
transduction [116]. The list of receptor functions of
GSLs is extensive. For example, GSLs mediate E-
selectin-dependent rolling and tethering [117], a-
GalCer acts as a ligand recognized by a special group
of immune T cells, known as invariant NKT cells
(discussed in more detail below), and 9-O-acetyl GD3,
expressed in regions of cell migration and neurite
outgrowth in the developing and adult nervous
system, plays a role in neuronal motility [118].
Together, these varied examples illustrate that the
complex glycan structures of GSLs are involved in
vital recognition events at the cell surface.

SLs and GSLs in disease: translational research

Translational research is typically described as re-
search that allows scientific discoveries to be trans-
lated into practical applications. Within the past
decade, real progress has been made in our under-
standing of how SLs and GSLs contribute to disease
processes, which is leading to novel therapeutic
approaches based on interventions in SL homeostasis.
We will now summarize some of the areas in which
particularly important advances have been made.

SLs and cancer
Recent advances in appreciating the complexity of cell
death pathways, and specifically of apoptosis, have led
to the realization that manipulating apoptosis could
be a novel way of approaching cancer therapy. Since
ceramide and S1P are both involved in regulating cell
death and survival, they join the list of candidate
molecules that might be amenable to manipulation in
order to modify the growth rate of cancer cells [119].
A number of studies have shown that ceramide can
have anti-carcinogenic activity. For example, direct
administration of ceramide or ceramide analogs has
been shown to have anti-tumor activity and to induce
apoptosis in cancer cells and cancer cell lines [120 –
124], de novo ceramide synthesis is altered in human
head and neck carcinomas and is implicated in
caspase-dependent cancer cell death pathways [106,
125], and ceramide generation via SMase can alter
cytotoxicity resistance [126, 127]. In addition, anti-
carcinogenic effects have also been observed upon
increasing ceramide levels by slowing its conversion to
GlcCer via GlcCer synthase [128, 129], to SM via SM
synthase [130], or to sphingosine via ceramidases
[131], and the effectiveness of a number of chemo-

therapeutic agents appears to be related to their
ability to activate ceramide-mediated apoptotic path-
ways [132, 133]. SK1 has also become a target for
therapeutic manipulation in cancer. Thus, over-ex-
pression of SK1 protects cells from apoptosis [104],
increases tumorogenicity [105], and SK1 activity is
decreased during anti-cancer treatment [134]. More-
over, reduction of S1P levels induced apoptosis in
several human tumor-derived cell lines [135].
About 50% of cancer patients receive radiation
therapy, with radiation targeting, directly or indirectly
[136], the acid SMase apoptotic system of micro-
vascular endothelial cells in the lungs, intestines, and
brain, as well as in oocytes, to initiate the pathogenesis
of tissue damage [137]. Radiation-induced ceramide
production results in the formation of ceramide-rich
platforms in the PM, which induces the caspase-
independent pathway of apoptosis [138].
Some studies have also suggested a relationship
between ceramide and multidrug resistance (MDR).
For example, removal of ceramide by its glycosylation
to GlcCer has been identified as a novel MDR
mechanism [139], and GlcCer synthase has emerged
as a potential target to increase apoptosis and
decrease drug resistance of tumor cells [140, 141].
Some MDR cell types exhibit abnormal SL composi-
tion or metabolism [142], and inhibition of GlcCer
synthase causes downregulation of P-glycoprotein and
resensitizes MDR breast cancer cells to anti-cancer
drugs [128]. However, a recent study has suggested
that inhibition of GlcCer synthase does not reverse
MDR [143].
Finally, GSLs are also involved in cancer pathogene-
sis. For example, malignant transformation is associ-
ated with abnormal glycosylation, resulting in the
synthesis and expression of altered carbohydrate
determinants, including those on GSLs, and the
increase of these determinants in malignant cells is
an inevitable consequence of the malignant trans-
formation of cells [144]. Indeed, therapies based on
the use of anti-ganglioside antibodies have been
suggested, particularly in neuroblastoma [145].
Gangliosides are also often found in tumor cells at
high levels and can act as immunosuppressants. Tumor
gangliosides are shed actively by tumor cells [146] and
can inhibit the anti-tumor immune response implicat-
ed in tumor rejection. Thus mice model tumor cells
with a pharmacologically decreased concentration of
gangliosides produce fewer tumors, suggesting that
pharmacologic depletion of gangliosides could be
explored as a therapeutic approach to cancer [147].

Simple GSLs and immunity
a-GalCer, a glycolipid derived from marine sponge,
has been identified as a ligand recognized by a special
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subset of immune T cells, invariant NKT (iNKT) cells
[148]. Activation of iNKT cells by a-GalCer causes
rapid secretion of IL-4 and interferon-g, downregula-
tion of cell surface T cell receptors, and as a result,
transactivation of various cells of the innate and
adaptive immune system [149]. Based on this, a
therapeutic role for a-GalCer has been proposed in
various autoimmune diseases [150], such as type 1
diabetes [151], multiple sclerosis [152], systemic lupus
erythematosus [153] and rheumatoid arthritis [154].
However, there are several concerns about using a-
GalCer therapy for humans since some preclinical
studies demonstrated that a-GalCer aggravated the
diseases, and several adverse side-effects have been
noted in mice, including liver toxicity and exacerba-
tion of atherosclerosis [150].

SLs and cystic fibrosis
Cystic fibrosis (CF) is an autosomal recessive disorder
caused by mutations in the cystic fibrosis transmem-
brane conductance regulator (CFTR) gene, a member
of the ABC transporter family [155]. Defects in CFTR
result in CF [156], which is characterized by chronic
and recurrent bacterial infections and inflammation,
with major prevalence in pulmonary and intestinal
epithelial tissues. SLs may be involved in CF patho-
genesis by a number of mechanisms. First, ceramide
produced from SM via SMase at the basolateral
membrane augments CF pathogenesis by inhibiting
cAMP-mediated anion transport by CFTR [157].
Another study demonstrated that fenretinide, which
upregulates de novo ceramide synthesis, reduces IL-8-
mediated inflammation of CF cells [158]. CFTR
enhances uptake of S1P [159] and structurally related
lipids, and this uptake modulates the response of cells
to these lipids. This latter study might have important
implications for the development of angiogenesis in
response to chronic infection and inflammation in CF.
As S1P mediates angiogenesis through S1PRs, and in
CF no functional CFTR exists, the reduced uptake of
S1P may allow S1P to be more available to stimulate
excessive angiogenesis in response to inflammation.

SLs and emphysema and pulmonary cell apoptosis
Emphysema is a chronic lung disease characterized by
destruction of pulmonary alveoli and capillaries, and is
commonly associated with chronic bronchitis, togeth-
er known as chronic obstructive pulmonary disease
(COPD) [160]. Since COPD is directly related to
cigarette smoking, it is the focus of much attention.
Alveolar cell apoptosis is a key factor in the patho-
genesis of emphysema, and recently, upregulation of
ceramide levels has been shown to cause pulmonary
cell apoptosis and onset of emphysema [161 – 163].
Moreover, inhibition of de novo ceramide synthesis

prevented alveolar cell apoptosis. It was also observed
that stimulation of S1P signaling prevents lung
apoptosis, implying involvement of the balance be-
tween levels of ceramide and S1P in alveolar cell
survival [163].

SLs in diabetes
A number of studies have demonstrated that ceramide
inhibits insulin-stimulated glucose uptake, GLUT4
translocation, and glycogen synthesis [164], and there-
by contributes to the development of insulin resist-
ance resulting from lipid over-supply [165 –167]. The
inhibitory effect of ceramide on insulin signaling
mainly results from its ability to block the phosphor-
ylation and activation of Akt/protein kinase B, a
serine/threonine kinase that is a central mediator of
insulin action [168, 169]. A correlation also exists
between an increase in insulin sensitivity and lowering
of ceramide levels [164]. Increased levels of simple
GSLs such as GlcCer [170], and increased synthesis of
ganglioside GM3, have also been implicated in
diabetes pathogenesis [171, 172].

SLs and pathogen invasion
Some pathogens activate acid SMase, and as a
consequence, ceramide-enriched membrane plat-
forms are formed, which are known to mediate
internalization of bacteria, viruses and parasites
[173]. Other pathogens exploit the SLs of host cells
as membrane receptors. For example, sialic acid on
gangliosides is involved in influenza virus internal-
ization [174], and different components of the HIV
fusion machinery interact with cell surface GSLs
[175]. As a consequence, binding of some pathogens
and toxins to human cells can be prevented by
depleting host cells of their surface GSLs or by
coating the binding sites of pathogens with GSL-like
substances that compete with the pathogen for bind-
ing [176].

SLs and sepsis
Sepsis is a major cause of death in intensive care units
worldwide [177], and the septic immune response is
associated with changes in SL metabolism. Ceramide
production by SM hydrolysis is involved in the onset of
sepsis [178, 179], with a secreted form of SMase
playing a critical role in the development of apoptosis
and organ failure in sepsis. Sphingosine is involved in
endotoxin-induced mitochondrial dysfunction, as in-
hibition of sphingosine production by the ceramidase
inhibitor, N-oleoylethanolamine, prevents the latter
[180].
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SLs in neurological diseases
Much of the early work on SLs and GSLs was

stimulated by their accumulation in a number of
inherited metabolic diseases caused by defects in the
lysosomal hydrolases responsible for their degrada-
tion [181], many of which have severe neurological
components. However, more recently, SLs and GSLs
have also been implicated in many other neurological
diseases, such as dementia [182], Alzheimer�s [183]
and Parkinson�s diseases [184]. The involvement of
SLs and GSLs in these neurological diseases is
perhaps not surprising, since GSLs are found at high
levels in the brain.

Perspectives

In this brief review, we have attempted to give an
overview of SL and GSL biology. With the explosion
of interest in these molecules over the past two or
three decades, we have only been able to touch upon a
few examples in each case, and by so doing, have had
to limit details in many cases. The main impressions
that we would like to leave with the reader are, first,
that SLs and GSLs are important bioactive lipids and,
second, that the involvement of SLs and GSLs in
multiple intracellular pathways, and in multiple dis-
ease states, renders an �integrated� and �unified� view
of their functions almost impossible, at least at
present. This is best illustrated by considering the
diseases in which SLs and GSLs are involved. Are they
the cause of the diseases? Clearly the answer to this
question is �yes� when discussing lysosomal storage
diseases due to defective SL degradation, but �no� in
most other diseases, where altered SL and GSL
metabolism is a result of alterations in other pathways.
However, since SLs and GSLs are critically involved
in the pathogenesis of a number of these diseases,
intervention in SL and GSL metabolic pathways, and
application of exogenous SLs and GSLs, may yet
provide novel modes of therapeutic intervention.
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