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Abstract. Colorectal carcinoma (CRC) is a complicated
and often fatal genetic disease. Fortunately, owing to rapid
expansion of knowledge and technology development in
oncology, much progress has been made regarding the di-
agnosis, understanding of the molecular genetics and ma-
lignant progression, as well as the novel regimens of CRC.
In this review, we summarize the staging system, the most

critical genetic and epigenetic alterations, the pleiotropic
effects of MMP-7, the controversial roles of Hedgehog
signaling, the intriguing involvement of thymosin -4, and
the possible contribution of the putative colon (cancer)
stem cells in CRC tumorigenesis. Current treatments as
well as several potentially applicable therapeutic strate-
gies for CRC are also discussed.
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Introduction

Colorectal carcinoma (CRC) is one of the leading causes
of cancer death in much of the developed world despite
the fact that colonic malignancies can be effectively
managed if detected early and that chemoprevention has
shown some success in reducing the disease [1]. Crucial
for treatment guidance and prognosis prediction, the
CRC staging system is continuously being modified to
become a better tool [2]. Genetically, CRC tumorigene-
sis appears to be the result of a progressive transforma-
tion of colorectal epithelial cells due primarily to the ac-
cumulation of mutations in a number of oncogenes as
well as tumor suppressor genes [3]. Matrix metallopro-
teinase (MMPs) play an important role in the growth
and invasion of CRC, and the levels of certain MMPs
can be used to estimate the metastatic capacity and re-
currence of this disease as well as prognosis of patients
[4]. However, for effective CRC therapy using MMP in-
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hibitors, timely and highly selective administration may
be required, because MMPs also play a negative role in
the ultimate malignancy [5, 6]. Aberrant expression
of the genes encoding Hedgehog (Hh) proteins [7, 8]
and thymosin -4 (TB4) [9] have recently been found to
be associated with CRC progression. The former might
exert their effect by altering the growth and differentia-
tion of colonic enterocytes [7, 8], whereas the latter may
increase the motility and invasion of tumor cells [9, 10].
Extensive investigations are currently being conducted
to elucidate the precise mechanisms of these proteins.
The perpetual stem cells residing in the crypt base of the
colon have been hypothesized to be the ones responsible
for CRC development because the balance of asymmet-
rical cell division and cell proliferation in them could
be disrupted by various genetic and/or epigenetic alter-
ations [11]. If colon cancer stem cells do exist and the
differences between these and other ‘regular’ cancer
cells can be identified, more effective chemotherapy
and/or targeted therapy for CRC may someday be real-
ized.
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Staging

The early Dukes pathologic staging system introduced
more than 50 years ago classified colorectal malignancies
into three groups: Lesions contiguous with the bowel wall
but not penetrating the muscularis was designated Dukes’
A. Those penetrating the muscularis into the surrounding
fat or adventitia were designated Dukes’ B, and any with
positive lymph node involvement were designated
Dukes’ C [12]. A number of modifications in this system
have subsequently been introduced, including the addi-
tion of a so-called Dukes’ stage D for patients with
metastatic disease. Recently, a more specific TNM (Tu-
mor-Nodal-Metastasis) staging system developed by the
American Joint Commission on Cancer (AJCC) was
widely used and recommended by the WHO. Even more
recently, the revised AJCC sixth edition cancer staging
system further stratified colon cancer stages I (T3 or T4
NO MO) and III (Any T N1 MO) defined by the AJCC fifth
edition system to stages I1a (T3 NO MO0), IIb (T4 NO MO0),
IITa (T1 or T2 N1 MO) and IIIb (T3 or T4 N1 MO). This
system for colon cancer stratifies survival more distinctly
than the fifth edition system by providing more sub-
stages. Interestingly, the association of stage Illa colon
cancer with a statistically significantly better survival
than stage IIb in the new system may reflect current clin-
ical practice, in which stage III patients receive adjuvant
chemotherapy, but stage II patients generally do not [13].

Oncogenes and tumor suppressor genes

k-ras is the best-studied and most common oncogene in-
volved in colorectal carcinogenesis [14, 15]. Even though
only 9% of the small adenomas exhibit k-ras mutations,
they are detected in 58% of adenomas larger than 1 cm and
47-50% of colorectal cancers [16]. Mutated k-ras appears
to be capable of stimulating Wnt signaling in colon cancer
through suppression of glycogen synthetase kinase-3p
(GSK-3p) [17]. By contrast, ras inhibition leads to the
transcriptional activation of p53 and downregulation of
Mdm?2, thus increasing the function of this checkpoint pro-
tein in colon cancer cells [18], which might activate p53-
dependent apoptosis and antagonize tumor growth [19].
Recently, hypermethylation of the promoter of a novel ras-
effector gene, RASSF2A, has been identified as an early
event in colon carcinogenesis which correlates inversely
with k-ras mutations [20]. Owing to the high frequency of
k-ras mutation in CRC, a polymerase chain reaction-re-
striction fragment length polymorphism (PCR-RFLP)
analysis for this gene has been developed as a powerful
tool for detecting isolated tumor cells in patients’ liver,
lymph node and bone marrow specimens [21]. The TGF-
BRII (TGF-p receptor type 1) is the other gene whose in-
activating mutations are also frequently found in CRC
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with microsatellite instability [22]. On the other hand, mu-
tational activation of this gene has been shown to occur
early and in a subset of ulcerative colitis-associated neo-
plasms and commonly in sporadic CRC [23]. ¢-Src is a
non-receptor protein tyrosine kinase whose activation is
reported as an early event in the development of preneo-
plastic colonic adenomas and also detected in >70% of
colon carcinomas [24]. By activating Akt-mediated sur-
vival pathways that decrease the sensitivity of detached
cells to anoikis, overexpression of c-src plays an important
role in invasive behavior as well as metastasis of experi-
mental colon epithelial cells [25]. Concomitantly, attenua-
tion of ¢-Src signaling has been reported to sensitize hu-
man metastatic colon cancer cells to apoptosis induced by
anticancer drugs and also to the activation of the Fas death
receptor [26]. The ‘gate-keeping’ event for initiation of
colorectal neoplasia is the inactivation of both copies of
the adenomatous polyposis coli (APC) gene [27], which
may lead to the disruption of normal adherens junction by
interfering with the association between catenins and cell
adhesion molecule E-cadherin, thus disturbing normal tis-
sue architecture [28, 29]. Defects in directed cell migration
may also be caused by APC loss [30] due to aberrant cy-
toskeletal regulation that affects both microtubules [31,
32] and F-actin [33, 34]. Moreover, dysfunction of this tu-
mor suppressor protein may result in an increased inci-
dence of mitotic errors [35]. More important, by function-
ing as a scaffold to promote complex formation between
GSK-38, B-catenin, axin, and various kinases and phos-
phatases, APC plays a crucial role in Wnt signaling [36].
Therefore, it is not surprising that mutations or loss of
APC were found in a majority of FAP (familial adenoma-
tous polyposis) patients [37] as well as in > 80% of spo-
radic CRCs and adenomas [38]. Approximately 15% of
sporadic CRCs are caused by somatic inactivation of ‘mis-
match repair’ (MMR) genes, which leads to a ‘microsatel-
lite instability’ (MIN) phenotype [39]. Interestingly, a
much higher incidence (~85%) of MIN has been found in
CRC patients with hereditary nonpolyposis colorectal can-
cer (HNPCC) tumors [40, 41]. The predominant mecha-
nism responsible for the inactivation of MMR in these tu-
mors is epigenetic silencing through promoter methylation
[42] with the additional involvement of somatic mutations
[39]. Intriguingly, MIN-positive CRC patients seemed to
have a significantly better prognosis compared with those
with an intact MMR system [43], suggesting that this sys-
tem has multiple roles in CRC progression. In addition to
genetic changes, epigenetic silencing resulting from pro-
moter methylation and/or alterations in histone modifica-
tion (acetylation, methylation, phosphorylation, ubiquiti-
nation and SUMOylation) is now recognized as a ‘third
pathway’ in Knudson’s model of tumor-suppressor gene
inactivation in cancer [44]. In this regard, the biologic
relevance of a CpG island methylator phenotype (CIMP)
(i.e. hyper methylation of several genes simultaneously) in
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colon cancer has recently been established even though its
expression was profoundly affected by the presence or ab-
sence of MIN [45]. In addition, DNA methylation was pos-
tulated to be closely associated with histone modification
[46] because protein complexes containing histone
deacetylases and histone methylases have recently been
shown to be recruited by several methyl DNA-binding pro-
teins localized to the methylated promoters [47—49]. Ac-
cordingly, ‘epigenetic therapy’ using demethylating agents
and/or inhibitors of histone deacetylases shows promise as
an approach to cancer prevention and therapy [50].

MMPs

Death in the majority of CRC patients is caused by tumor
metastasis [51], a complicated multistage process requir-
ing degradation of extracellular matrix (ECM) compo-
nents by proteolytic enzymes [52]. The principal enzymes
responsible for ECM turnover are matrix metallopro-
teinases (MMPs), a large group of secreted proteinases
that require divalent cations for their catalytic activities
[53]. Regarding the involvement of MMPs in CRC tu-
morigenesis, elevated levels of MMP-1, -2, -3, -7, -9, and
-13 were found in tumors compared with healthy mucosa
[4]. Moreover, upregulated expression of MMP-1 and -7
has also been found in the invasive fronts of CRC [54,
55]. In addition to degrading ECM, MMPs could promote
cancer progression by mechanisms such as liberating
growth factors and/or cytokines, suppressing the immune
response and modulating angiogenesis [53]. For example,
MMP-7, one of the most important MMPs in colorectal
tumorigenesis, has been shown to induce angiogenesis
directly by accelerating the proliferation of endothelial
cells [56]. Additionally, MMP-7 may enhance the meta-
static potential of CRC by processing a cell surface pro-
tein(s) and thereby inducing loose and then tight aggre-
gation of tumor cells [57]. Proteolysis of the insulin-like
growth factor binding protein 3 (IGFBP-3) by this pro-
tease has been shown to play a crucial role in promoting
the survival of colon cancer cells via regulating 1GF-I
bioavailability [S8]. MMP-7 may play a role in EGF re-
ceptor activation in colon cancer cells [59]. Finally,
MMP-7 may confer resistance to FasL-induced apoptosis
to colon cancer cells by cleaving Fas, the cognate death
receptor for this ligand [60]. Since immune systems rely
heavily on the FasL/Fas signaling to fight cancers [61],
downregulation of this death receptor could help CRC to
escape immunosurveillance.

Hedgehog proteins

Hedgehog (Hh), first identified in a screen for genes im-
plicated in the embryonic development of Drosophila
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melanogaster [62], encodes a secreted protein important
in regulating proliferation and establishing cell fate in
flies [63]. Three mammalian homologues, Sonic, Indian
and Desert hedgehogs (Shh, Thh, Dhh), with functions
similar to their fly counterpart have subsequently been
identified [63, 64]. In human, the Hh signaling pathway
is crucial for normal development and patterning of vari-
ous organs, including the gut [65]. These proteins, are
also involved in adult gastric gland development and gas-
tric epithelial differentiation [66]. Recently, Ihh signaling
has been reported to restrict the expression of two Wnt
targets, Engrailed-1 and BMP-4, to the colonic precursor
cell compartment in vivo and repress the Wnt signaling in
colon cancer cells in vitro. Moreover, mutual antagonism
between the Ihh and the S-catenin/Tcf pathways demon-
strated in vitro might actually occur in vivo [8]. Hence,
the loss of 7hh expression could be part of the reason for
colonic dysplasia resulting from uncontrolled prolifera-
tion of enterocytes initiated by APC mutations. In con-
trast, Shh, Patched (Ptch), the receptor for Hh, as well as
Smoothened (Smoh), a Ptch-associated transmembrane
protein, have been found to be upregulated in hyperplas-
tic polyps, adenomas and adenocarcinomas of the colon
[7]. Moreover, exogenous Shh seems to be capable of
promoting the growth of primary murine colonocytes [7],
suggesting that the signal triggered by Shh might facili-
tate CRC progression. A positive role for the Hh pathway
in CRC tumorigenesis was also postulated by a recent
finding that approximately 23% of CRC patients carry
truncating mutations in EDD whose product is a putative
negative regulator of Hh signaling [67, 68].

Thymosin -4

Thymosin -4 (T ,), a small (43 amino acids) acidic pep-
tide isolated originally from calf thymus, was initially
postulated to be a thymic hormone [69]. However, along
with other members of this peptide family, T3, was iden-
tified later, as intracellular G-actin sequestering mole-
cules are present in almost every type of cell [70]. By pre-
venting the formation of actin microfilaments via com-
plexing with monomeric G-actin and supplying a pool of
actin monomers for polymerization when the cell needs
filaments [71, 72], TS, plays a key role in modulating
actin dynamics, tissue remodeling, cell differentiation
and wound healing [73].

Participation of B-thymosins in carcinogenesis was postu-
lated years ago because of the aberrant expression of 73,
and 7p,, in malignant renal tumors [74]. Later on, overex-
pression of these genes in human colon carcinomas and a
variety of other tumors has been reported [75]. Upregu-
lated 78, expression has been detected in highly metasta-
tic melanoma cells [76] as well as in breast cancer cells
[77]. Increased tumorigenicity and metastasis in fibrosar-
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coma cells by 7, overexpression were demonstrated by
an in vivo study [78]. In human SW480 colon carcinoma
cells, overexpression of T3, gene resulted in a decrease of
E-cadherin, accumulation of S-catenin in the nucleus, ac-
tivation of the Tcf/LEF pathway and consequential malig-
nant progression [10]. Meanwhile, enforced 7, expres-
sion in mouse melanoma cells increased their tumori-
genicity, metastasis, as well as angiogenesis-stimulating
activity [79]. More recently, upregulation of this gene was
found to correlate with increased invasion of colon carci-
noma cells as well as liver metastasis in CRC patients [9].
The latter may be explained in part by downregulation of
Fas in tumor tissues, which could render them less sus-
ceptible to attack by FasL-bearing immune cells [61]. An-
other possible explanation for the positive correlation be-
tween T, expression and distant metastasis of CRC is in-
creased expression of Survivin, an antiapoptotic factor
[80, 81]. Upregulation of Survivin is not only associated
with poor prognosis of stage II [82] and III [unpublished
data] CRC patients, but it also confers drug resistance
(doxorubicin and etoposide) to T ,- overexpressing colon
cancer cells [83]. With the successful cloning of the func-
tional human Tf, gene and delineation of its promoter
[84], dissecting the molecular mechanism of aberrant 73,
expression during the metastatic progression of CRC be-
came feasible.

Colon (cancer) stem cells

The intestinal epithelium lining the gastrointestinal tract
has a well-defined architecture with the simple columnar
epithelium folded to form a number of invaginations, or
crypts [85]. In the colon, the crypt progenitors proliferate
rapidly, and the dividing cells migrate to the intercrypt
table at the top of the colonic crypt during which they dif-
ferentiate into enterocytes, mucus-secreting Goblet cells
and the peptide hormone-secreting enteroendocrine cells
[86]. In other words, cell replacement and production in
colonic crypts are likely to be accomplished by the stem
cells (SCs) located at their bases [87, 88], but the exis-
tence of these cells has as yet not been demonstrated. In-
terestingly, two independent studies have reported a pref-
erential expression of Musashi-1 (Msi-1), an RNA-bind-
ing protein involved possibly in asymmetric divisions
during Drosophila neural development, in the early gen-
erations of the cell lineages in the intestinal epithelium
[89, 90]. Since strong Msi-1 expression was also detected
in the early dysplastic crypts and adenomas in ApcMiv*
mice [91], this protein may be used in conjunction with
other markers to identify the actual SC population of the
colon as well as early colon cancer lesions.

Recently, an increase in the number of cells expressing
the crypt base cell phenotype was found in both FAP ade-
nomas and sporadic CRC, supporting the hypothesis that
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SC overproduction may underlie CRC initiation and pro-
motion, including the upward proliferative shift (the ‘bot-
tom up’ theory [92]) in early colon tumorigenesis and
adenoma formation [11]. On the other hand, spontaneous
microadenoma development was also explained by the
lateral and downward expansion of a mutant clone de-
rived from the proliferation of a mutated stem cell mi-
grating from the crypt base to the intercryptal zone (a
modified ‘top down’ hypothesis [93]). However, to
demonstrate unequivocally the existence of colon cancer
stem cells (CSCs), it is essential to identify a subpopula-
tion from either the primary tumors of patients or the es-
tablished CRC cell lines that exhibits self-renewal capac-
ity and generates faithfully phenocopied tumors during
serial transplantations as those found in other types of tu-
mors [94]. If CSCs were indeed the culprits of CRC for-
mation, then therapeutic interventions that target only the
main tumor mass are unlikely to succeed, or at best they
leave patients at a high risk of cancer recurrence because
most of the CSCs (or so-called side populations) identi-
fied thus far express high levels of various ABC trans-
porter proteins which could efflux a number of anticancer
drugs [95].

Treatment

Surgical resection of the primary tumor as well as re-
gional lymph nodes is the mainstay and the only curative
therapy for CRC, whereas conservative palliative resec-
tion or bypass is usually indicated for patients having un-
resectable metastatic disease at the time of surgery. There
has long been interest in preoperative (neoadjuvant) ther-
apy of operable rectal cancer. Despite a lack of random-
ized data demonstrating clinical benefit, preoperative
chemoradiation has been increasingly used in patients
with T3 disease in North America, and preoperative radi-
ation therapy is more frequently used in Europe [96].
Since mesorectal tissue is an ideal substrate for the
spreading of rectal cancer cells, the addition of total
mesorectal excision to anterior resection may provide ad-
equate block dissection of the lymphatics of the rectum
with a lower rate of local recurrence, even in node-posi-
tive disease [97]. For patients with stage I CRC, no addi-
tional treatment is needed after curative surgery (cure rate
>90%). For patients with stage III disease, the combina-
tion of 5-fluorouracil (5-FU) and leucovorin (LV) for 6
months can significantly reduce tumor relapse and im-
prove survival, in comparison with surgery alone [98].
Even though the value of adjuvant chemotherapy for
stage II CRC has as yet been clearly established, a higher
3-year disease-free survival rate was detected in stage 11/
III CRC patients treated with oxaliplatin plus infusional
5-FU/LV (FOLFOX) than those with 5-FU/LV alone after
receiving curative surgery [99].



Cell. Mol. Life Sci.  Vol. 63, 2006

For patients with disseminated recurrent disease who are
ineligible for surgical treatment, regional therapy with
hepatic arterial infusion (HAI) of floxuridine has been
employed for liver metastasis. Although tumor regression
rates can be improved by HAI, overall patient survival has
not changed in comparison with systemic chemotherapy
[100]. Irinotecan, a topoisomerase I inhibitor, and oxali-
platin are drugs commonly used in the management of
metastatic disease (MCRC). Since 5-FU-based combina-
tion therapy with irinotecan or oxaliplatin has similar ef-
ficacy for MCRC in a first-line setting [101, 102], and
oxaliplatin is effective in adjuvant therapy for stage II/111
CRC, further studies exploring the impact of irinotecan in
the adjuvant setting are warranted. More recently, the
combination of several target therapeutic agents with
chemotherapy has been shown to have a superior efficacy
compared with chemotherapy alone in MCRC patients.
For example, combination of cetuximab, a human/mouse
chimeric epidermal growth factor receptor (EGFR) mon-
oclonal antibody, with irinotecan was suggested for treat-
ing EGFR-expressing MCRC patients who did not show
improvement after irinotecan-based chemotherapy [103].
In addition, bevacizumab, an anti-VEGF (vascular en-
dothelial growth factor) antibody, was approved for pa-
tients with previously untreated MCRC [104]. Further
studies need to focus on identifying patient groups most
likely to benefit from the anti-angiogenic agents and de-
signing optimal sequences and therapeutic combinations.

Concluding remarks

Owing to the efforts of numerous investigators during
the past several decades, loss of genomic stability has
been identified as a key molecular and pathophysiologic
step in colorectal carcinogenesis since it creates a per-
missive environment for the occurrence of alterations in
tumor suppressor genes (APC, MMR and others) and
oncogenes (k-ras, TGFBR2, c-src and others). Taking
advantage of this progress, molecular staging has been
developed and was found to identify patient prognosis
more accurately than traditional clinical staging, partic-
ularly for intermediate Dukes’ stage B and C patients
[105]. A more versatile staging system based on a com-
bination of pathological, biological and genetic tech-
nologies may be available in the near future. In theory,
MMPs seem to be good targets for developing new anti-
cancer drugs. Surprisingly, however, most of the clinical
results using broad-spectrum MMP inhibitors to treat
patients with advanced cancer were disappointing, sug-
gesting a necessity to reformulate MMP inhibition
strategies. Since MMP-7 is the most critical MMP for
CRC progression (fig. 1), developing selective inhib-
itors against this protease and their administration in the
early stage of disease may be worth trying. Involvement
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Fas ligand Resistance to chemotherapy
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E-cadherin Enhances adhesion & metastasis
Tumor growth factor-a Activates EGFR

IGFBP-3 Promotes survival

Figure 1. Cleavage of cell-surface proteins other than the ECM
components is crucial for MMP-mediated CRC tumorigenesis.

of Hh signaling in CRC tumorigenesis appears to be
controversial [7, 8], and is complicated further by a re-
cent finding that, unlike CRC, cells of the upper diges-
tive tract (i.e. Oesophagus, stomach, biliary tract and
pancreas) tumors exhibit increased Hh pathway activity
[106]. More work is required to resolve this question. In
the meantime, discovery of the involvement of TS, in
CRC progression is intriguing (fig. 2). Besides modu-
lating the organization of micro filaments, T, has re-
cently been shown to promote the migration and sur-
vival of cardiomyocytes as well as cardiac repair by
stimulating Akt via its complexing with PINCH and in-
tegrin-linked kinase (ILK) [107]. Since ILK has been
postulated to play a positive role in CRC progression
[108, 109], it will be of interest to examine whether ILK
expression/activity is upregulated by TS, overexpres-

Genetic or epigenetic changes
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Figure 2. Overview of the action mechanisms of Tf, in promoting
CRC progression. Tp,, upregulated by unknown mechanism, dis-
rupts F-actins as well as the adherens junctions supported by these
microfilaments, which may result in the dissociation between E-
cadherin and catenins. Free -catenin molecules, if not being phos-
phorylated by GSK-3 due to its inactivation by the Tf,-stimulated
ILK, will translocate into nucleus and form complexes with Tcf to
activate the expression of factors critical for CRC progression such
as c-Myc, MMP-7 and Survivin. Arrows with dotted lines indicate
evidence from our unpublished work.
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sion in colon cancer cells and whether pB-catenin/Tcf
signaling is consequentially stimulated, because 1LK-
dependent activation of f-catenin-mediated gene tran-
scription has previously been reported [110]. Even
though neither colon SCs nor colon CSCs have been
identified thus far, involvement of SCs in CRC devel-
opment has nonetheless been proposed. Accordingly,
isolation and in vitro propagation of colon CSCs from
primary CRC tumor lesions and/or from established
CRC cell lines may be crucial not only for designing
studies to better understand how tumorigenic pathways
operate but also for developing therapeutic strategies
aimed at eradicating this silent but lethal subpopulation
within CRC. In combination with novel target-specific
treatments, this approach might greatly reduce the mor-
tality of CRC patients.
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