
Abstract. Prokaryotes have complex mechanisms to 
regulate their gene transcription, through the action of 
transcription factors (TFs). This review deals with current 
strategies, approaches and challenges in the understand-
ing of i) how to map the repertoires of TF and operon on 
a genome, ii) how to identify the specific cis-acting DNA 
elements and their DNA-binding TFs that are required for 
expression of a given gene, iii) how to define the regu-
lon members of a given TF, iv) how a given TF interacts 

with its target promoters, v) how these TF-promoter DNA 
interactions constitute regulatory networks, and vi) how 
transcriptional regulatory networks can be reconstructed 
by the reverse-engineering methods. Our goal is to depict 
the power of newly developed genomic techniques and 
computational tools, alone or in combination, to dissect 
the genetic circuitry of transcription regulation, and how 
this has the tremendous potential to model the regulatory 
networks in the prokaryotic cells.

Keywords. Prokaryote, gene transcription, transcription factor, operon, regulon, regulatory network, microarray ex-
pression profiling, ChIP-chip.

Transcription factors in prokaryotic gene regulation

Regulation of gene transcription at promoters
In transcriptional regulation in prokaryotes, expression of 
a gene is controlled at the stage of RNA synthesis by a 
regulator that interacts with a specific regulatory DNA 
element. Synthesis of RNA is under the direction of DNA 
by the RNA polymerase enzyme (Fig. 1). RNA poly-
merase consists of the core enzyme and the sigma factor. 
A RNA core polymerase is a multi-subunit complex with 
a general structure of α2ββ′ that undertakes the elonga-
tion of RNA [1]. Sigma factor is needed for the initiation 
of RNA transcription, and it is a major influence on selec-
tion of promoters [2].
Transcription factor (TF) is a protein needed to activate or 
repress the transcription of a gene, but is not itself a part of 

the enzymes [3–5]. Some TFs bind to cis-acting DNA se-
quences only; some bind to each other; others bind to DNA 
as well as to other TFs [3–5]. Regulation of gene transcrip-
tion in an organism involves a complex network, where the 
DNA-binding TFs are a key component. They regulate the 
transcription of specific genes by acting on the cis-regula-
tory sequence (TF-binding sites) within the promoters of 
these genes (Fig. 1). Based on sequence and structural ho-
mologies, DNA-binding regions of the prokaryotic TFs have 
been assigned to a number of families of DNA domains [6, 
7], including the three most well characterized ones, the he-
lix-turn-helix, the winged helix and the β ribbon [8].

Transcription activators and repressors
When a TF binds to a specific promoter, it can either ac-
tivate or repress transcription initiation [4, 5]. An activa-
tor stimulates the expression of its target gene, typically 
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by acting on a promoter to stimulate RNA polymerase. 
For negative control, the TF is a transcription repressor 
that either binds to DNA to prevent RNA polymerase 
from initiating transcription, or binds to messenger RNA 
(mRNA) to prevent a ribosome from initiating transla-
tion. Some TFs function solely as activators or repressors, 
whereas others can function as either (dual regulators) ac-
cording to the target promoters. A computational analysis 
of Escherichia coli K-12 genome estimates a total of 314 
TFs that consist of 35% activators, 43% repressors and 
22% dual regulators [9].

Global transcription regulators
Global transcription regulators are TFs (i) that have the 
ability to regulate large numbers of genes that belong to 
different functional classes, (ii) that control a complex 
regulatory cascade by a mechanism of not only directly 
controlling the expression of specific genes, but also in-
directly regulating various cellular pathways by acting 
on a set of local regulators controlling just one or a few 
genes, and (iii) that act on the target promoters that use 
different sigma factors [10]. This definition excludes TFs 
involved in essential cellular functions [10]. It has been 
estimated that seven global transcription regulators (CRP, 
FNR, IHF, Fis, ArcA, NarL and Lrp) in E. coli control 
50% of all regulated genes, whereas ∼60 TFs each control 
only a single promoter [10].

Virulence-related transcription factors
During infection a pathogen is exposed to a series of en-
vironmental changes that can make its living conditions 
far from optimal. To survive the stressful environments, 
pathogens must make appropriate adaptive and/or pro-
tective responses, primarily reflected by transcriptional 
changes in specific sets of genes. Expression of virulence 
determinants, which allows pathogens to multiply on and 

within host cells and tissues, are tightly and coordinately 
regulated during specific stages of infection [11]. Regu-
lation of virulence genes is no exception in involving TF-
DNA interactions. Virulence-related TFs can sense host 
signals such as changes in temperature, osmolarity, pH, 
iron levels, nutrient availability, antimicrobial agents and 
oxygen levels, etc. [12–18]. In addition to stimulating 
the expression of virulence genes that can actively attack 
host defense mechanisms, these TFs still differentially 
regulate other broad sets of genes, which is required for 
adaptation to host niche [12–18]. Disruption of these TFs 
results in reduced virulence of the mutants due to disor-
dered transcriptional responses of the pathogens during 
infection.

Identification and characterization of transcription 
factors

Genome-wide prediction of transcription factors
Identification of DNA-binding TFs is crucial to under-
standing gene regulatory mechanisms. Preliminary TF-
encoding information on a sequenced genome comes 
from genome annotation by detecting factors homolo-
gous to known TFs [19], or by functional classification 
schemes that assign proteins to the category of transcrip-
tion regulation [20]. More sophisticated TF prediction 
methods are based on computational collection and 
assignment of DNA-binding motifs, enabling genome-
wide TF prediction for the model microorganism E. coli 
[9, 21] and even for organisms from across the tree of 
life [22, 23].
Based on determination of the homology between the do-
mains and protein families of the TFs and their regulated 
genes, and proteins of known three-dimensional structure, 
a computational method has been established to identify 
what is likely to be the large majority of E. coli TFs [21]. 
In this approach, 11 families of DNA-binding domains 
are identified from public databases. Subsequent assign-
ment of these superfamilies to E. coli proteins generates 
a preliminary set of 416 proteins with DNA-binding do-
mains. After removing proteins involved in transposases 
and replication/repair and other enzymes, a final set of 
271 TFs is obtained.
Doerks et al. [22] present a method that exemplifies how 
genomic context searches work to identify TFs from a 
wide variety of prokaryotic species with available whole-
genome sequences. The authors first extract clusters of 
orthologous groups (COGs) involved in transcription 
regulation from the COGs database [24]. Enzyme-related 
COGs are subsequently removed. Each of the resulting 
128 groups contains orthologous TFs derived from sev-
eral genomes. When these COGs of known and putative 
TFs are projected to E. coli K-12, they cover 85% of the 
list of E. coli TFs described in [21].

Figure 1. Structure of a prokaryotic promoter. A promoter is a 
region of DNA on the genome where RNA polymerase and TF 
bind to initiate transcription. The +1 indicates the base pair where 
transcription initiates, and it is commonly called transcription start 
point. Base pairs upstream of the transcription start point are as-
signed positive numbers, while those downstream are shown with 
negative numbers. The core promoter consists of –10, –35 and ex-
tended –10 and UP elements. The –10, –35 and extended –10 ele-
ments are recognized by domains 2, 4 and 3 of the RNA polymerase 
σ subunit, respectively [1, 246]. The UP element, located upstream 
of the –35 element, is recognized by the C-terminal domains of the 
RNA polymerase α subunits [247]. Sometimes, the TF binding site 
may overlap the core promoter sequence. A consensus sequence is 
often located in the TF-binding site.
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A procedure [23] that uses profile hidden Markov models 
(HMMs) of domains from the SUPERFAMILY [25] and 
Pfam [26] databases is proposed to automatically predict 
DNA-binding TFs. Using powerful multi-sequence com-
parison, HMMs recognize only TFs that use the mecha-
nism of sequence-specific DNA binding. This method is 
applied to more than 150 completely sequenced genomes 
from across the three domains of life, leading to the estab-
lishment of a comprehensive TF database, DBD [24].

DNA pull-down strategies
There is a big gap between the promoter DNA elements 
and the predicted TFs scattered over the prokaryotic 
genomes. In many circumstances, binding factors for a 
promoter of interest are unknown. DNA pull-down strat-
egies, including DNA affinity chromatography and gel 
mobility shift assay, are successful in isolation and identi-
fication of sequence-specific DNA-binding factors from 
nuclear extracts.
Because of its high selectivity, DNA affinity chroma-
tography (Fig. 2), is the most widely used technique for 
purification of TFs and other DNA-binding proteins [27, 
28]. The isolated DNA-binding proteins are subsequently 
separated on SDS-polyacrylamide gel electrophoresis 
(PAGE), and their identities are determined by mass spec-
trometry (MS) [29, 30]. Various affinity supports, such 
as agarose, Sepharose, cellulose and silica, are routinely 
used for coupling DNA, and a wealth of coupling chem-

istries are available for attaching DNA to these supports 
[28, 31]. Conventional DNA affinity chromatography 
is quite laborious and time-consuming. Further modifi-
cations and improvements have been widely proposed 
[32–37].
In the electrophoretic mobility shift assay (EMSA) 
(Fig. 3), a radiolabeled specific DNA is incubated with 
cell extract, and the mixture is then subjected to non-de-
naturing PAGE. If the corresponding DNA-binding TF is 
present in the cell extract, it retards the mobility of the 
probe on PAGE, which can easily be detected by autoradi-
ography. When a specific antibody against a candidate TF 
is available, a supershift is observed because of formation 
of DNA-TF-antibody complex.
Conventional EMSA is restricted to candidate TFs and 
the availability of the specific antibodies. However, if no 
candidates can be proposed, EMSA is of limited utility in 
identification of novel DNA-binding TFs. Woo et al. [38] 
present a method for the identification of DNA-binding 
proteins seen in EMSA using the power of two-dimen-
sional electrophoresis coupled with mass spectrometry. 
The method consists of four phases. First, nuclear pro-
teins are partially purified by S300 gel filtration. The 
MM and pI of the protein are then estimated by coupling 
SDS-PAGE or IEF (isoelectric focusing) with EMSA. 
Next, gel slices are excised from a two-dimensional gel 
at the predetermined pI and MM coordinate. Proteins are 
eluted, re-natured, and tested for DNA-binding activity 
in EMSA. Identified protein spot candidates are sub-
jected to MS to determine their identity. Hazbun et al. 

Figure 2. DNA affinity purification of TFs. DNA probes contain-
ing a TF-binding site are either adsorbed or linked covalently to a 
chromatographic support. The nuclear or whole cell extract as a rich 
source of TFs is incubated with DNA probes, and the corresponding 
TFs specifically bind to the DNA (steps I and II). The subsequent 
washing can remove most other proteins, rather than the DNA-bind-
ing TFs and some contaminant proteins that bind to the DNA probes 
weakly and nonspecifically (step III). When a sufficient amount of 
competitor DNA such as poly(dI-dC) is added, the weaker binding 
proteins will bind this competitor (step IV) and are then washed out 
(step V). The TFs specifically binding to the DNA probes are finally 
eluted under the stringent conditions (step VI).
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Figure 3. Electrophoretic mobility shift assay. Increasing amounts 
of  TF sample are incubated with a radiolabeled DNA fragment. 
The reaction products are then analyzed with the non-denaturing 
PAGE. The distribution of radioactivity is viewed by radioautogra-
phy. DNA molecules to which TFs bind move more slowly in the gel 
and are retarded relative to the sample with no protein.
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[39] report the use of a genome-wide EMSA to identify 
proteins capable of binding to a cis-acting regulatory ele-
ment. Using Saccharomyces cerevisiae as model system, 
they prepare an array of 6144 yeast strains, each over-
expressing the single yeast open reading frame (ORF) 
fused to glutathione S-transferase (GST). Protein pools 
are then generated by purification of the GST fusion pro-
teins from whole cell extracts from different groups of 
strains. Each protein pool is used in an EMSA to detect 
the binding of proteins to a radiolabeled DNA fragment. 
This report demonstrates the feasibility of genome-wide 
screening of proteins for binding to a specific regulatory 
DNA of interest by rapidly assaying a large fraction of 
ORFs of an organism.

Transcription factor pull-down strategies
So far, a dozen families of TFs have been identified in 
prokaryotes [9, 21], including the well-characterized 
AraC [40], CRP [41], LacI [42], Lrp [43], LysR [44] and 
MerR [45] families. Based on their ability to recognize 
and interact with specific regulatory DNA sequences 
present in the promoters, TFs along with their target 
genes constitute complex regulatory networks involved 
in both normal cell growth and survival against stress 
or host defense. Thus, understanding the role of TFs in 
maintaining and altering expression levels of their target 
genes, as well as the phenotypic characteristics therein, is 

crucial to understanding normal cellular function as well 
as disease. Figure 4 shows the TF pull-down strategies 
for characterization of a TF of interest, which will be dis-
cussed one by one below.

Microarray expression profiling

Two-sample co-hybridization experiment
DNA microarray is able to determine changes in mRNA 
levels simultaneously for all the genes in a cell. In a typi-
cal two-sample experiment (Fig. 5), RNA is extracted 
from reference and test samples, respectively, labeled 
with different fluorescein dyes, and co-hybridized to a 
complementary DNA (cDNA) microarray. The hybrid-
ized microarray slides are scanned, and data extracted 
from microarray images are subjective to exclude poor-
quality spots [46, 47]. In general, spots with background-
corrected signal intensity in both channels less than two-
fold background intensity are removed from further anal-
ysis. The resulting data set is subsequently normalized 
through balancing the fluorescence intensities of the two 
labeling dyes. Normalization serves to remove the sys-
tematic variations in the measured gene expression levels 
of two co-hybridized samples, so that biological differ-
ences can be more easily distinguished [48–51]. The sys-
tematic variations in microarray experiments come from 
differences in the number of cells in the cultures, RNA 

Figure 4. Characterization of a TF of interest with TF pull-down strategies. This figure indicates the TF pull-down strategies aiming to give 
a comprehensive functional characterization of a specific TF.
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extraction efficiency, dye-labeling efficiency, hybridiza-
tion efficiency, heat and light stability of dyes, scanning 
properties, and scanner settings for the two channels.
The commonly used normalization methods include total 
mRNA normalization, which uses all genes on the micro-
array [50, 52], housekeeping normalization using genes 
with invariant expression [53], external spike-in control 
normalization, which uses a known amount of exogenous 
control genes added during hybridization [54, 55] and the 
nonlinear locally weighted scatterplot smoothing (LOW-
ESS) normalization [49, 56]. To compare the mRNA pro-
files between reference and test samples, the averaged ex-
pression ratio of test/reference for each gene is calculated 
and then logarithm-transformed usually to base 2. Using 
the logarithm has the advantage of producing a continu-
ous spectrum of values and treating up- and downregu-
lated genes in a similar fashion [50].
A fixed threshold cutoff method (e.g. a twofold increase 
or decrease in gene expression) is not sufficient to iden-
tify differentially regulated genes, given the reasons that 
a gene with low expression in one or both strains has 
more variable expression ratios than a gene with a more 
substantial level of basal expression [57], and that non-
systematic variations (e.g., random biological variations, 
sample handling errors and measuring errors) cannot be 
handled by data normalization [58, 59]. Random biologi-
cal variations come from the physiological differences 
in growth microenvironments in cultures (e.g., nutrients 
and temperature), growth phase and multiple additional 
stochastic effects that cannot be controlled. It has been 
reported that even when bacterial cells grown under two 
‘identical’ conditions are compared with each other, dif-
ferences in gene expression are still observed [60].

Significant changes of gene expression are commonly 
identified on the basis of replicate microarray data. 
Replication of a microarray experiment is essential, as 
it gives a baseline to measure the non-systematic varia-
tions in statistic calculation [61]. There are three types 
of replication (Fig. 5). First, total RNA is extracted from 
independent cell cultures (biological replicates). Second, 
various aliquots of each RNA extraction are used to pre-
pare the labeled probes for separated microarray slides, 
for which (technical replicates) the incorporated dye is 
reversed (dye swaps). Third, each gene or ORF is present 
in duplicate on the printed slides (spot replicates). Techni-
cal replicates for two separated microarray slides (Fig. 4) 
come from the same RNA extraction (the same biological 
replicate). Dye swaps are designed for these two techni-
cal replicates. On one slide the test sample is assigned to 
Cy5 and the reference sample is assigned to Cy3, while 
on another slide the dye assignments are reversed. Data 
normalization is not likely done equally well for every 
spot on every slide, so there may be a residual dye bias. 
Averaging dye-swap data will make an experiment less 
prone to this kind of dye bias [62].
The commonly used statistical methods for discover-
ing differentially expressed genes include standard or 
regularized two-sample t-test [63–65], ANOVA (analy-
sis of variance) and its variants [66–68], and the maxi-
mum likelihood [61, 69] and mixture models [70, 71] 
(Table 1). The shared features of these methods are that 
they rank the genes in order of evidence, from strongest 
to weakest, for differential expression, and that they can 
assess the rate of false positives (unchanged genes de-
clared differentially expressed) and rate of false nega-
tives (missed differentially expressed genes) [72–74]. 

Figure 5. Designs for the two-sample experiment. The left part of this Figure shows a typical two-sample experiment, where total cellular 
RNA is extracted from reference and test samples, respectively. RNA samples are reverse-transcribed into cDNA with attendant incorpora-
tion of different fluorescein dyes, usually a red-fluorescent cyanine 5 (Cy5) and a green-fluorescent cyanine 3 (Cy3). A mixture of differ-
ently labeled cDNA samples hybridizes to a whole-genome cDNA microarray. The right side depicts the three types of replication for a 
single microarray experiment: biological replicates (independent cell cultures), technical replicates (separated microarray slides) and spot 
replicates (genes spotted in duplicate on each slide).
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The subsequent step is to choose a cutoff value for the 
ranking statistic to pick out genes considered as signifi-
cant, given that only a limited number of genes will be 
differentially expressed in a typical two-sample experi-
ment. For instance, the standard t-test produces a p-value 
that represents the probability of difference observed. A 
very small p-value indicates that the tested gene is likely 
to be differentially expressed. Depending on the percent-
age (e.g., 5%) of false positives chosen, an appropriate 
threshold (e.g., p < 0.05) can be selected to pick out the 
genes differentially expressed.

Identifying stimulons and regulons
A stimulon is a group of genes or operons that are differ-
entially expressed in response to a given environmental 
perturbation [75, 76]. To define the stimulon, the cDNA 
microarray is used to compare gene expression patterns 
in wild-type (WT) strain under a stimulating condition 
(test sample) with an unperturbed control (reference sam-
ple). DNA microarray-based stimulon studies will clarify 
the vigilance of an organism to environmental changes 
and the alacrity of the transcriptional response, giving 
a global perspective allowing one to see that seemingly 

Table 1. Selected leading tools for microarray expression data analysis.

Tool Description Reference URL

Image processing

ScanAlyze Semi-automatic definition of grids and complex 
pixel and spot analyses.

http://rana.lbl.gov/EisenSoftware.htm

GenePix Pro Commercial softwares provided with the micro
array scanners for spot identification, data extrac-
tion, scatter plot, histogram and data normalization.

http://www.moleculardevices.com

QuantArray http://www.packardbioscience.com/

Identifying differentially expressed genes

SAM SAM assigns a score to each gene on the basis of 
change in gene expression relative to the standard 
deviation of repeated measurements. For genes 
with scores greater than an adjustable threshold, 
SAM uses permutations of the repeated measure-
ments to estimate the percentage of genes identi-
fied by chance, the false discovery rate (FDR). 

[64] http://www-stat.stanford.edu/%7Etibs/SAM/index.html

Cyber T Cyber-T employs statistical analyses based on 
simple t-tests that use the observed variance of 
replicate gene measurements across replicate 
experiments, or regularized t-tests that use a Bayes-
ian estimate of the variance among gene measure-
ments within an experiment. 

[65] http://visitor.ics.uci.edu/genex/cybert/

EDGE EDGE can be used to perform significance analy-
ses for both two-sample and time-course experi-
ments. This approach is based on the ‘optimal 
discovery procedure’ (ODP) that uses all relevant 
information from all genes in order to test each one 
for differential expression.

[109] http://faculty.washington.edu/jstorey/edge/

Onto-Express Onto-Express is able to automatically translate dif-
ferentially repressed genes into functional profiles, 
using Gene Ontology.

[253] http://vortex.cs.wayne.edu/Projects.html#Onto-Express

Clustering

Cluster and 
TreeView

Cluster, one of the most widely used cluster-
ing tools, performs a variety of types of cluster 
analysis, including hierarchical clustering, SOMs, 
k-means clustering and PCA. TreeView graphically 
browses results from Cluster.

[82] http://rana.lbl.gov/EisenSoftware.htm

STEM STEM is specific for clustering, comparing and 
visualizing short time series gene expression data. 

[90] www.cs.cmu.edu/∼jernst/stem/

Software package

TM4 A package of open source software programs com-
posed of MicroArray DAta Manager (MADAM), 
Spotfinder, Microarray Data Analysis System 
(MIDAS) and MultiExperiment Viewer (MEV). 

[254] http://www.tigr.org/software/microarray.shtml
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unrelated activities are modulated together. It provides 
numerous new avenues for focused hypothesis-based in-
vestigations to delineate the role(s) of specific genes or 
operons in environmental response and adaptation, thus 
indicating the nature and function of signaling pathways 
activated upon specific environmental changes.
A regulon includes all target genes controlled either di-
rectly or indirectly by a single TF [75, 76]. For identifying 
regulon members, RNA from cells expected to have low 
or no expression of regulon genes is compared with RNA 
from cells substantially expressing regulon members. 
The standard procedure is the comparison of expression 
profiles between a WT strain (reference sample) and the 
isogenic mutant (test sample) of a TF. Genes with dif-
ferential expression are considered as regulon members 
controlled by the TF involved in mutation. The function 
of a TF often relies on its ability to sense specific envi-
ronmental conditions. Therefore, microarray experiments 
are carried out by use of media conditions known to be 
important for the TF to trigger transcriptional pathways. 
Growth conditions for a large set of bacterial TFs are 
stored in the RegulonDB database [77]. Most of these 
conditions have historically been used for in vitro stress 
studies and are thus suboptimal for normal bacterial 
growth; these stimulating conditions (environmental per-
turbations) are often considered as the host-responding 
signals during pathogenic infection.

Clustering analysis of multiple two-sample 
experiments
A collection of multiple two-sample experiments will 
generate a matrix of expression ratios, with genes in rows 
and conditions in columns. Thus, each column represents 
a single two-sample experiment. The expression level of 
a gene over conditions is called a gene expression profile. 
Subsequent clustering analysis will identify clusters of 
genes with similar expression profiles. Expression pro-
files within a cluster are more similar to each other than 
those in different clusters.
Clustering can be viewed as a data reduction process, 
in that observations of gene expression in each cluster 
can be over-represented. This process will produce much 
greater insight into functional classes of co-expressed 
genes, since genes functionally related, i.e. belonging to 
the same regulatory pathway or to the same functional 
complex, should be co-regulated and consequently should 
show similar expression profiles. Thus, the clustering 
genes with similar expression profiles can potentially 
be utilized to predict the functions of gene products with 
unknown functions, and to identify sets of genes that are 
co-expressed to play the same roles in the cell cycles.
Various clustering algorithms either supervised or un-
supervised have been successfully applied to microar-
ray expression data [78–81] (Table 1). The unsupervised 

methods include hierarchical clustering [82], K-means 
clustering [83], self-organizing maps (SOMs) [84] and 
principle component analysis (PCA) [85], all of which 
calculate pairwise distances or similarities between pairs 
of gene expression profiles in the process of clustering. 
Unsupervised methods attempt to detect natural groups of 
co-regulated genes in microarray data, unbiased by out-
side knowledge. They require no additional knowledge or 
classification scheme besides the expression data them-
selves. An alternative for identifying patterns of gene 
expression is the supervised methods, if one has some 
previous information about which genes are expected to 
cluster together [86]. Supervised methods require pre-
existing classification information deriving from outside 
microarray experiments. One of the widely used unsuper-
vised methods is the support vector machine [87].

Time-course experiment
In the two-sample experiment, differences in gene ex-
pression are measured at a single time point. Thus, differ-
ential expression is studied from a static viewpoint. The 
regulation of gene expression is a dynamic process, so it 
is also important to characterize changes in gene expres-
sion over time. Typically, gene expression levels are com-
pared across a number of time points. An important issue 
in the time-course experiment is the design of sampling 
rates. If the experiment is undersampled, the results might 
not correctly represent the activity of the TFs in the dura-
tion of the experiments, and key events will be missed; 
on the other hand, oversampling is expansive and time 
consuming [88]. It must be borne in mind that action of 
the TF under in vitro stimulating conditions for an overly 
long time might result in regulatory concentrations ex-
ceeding normal titers. In this situation, the TF can occupy 
sequence-proximate but physiologically irrelevant sites, 
or related sites normally bound by another TF, which will 
bring the incorrect assignment of irrelevant genes as reg-
ulon members [75].
A time-course experiment also generates a matrix of 
expression ratios, with genes in rows and time points in 
columns. The clustering algorithms described above treat 
their input as a vector of independent samples, i.e., they 
assume that data at each time point are collected inde-
pendent of each other. They ignore the time sequence and 
the time dependence of the data between time points. In 
addition, most of the gene expression time series come 
from an unknown distribution. Therefore, conventional 
clustering methods appear to be less appropriate for such 
data. Although there are gene expression time-course ex-
periments with as many as 80 time points [89], the ma-
jority of time series are much shorter. A survey of the 
Stanford Microarray Database (SMD) shows that more 
than 80% of the available time-course datasets contain 
≤ 8 time points [90], and thus the resulting data are prone 
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to contain different kinds of non-idealities. More recently, 
a number of clustering algorithms were specifically de-
signed for microarray expression data of short time 
course [90–96] (Table 1) as well as relatively long time 
course [97–100].
In the simple two-sample approach, expression ratios are 
collected from various replicates that belong to a single 
‘group’ and without respect to time course. The task of 
the time-course experiment is to find changes in gene ex-
pression at different times. Clustering analysis contribute 
nothing to this process. Recently, algorithms has been 
proposed to exploit information in the time-course gene 
expression data to detect statistically significantly period-
ically expressed genes [101–109] (Table 1). Because of 
the timing of the genetic response, primary target genes 
for the TF may be those whose expression changes first, 
whereas those that are indirectly affected will be modi-
fied later [75, 110]. Thus, differentially expressed genes 
in time-course experiments represent both first- and sec-
ond-order downstream effects of the disrupted TF, which 
in turn can be used to identify target genes and to con-
struct regulatory networks.

Validation of microarray data
Microarray results are influenced by microarray con-
struction, RNA extraction, probe labeling, hybridiza-
tion conditions and data analysis [111, 112]. Because of 
the inherent limitations in reliability, microarray results 
should be validated with at least one traditional methods 
such as Northern blot, polymerase chain reaction (PCR), 
and lacZ reporter fusion [112, 113].
Northern blot represents the oldest method for detec-
tion of specific mRNA based on hybridization to labeled 
gene-specific probes. One of the big defects of this tech-
nology is that it is not very sensitive. The difficulty of get-
ting large enough amounts of RNA has discouraged wide 
utilization of this technology at present. PCR appears 
to be the method of choice as it is rapid and requires a 
minimal starting template. The same source of RNA used 
in the primary microarray expression analysis should be 
used in reverse transcriptase (RT)-PCR validation experi-
ments [114]. For conventional RT-PCR, there is no reli-
able linear relationship between the amount of starting 
template and the amount of product formed after a fixed 
number (e.g. 30) of cycles, unless the reaction is proceed-
ing exponentially at the time point of detection. Real-time 
RT-PCR using fluorescent reporter molecules has its own 
way of monitoring production of amplification products 
during each cycle of the PCR reaction [115, 116]. Either 
gene-specific anti-sense primers or random hexamers can 
be used to probe cDNA synthesis. For bacteria, mRNA 
transcript is not polyadenylated at its 3′ terminus. There 
may be rapid mRNA decay initiated by endonucleolytic 
cleavage followed by 3′-to-5′ exonucleolytic degradation. 

In this situation, random hexamers are preferred for ex-
tension of cDNA. To compare mRNA levels between ref-
erence and test samples, expression ratios should come 
from the same starting amount of total mRNA. Therefore, 
normalization is conducted by carrying out a parallel de-
termination of another gene (a ‘housekeeping’ gene) that 
is transcribed at the same level in the two samples [117]. 
In many cases, this gene is unknown. One has to use genes 
whose transcription is identical between the two samples 
as determined by both microarray and real-time RT-PCR 
[118, 119]. When a large number of genes are subject to 
RT-PCR, construction of an absolute standard curve for 
each gene with serial dilutions of known template is labo-
rious. Alternatively, the relative standard curve is simply 
constructed with a single gene with a high mRNA level 
identified by microarray analysis, using serial dilution of 
cDNA prepared from one sample [114]. Some investiga-
tors choose dozens of genes exhibiting high, moderate 
and low change in expression (as determined by micro-
array) to compare data from real-time RT-PCR and mi-
croarray [118, 120]. The resulting logarithm-transformed 
expression ratios from real-time PCR are plotted against 
those obtained by microarray analysis. A strong positive 
correlation between the two techniques indicates the reli-
ability of microarray data.
Reporter genes are widely used as ‘markers’ for analysis 
of up- and downregulation of gene expression [121]. One 
of the most common reporter genes used is the E. coli 
lacZ gene, which codes for an active subunit of β-galac-
tosidase [122]. One can start by cloning of a fragment of 
DNA upstream of a gene or an operon identified by mi-
croarray, using a plasmid vector carrying the promoter-
less lacZ reporter gene (Fig. 6). The recombinant vector 
containing the promoter sequence is subsequently trans-
formed into mutant and WT, respectively. The β-galacto-
sidase expression can be easily measured by its catalytic 
hydrolysis activity of O-nitrophenyl-β-D-galactopyrano-
side substrate to a bright yellow product. The β-galacto-
sidase activity should be proportional to the rate of tran-
scription of the gene or the operon whose upstream regu-
latory DNA fragment is cloned upstream of lacZ. This 
assay will ultimately demonstrate whether the promoter 
activity of a DNA fragment is under the control of the 
TF involved in mutation (see examples in [123]). An al-
ternative is detection of β-galactosidase with the fluores-
cein di-β-D-galactopyranoside substrate, which has been 
shown to be several orders of magnitude more sensitive 
[124]. It should be noted that simple fusion of promoter 
DNA into the reporter plasmid has inherent problems, 
such as disordered promoter activity of the cloned DNA 
fragment, titration of TFs due to the copy number of the 
plasmid, read-through of endogenous plasmid promoters 
and growth phase-dependent alteration of plasmid copy 
number [125]. Rather than introducing it into the recom-
binant plasmid, single-copy lacZ fusion can be introduced 
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into a specific chromosomal position by site-specific ho-
mologous recombination [126–129], for which the lacZ 
reporter is usually inserted downstream of a gene of inter-
est such that the WT coding sequence is maintained.

Prediction and identification of operons

Structure of prokaryotic operons
In prokaryotes, an operon consists of one or more genes 
which are transcribed to a single polycistronic RNA tran-
script, as well as the regulatory elements recognized by 
regulator(s) (Fig. 7). An upstream promoter and a down-
stream terminator delimit an operon, and usually no 
promoter or terminator can be found within the operon. 
Genes in an operon, commonly functionally related, are 
separated by a short length of DNA and arranged in tan-
dem in the same orientation on the same strand of a ge-
nomic sequence. Organization of operons on prokaryotic 

genomes is believed to facilitate the efficient coordinated 
regulation and association of functionally related protein 
products. Operons represent a basic organizational unit in 
a highly compartmentalized and hierarchical structure of 
cellular processes in a cell.

Whole-genome prediction
Characterization of operons certainly provides the basic 
knowledge to reconstruct biological pathways and the 
regulatory networks. A number of computational methods 
have been developed for operon prediction from genomic 
sequences. In the majority of these methods, statistical 
models are generated through training with experimental 
information (distance of adjacent genes, transcription ori-
entation gene order, promoters and terminators, etc.) of 
known operons, and subsequently these models are used 
as operon predictors (supervised methods). According 
to the differences in model generation, these supervised 
methods are summarized here.

1)	 One of the strongest operon predictors depends on the 
intergenic distances of adjacent genes, given the fact 
that genes within an operon tend to have much shorter 
intergenic distances than those at the borders of the 
operon. Based on experimental data on the intergenic 
distance of gene pairs within operons and at operon 
boundaries of the E. coli genome, a log likelihood 
function of intergenic distance for predicting operons 
is developed, and correctly identifies around 75% of 
the known E. coli operons [130]. 

2)	 The second method is to predict operons by detecting 
transcription control signals (e.g., existence of promot-
ers and terminators). Construction of HMMs based on 
known promoters and terminators in E. coli enables 
the prediction of 60% of known operons [131].

3)	 The third method is based on the conservation of op-
eron structures. Many sets of genes occur in conserved 
orders on multiple genomes across long stretches of 
evolutionary time, representing candidate operons. 

Figure 6. LacZ reporter fusion. A promoter DNA fragment presum-
ably dependent on a TF is cloned into a plasmid vector carrying 
the promoterless lacZ reporter gene (R-vector). The recombinant 
vector (T-vector) is subsequently transformed into a mutant of the 
TF and its isogenic WT strain, respectively. The detecting β-galac-
tosidase activity indicates the promoter activity of the cloned DNA 
fragment under the control of the TF.
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Figure 7. The structure of an operon. RNA is transcribed from the 
translation start site located between the promoter and the start 
codon. RNA polymerase moves along the template, synthesizing 
RNA, until it reaches a terminator sequence. It may include more 
than one gene. The primary transcript is the original unmodified 
RNA product consisting of a leader, a tail, coding regions and 
spacers (if polycistronic). The polycistronic primary transcripts 
are clipped to remove the leader, trail, and spacers, and to give the 
separate, mature mRNA products.
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A comparative genomics analysis on 34 prokaryotic 
genomes yield more than 7600 pairs of genes that are 
highly likely to belong to the same operon [132]. It also 
requires that adjacent genes in an operon are within a 
certain distance and that all genes in an operon are 
located on the same strand. This method allows highly 
confident prediction of operons in multiple species, 
but when it is applied to E. coli, a large portion of the 
known operons cannot be predicted [132]. The fairly 
low sensitivity of this method is due to the little con-
servation at the operon level between phylogenetically 
distant genomes [133]. 

4)	 The fourth method relies on the fact that genes in an 
operon tend to encode enzymes that catalyze succes-
sive reactions in metabolic pathways. The authors ap-
ply this method to 42 microbial genomes to identify 
putative operon structures, yielding a high prediction 
sensitivity as well as specificity [134]. This approach 
cannot make predictions at the whole-genome level 
since the information available does not span the 
whole genome. 

5)	 The fifth method relies on the combined utilization 
of the above algorithms. Paredes et al. [135] present 
an operon map for the obligate anaerobe Clostridium 
acetobutylicum ATCC824 by combining intergenic 
distance, promoter prediction and rho-independent 
terminator prediction. Based on the set of known C. 
acetobutylicum operons, the presented operon map of-
fers a prediction accuracy of 88%. Wang et al. [136] in-
tegrate several operon prediction methods, especially 
gene orientation analysis, intergenic distance analysis, 
conserved operon structure analysis and terminator 
detections, and develop a consensus approach to score 
the likelihood of each adjacent gene pair being in the 
same operon. Using this approach, a Staphylococcus 
aureus operon map is generated. When compared with 
a set of known S. aureus operons, this method success-
fully predict at least 91% of the gene pairs [136].

The efficiency of a supervised operon predictor depends 
largely on the type and amount of experimental infor-
mation used for training. However, experimental infor-
mation of operon structure is usually not available for a 
newly sequenced genome. Most of the existing operon 
predictors were originally built for E. coli, which has 
a large number of experimentally characterized oper-
ons. One may consider that these predictors are porta-
ble across genomes. Indeed, an operon predictor based 
on intergenic distances in E. coli [130] works fairly well 
when applied to Bacillus subtilis [137] and Mycobacte-
rium tuberculosis [138]. The authors argue that the dis-
tance-based method has the possibility of operon predic-
tion with high accuracy in most, if not all, prokaryotic 
genomes [137]. However, in many case operon predic-
tors trained in a model organism are less portable when 

used for other target species, especially when these target 
organisms are phylogenetically distant from those used 
for training [139].
Because of the limitations of supervised algorithms when 
applied to genomes without extensive experimental in-
vestigations, unsupervised methods that do not require 
information about known operons for training have been 
developed recently for operon prediction [140–144]. 
Unsupervised methods for operon prediction are based 
on comparative genomic analysis of homologous genes 
across genomes. Supporting data for assignment gene 
pairs to an operon are collected from genomic sequence 
data and their functional annotations. These supporting 
data include intergenic distance, location on the same 
strand of DNA, conserved gene order, participation in the 
same metabolic pathway, similarity of protein functions, 
conserved gene functions across multiple genomes, pro-
moter motifs, terminator signals and so on. An operon da-
tabase, ODB, has been established using the unsupervised 
method to provide a data retrieval system not only of the 
known operons but also the putative operons predicted by 
the unsupervised methods [145]. At the time of publica-
tion this database contains information about 2000 known 
operons in more than 50 genomes, and about 13,000 puta-
tive operons in more than 200 genomes [145].

Prediction from microarray expression data
When microarray gene expression data are available, the 
accuracy of operon prediction is greatly elevated. For a 
simple two-sample experiment, a operon can be simply 
defined as a cluster of adjacent genes that have intergenic 
regions < 50 –100 bp (different criteria used by different 
investigators [146, 147]) in length and are putatively tran-
scribed in the same orientation and on the same strand, 
and that show the same tendency of up- or downregula-
tion as determined by microarray. As a growing number 
of microarray gene expression experiments for a prokary-
ote become available, prediction of operons is practicable 
on the basis of co-expression patterns. Tjaden et al. [148] 
apply HMMs to estimate gene boundaries, which allows 
identification of 5′ untranslated regions of transcripts as 
well as genes that are operon members. A disadvantage 
of this method is that it uses a single source of microarray 
data. Bockhorst et al. [149] successfully predict operons 
by applying probabilistic language models to both DNA 
sequence and microarray expression data, which results 
in more accurate predictions than either alone. Both of 
these approaches use data from Affymetrix arrays that 
monitor expression of both coding and non-coding inter-
genic regions. However, the lack of intergenic probes in 
routine cDNA microarray experiments currently restricts 
the general application of these approaches.
Sabatti et al. [150] compiled data from 72 cDNA microar-
ray experiments performed on E. coli, including compari-
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sons of expression change between mutant and WT and 
studies in WT cells under different growth conditions. 
The correlation between expression ratios of adjacent 
genes across the microarray experiments was then used 
in a Bayesian classification scheme to predict whether 
the genes are in an operon or not, which allows a sig-
nificant refinement of the sequenced-based predictions. 
Yamanishi et al. [151] applied a generalized kernel ca-
nonical correlation analysis to group genes, which share 
similarities with respect to position within the genome 
and gene expression. However, this method was restricted 
to subsets of E. coli genes that comprised known meta-
bolic pathways. Bockhorst et al. [152] present a probabi-
listic machine-learning approach to predict operons using 
Bayesian networks. This approach exploits diverse evi-
dence sources including gene coordinates, operon length, 
promoter and terminator signals, codon usage frequency 
and cDNA microarray expression data. Steinhauser et al. 
[153] propose a hypothesis-driven co-clustering strategy 
of genome sequence information and gene expression 
data that was designed to monitor occurrence of constitu-
tive and conditional usage of transcription units in inde-
pendent gene expression profiling experiments, allowing 
the identification of operons with high accuracy.

Verification by RT-PCR
The most credible situation is the experimental valida-
tion of operons by RT-PCR [154]. Given that genes in an 
operon are transcribed to a single RNA molecule, reverse 
transcriptase enzyme is used to synthesize first-strand 
cDNA that is subsequently used as a template for PCR 
amplification of products from the beginning, middle 
and end of a multi-gene cluster (Fig. 8), so as to define 
where the transcript from the multi-gene cluster starts 
and where it stops (see examples in [14]). RNA samples 
should be treated with DNase to avoid any contamina-
tion of genomic DNA. In some case, self-priming of the 
RNA, perhaps as a result of contamination of small RNA 

fragments, may provide a suitable 3′-terminus to prime 
the reverse transcriptase [155]. Experiments should be 
accompanied by subtle controls; (i) RNA but not RT 
primers, (ii) RNA but not reverse transcriptase, (iii) water 
as blank template, and (iv) purified genomic DNA were 
added respectively. Reactions (i), (ii) and (iii) must yield 
no detectable product.

Characterization of transcription factor-DNA 
interactions

ChIP-chip: mapping transcription factor binding 
sites on a genome
The chromatin immunoprecipitation (ChIP) assay has 
been historically used in conjunction with PCR to study 
protein-DNA interactions at a small number of specific 
DNA sites [156]. The recent adaptation of ChIP to DNA 
microarrays (chip) resulted in the method of ‘ChIP-chip’ 
(Fig. 9) for globally discovering genomic regions occu-
pied by DNA-binding TFs in a living cell [157]. In ChIP-
chip experiments, the nucleoprotein in the cells is cross-
linked with formaldehyde, extracted and then sheared. 
Antibody against a TF of interest is then used to enrich 
the TF-cross-linked DNA fragments. The enriched DNA 
(referred to as ‘IP DNA’) is amplified by PCR and fluo-
rescently labeled. As a control, sheared DNA from the 
formaldehyde cross-linking that has not been subjective 
to immunoprecipitation (referred to as ‘control DNA’) is 
similarly amplified and labeled with a different fluores-
cein dye. Finally, the differentially labeled DNA samples 
are mixed and co-hybridized to a microarray composed of 
DNA or oligonucleotide probes that represent the regions 
of the genome that one would like to probe for binding 
of the TF of interest. An enrichment factor is calculated 
that denotes the extent to which each genomic region is 
enriched by immunoprecipitation relative to the control 
DNA. ChIP-chip provides a genome-wide view of pro-
tein-DNA interactions with the mapping of TF-binding 
sites (TFBSs) on large swaths of the genome, giving a 
comprehensive understanding of where the TFs interact 
with the genome in vivo.
Cross-linking of DNA and proteins is required to fix the 
TF of interest to its binding sites. Formaldehyde is the 
most commonly used because the cross-links it forms are 
heat-reversible, permitting the downstream amplification 
of the immunoprecipitated DNA. Formaldehyde cross-
links protein to both DNA and protein, and thus alterna-
tive cross-linking agents have been proposed [158]. The 
extent of cross-linking is critical and depends on the pro-
tein of interest. Cross-linking is generally carried out for 
a few minutes (5–20 min). Too much cross-linking may 
mask the epitopes of TFs, and too little cross-linking may 
lead to incomplete fixation. A time-course experiment is 
always performed to optimize cross-linking conditions.

Figure 8. Verification of a putative operon by RT-PCR. Arrows 
represent the length and direction of transcription of the genes 
on the genome. The horizontal arrow depicts the putative primary 
transcript. The arrowheads indicate the location of primer pairs and 
amplicons. The cDNA and genomic DNA samples are analyzed by 
RT-PCR and PCR, respectively. PCR products are viewed with aga-
rose gel electrophoresis.
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Fragmentation of the chromatin is required to make the 
TF-DNA interactions accessible to antibody for immuno-
precipitation. Sonication is conducted using lower shear-
ing power and turning the power on gradually. Samples 
should be kept on ice at all times to avoid denaturing of 
chromatin, as sonication generates heat. Micrococcal 
nuclease can also be used to digest chromatin [159], but 
sonication is generally preferred as it creates randomly 
sized DNA fragments, with no section of the genomic 
regions being preferentially cleaved by the micrococcal 

nuclease. Sheared chromatin DNA with length of 200–
1500 bp (1–4 nucleosomes) can give a good resolution 
in mapping TF-DNA interactions. Optimal sonication 
conditions depend on cell type, cell concentration and 
sonicator equipment, including the power settings and 
number of pulses. In order to determine the ideal condi-
tions for sonication, one should carry out a preliminary 
experiment where a cell lysate is sonicated for various 
time lengths, and the size of the DNA fragments is deter-
mined by agarose gel electrophoresis.
A well-characterized antibody is crucial in ChIP because 
it must specifically recognize its antigen fixed to chroma-
tin DNA in solutions (see [158] for a method of determin-
ing the efficiency of an antibody to immunoprecipitate its 
target antigen). Antibodies for ChIP are ideally affinity-
purified [160], but some investigators use antisera as an 
antibody source [161]. A polyclonal antibody is thought 
to be preferable to a monoclonal one, since the polyclonal 
antibody consists of a number of molecules that recognize 
different epitopes, which will reduce the probability of all 
epitopes being masked by cross-linking. Preliminary im-
munoprecipitation experiments should be performed to 
determine the appropriate amount of antibody to be used. 
Generally, 2–5 mg of antibody is used for every 20–50 
mg of pure monosomes (a monosome is a complex of two 
subunits of the ribosome).
Low DNA yields (commonly 10–100 ng) from ChIP 
usually require DNA amplification, applied to both IP 
and control DNA samples, for downstream microarray 
detection. Randomly primed [162] or ligation-mediated 
PCR-based [163] methods have been most commonly 
used. Interestingly, use of microarrays containing oli-
gonucleotide probes of large size (60 bp) increased the 
sensitivity greatly, allowing the authors to analyze less 
than 0.5-µg DNA samples, obtained directly from ChIP, 
without any amplification [164]. For fluorescent label-
ing, Cy5 or Cy3 conjugated nucleotide triphosphates can 
be directly incorporated into amplicons [157]. However, 
this may lead to labeling bias; for example, Cy5 tends 
to incorporate more readily than does Cy3. To reduce 
the influence of labeling bias, the incorporated dye is 
reversed in the dual-fluorescently labeled DNA samples 
for separated microarray hybridization (dye swap). Al-
ternatively, indirect methods of labeling incorporate a 
non-fluorescent nucleotide analogue such as aminoallyl 
dUTP, followed by chemical conjugation of the cyanine-
dye to the incorporated nucleotide analogue [165], which 
helps to eliminate the incorporation biases occurred in 
direct labeling.
Comparison of IP and control DNA samples by single-
locus PCR is recommended after ChIP assay (Fig. 10). 
The creation of DNA amplicons for microarray detection 
cannot proceed unless the signal obtained in the control 
PCR shows a higher signal in the IP DNA sample than in 
the control DNA sample. In this approach, the PCR prim-

Figure 9. Procedures for ChIP-chip analysis. The nucleoprotein in 
the cells is cross-linked, extracted and then sonicated to give sheared 
DNA fragments. Antibody against a DNA-binding TF is then used 
to enrich the TF-cross-linked DNA fragments. The enriched DNA 
(IP DNA) and the sheared DNA from cross-linking that had not 
been subject to immunoprecipitation (control DNA) are amplified 
respectively, and labeled with different fluorescent dyes. The dual-
fluorescently labeled DNAs co-hybridize to a microarray imprinted 
with the promoter DNA samples.
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ers are designed from one or two known binding sites of 
the TF of interest and a known negative site as the internal 
control, respectively.
In contrast to a large number of reports in yeast and hu-
man (reviewed in [166–168]), fewer ChIP-chip studies 
have been performed using prokaryotic genomes [161, 
164, 169–173]. DNA microarrays used in these prokary-
otic reports can be assigned to three types: microarrays 
mechanically spotted with PCR products [161, 169, 170, 
172], Affymetrix arrays composed of oligonucleotides 
that are synthesized in situ [171] and high-density arrays 
spotted with oligonucleotides [164, 173]. All [169, 170, 
172] or almost all [161, 171] of the probes represented in 
the microarrays correspond to coding sequences; these 
microarrays have traditionally been used for gene expres-
sion studies. Since the binding sites for TFs in prokary-
otes generally lie relatively upstream of the coding re-
gions for the genes that they control, the signals detected 
in these two kinds of microarrays may arise chiefly from 
the overlap of the fluorescently labeled probes with ei-
ther the sheared DNA fragments with a TFBS or nearby 
coding sequence. These experiments might fail to iden-
tify some target sites and might identify a neighboring 
gene in addition to or even instead of the actual target 
[170]. The high-density arrays used by the investigators 
[164, 173] are spotted with oligonucleotides that space at 
regular intervals across a genome. The most robust mi-
croarray design for ChIP-chip is one having contiguously 
tiled DNA fragments that represent the entire genome 
(tiled microarrays) [168]; nevertheless, unwanted cross-
hybridizations may occur. Microarrays spotted with PCR 
products (about 500 bp) or oligonucleotides (60 bp) cor-
responding to the upstream region of each annotated gene 
may be an alternative (promoter-specific microarrays). 
Promoter-specific microarrays are valuable in particular 
when TF-DNA binding is confined to cis-regulatory se-
quences close to coding regions, and thus they are very 
applicable in prokaryotes. Tiled microarrays are advan-
tageous because they do not require prior knowledge of 
potential binding sites, and they allow one to utilize the 
‘neighbor effect’ (see below) to precisely locate TFBSs 
[174].

ChIP-chip combined with microarray expression 
profiling
ChIP-chip assay and microarray expression experiments 
are complementary. Microarray-based regulon studies 
semi-quantitatively identify genes under either positive 
or negative control of a TF, but have difficulty distin-
guishing between direct and indirect targets. A TF, espe-
cially a global regulator, may indirectly control various 
cellular pathways by acting on other regulatory proteins. 
In addition, when a TF-encoding gene is deleted, some of 
target genes affected by the mutation may have other (not 
regulatory) secondary cellular affects.
ChIP-chip gives us a global understanding of where TFs 
interact with DNA, but in some cases genomic regions 
at which TF-binding is observed are not physiological 
sites at which TF stimulates or represses transcription in 
vivo. Several reasons [175–177] have been presumed into 
account for the occurrence of false positives ChIP-chip: 
(i) these sites are conditional cis-acting elements whose 
regulatory activity depends on other factors or unknown 
growth conditions; (ii) they serve as the storage sites of 
TFs; (iii) they are involved in the regulation of non-cod-
ing transcripts; (iv) there may be fortuitous binding sites 
with no function at all.
Combined analysis of transcriptome and ChIP-chip data 
will correlate the mapping of TFBSs with genes whose 
expression is dependent on a TF. Genes that are located 
at or near a site of TF binding as judged by ChIP-chip, 
and with transcription that is influenced by the disrup-
tion of TF as determined by microarray expression analy-
sis, are most likely targets of direct regulation by the TF 
tested. This kind of incorporated analysis (see examples 
in [170]) provides a relatively small set of candidates that 
can be further tested by traditional biochemical methods, 
but it likely misses some of genes actually under the di-
rect control of a TF. These missing genes may include (i) 
false negatives in ChIP-chip that result from failure to 
amplify some parts of the enriched chromosome DNA by 
PCR or low efficiency of formaldehyde cross-linking at 
some promoters [173], or (ii) genes identified by ChIP-
chip are transcribed at a level too low to be detected by 
microarray expression experiments.

Computational promoter analysis combined with 
genome-wide screening experiments

Patterns, strings and matrices
In contrast to restriction enzymes that bind only to a 
unique and exactly defined DNA sequence, TFs recog-
nize DNA sites containing variations and thus usually 
bind to multiple target sequences with varying affinity. 
This means the binding sites of a given TF on a prokary-
otic genome also vary. However, most of the regulatory 
signals in these binding sites are carried in a short (5–

Figure 10. Single-locus PCR for quality control of ChIP. Primer 
pairs are designed from a known binding site of the TF of interest. 
For a successful ChIP assay, DNA fragments containing this bind-
ing site are enriched. Thus, the amount of PCR product using the IP 
DNA as template must be much higher than that using the control 
DNA as template. PCR amplifications targeting a known negative 
site for the TF are used as normalization.
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20 bp) and relatively conserved sub-region. This region 
represents the predominant contacts with the TF. If a col-
lection of binding sites of a given TF have been defined 
from its target genes by DNase I footprinting, sequence 
alignments of these TFBSs will generate consensus pat-
terns (Fig. 11). As an overrepresented motif recognized 
by a TF, a consensus pattern can be represented as either 
a consensus string or a position-specific scoring matrix 

(PSSM). A string is either a contiguous oligonucleotide 
(e.g. TAGTCGCACTA) or a dimer, W1NxW2, where 
W1 and W2 are short oligonucleotides separated by x 
arbitrary bases [178]. The bipartite characteristic repre-
sented by W1NxW2 results from the fact that many pro-
karyotic TFs have two DNA-binding regions, because of 
either the dimerization of the TF or the presence of two 
DNA-binding domains in a single protein. Thus, the cor-

Figure 11. The position-specific scoring matrix of the E. coli CRP regulator. (a) A frequency matrix describes the alignment of binding 
sites the E. coli CRP regulator (see a review on the CRP regulator in [248]). The matrix contains fb,i that denotes the frequency of nucleotide 
b at position i. The data for this alignment consist of 128 known CRP-binding sites that are available in the RegulonDB database [77]. (b) 
The consensus string generated from the frequency matrix in (a) using the convert matrix tool, a part of RAST [183]. W, A or T. Y, C or T. R, 
A or G. The consensus string of E. coli CRP has been traditionally annotated as AAATGTGATCTAGATCACATTT or TGTGAN6TCACA) 
[249]. (c) A weight matrix derived from the frequency matrix in (a) using the following formula [250]:

p (b, i) =
fb, i + s
N + 4s

W (b, i) = log
p(b, i)
p(b)

where p (b, i) indicates the probability of nucleotide b at position i, s is the pseudocount used to replace zeros to avoid log (0), Wb,i is the 
resulting weight and p (b) is the background probability of nucleotide b. (d) The sequence logo [251] representation generated by the 
WebLogo tool [252].
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responding two conserved regulatory motifs (generally 
each with a length less than 10 bp) can be found in the 
TFBSs [179–181]. A major drawback of the consensus 
strings is that they remove much of the information origi-
nally present in the set of TFBSs. In contrast, a PSSM 
retains most of the information and is better suited to 
evaluate new potential sites [182]. In the PSSM, each row 
represents a position and each column a nucleotide. Rep-
resentation of consensus patterns with PSSMs can give a 
full description of the uneven composition in each posi-
tion, i.e. some nucleotides occur much more frequently 
than others.

Pattern discovery
Computational promoter analysis serves to predict the 
consensus pattern de novo from a set of DNA sequences 
revealed by either ChIP-chip or microarray expression 
analysis (pattern discovery). Microarray expression ex-
periments can reveal wide sets of genes whose transcrip-
tion is affected by an environmental perturbation or the 
disruption of a TF of interest. Upstream promoter-proxi-
mate sequences of these differentially expressed genes 
can be retrieved from the genomes using specific tools, 
for instance, retrieve-seq [183]. Ideally, these differen-
tially expressed genes are assigned into various putative 
operons (see above) before the collection of promoter se-
quences; in this situation, the upstream sequence of every 
first gene in each operon is subsequently collected. De-
spite the conserved motifs recognized by a given TF be-
ing represented only by small DNA fragments rather than 
the large surrounding sequences, and the indirect targets 
of the TF being mixed with the direct targets, searching 
and compilation of potential motifs in the promoter se-
quences with specific pattern discovery algorithms will 
build regulatory patterns from an array of differentially 
expressed genes [184] or a specific cluster of co-ex-
pressed genes [185].
Dozens of pattern discovery algorithms have been devel-
oped in the past few years (Table 2). Systems that inte-
grate versatile tools are also available [183, 186]. Here, 
we give an example of a mix mode proposed by Conlon 
et al. [187] to discover regulatory motifs, for it works 
well for microarray mutant expression data from both a 
single two-sample experiment and multiple time-course 
measurements. In their approach, MDscan [188] is first 
used to generate a large set of non-redundant candidate 
motifs that are enriched in the DNA sequence upstream 
of genes with the highest-fold change in mRNA level, 
under the assumption that genes with the most dramatic 
increase or decrease in mRNA expression are most likely 
to be directly regulated by the TF, and that these might 
contain strong TFBSs. Motif Regressor [187] then scans 
the promoter region of every gene in the genome with 
each candidate motif to measure how well a promoter 
matches a motif (in terms of both number of sites and 

strength of matching). It then uses linear regression anal-
ysis to select motifs whose promoter-matching scores are 
significantly correlated with downstream gene expres-
sion values. When ranking motifs by linear regression 
p-value, Motif Regressor automatically picks the best 
motif and optimal motif width.
ChIP-chip can map the probable TF-DNA interaction 
loci within 1–2-kb resolution. Depending on the ef-
ficiency of chromatin fragmentation and the resolu-
tion of the arrayed DNA elements, arrayed probes rep-
resenting genomic regions both at the binding site and 
near the binding site may be detected as ChIP-enriched 
elements. In addition to this neighbor effect, noise 
may come from the inherent false positives observed 
in ChIP-chip [173]. That notwithstanding, the ChIP- 
chip data provide much more accurate information about 
the genome-wide location of in vivo TF-DNA interac-
tions compared with the microarray expression data. 
Investigators have developed various computational 
methods [188–191] that can examine selected ChIP-chip 
sequences and search for DNA sequence motifs over-rep-
resenting the TF-DNA interaction sites (Table 3).
In spite of the abundance of existing tools for pattern dis-
covery, most of them provide little information for further 
evaluation. Current pattern discovery algorithms are far 
from perfect. Hu et al. [192] designed a comprehensive 
set of performance measures and benchmarked five mod-
ern sequence-based motif discovery algorithms using 
large datasets generated from the RegulonDB database 
[77]. Several factors have been shown to affect prediction 
accuracy, scalability and reliability. Limitations of these 
algorithms come from the inherently low signal/noise ra-
tio in purely sequence-based motif discovery problems, 
the pattern model used to capture regularity among the 
TFBSs and finally local optima phenomena in optimiza-
tion algorithms. However, the authors argue the potential 
of improvement in these algorithms and suggest several 
promising directions for further improvements. In addi-
tion, Tompa et al. [193] described an assessment of 13 
different computational tools for de novo prediction of 
regulatory elements, using eukaryotic data sets derived 
from the TRANSFAC database [194] and found that the 
absolute measures of correctness of these programs are 
low.

Pattern matching
When the consensus pattern for a given TF is either known 
from the literature or databases, or generated as described 
above, one may subsequently find homologues of these 
DNA patterns in the upstream sequences of a set of genes 
from ChIP-chip or microarray expression experiments 
(pattern matching), and even scan the whole genome 
(whole-genome pattern matching) to predict candidate tar-
get genes [195]. These computational approaches (Table 2) 
provide a systematic test for determining whether a gene is 
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likely under the direct control of a given TF, and a frame-
work for continued biochemical analysis.
A big problem of these matching approaches is the fairly 
large number of false positives. Given the short size of 
the consensus sequences and the large size of the input 
sequences, especially complete genomes, a large array 
of matches could be returned after a simple running. 

Combining a set of functionally related TFs [196] and 
searching for their co-abundance [197] can significantly 
increase specificity [198].
Another drawback is that the consensus patterns used 
largely limit the computational searches. The most reli-
able patterns used for searching come from the alignment 
of the available binding sites determined by DNase I foot-

Table 3. Public databases for prokaryotic transcriptional regulation.

Database Features Reference URL

DDBJ all known nucleotide and protein sequences; 
for some genes, there is information on 
location of transcription start point and 
TFBSs

[276] http://www.ddbj.nig.ac.jp

EMBL [277] http://www.ebi.ac.uk/embl.html

GenBank [278] http://www.ncbi.nlm.nih.gov/Entrez

ArrayExpress microarray gene expression data and online 
analysis tools

[279] http://www.ebi.ac.uk/arrayexpress

SMD microarray data along with many tools to 
explore and analyze those data

[280] http://genome-www.stanford.edu/microarray

DBD predicted transcription factor repertoires for 
150 completely sequenced genomes, their 
domain assignments and the hand-curated 
list of DNA-binding domain HMMs

[23] http://stash.mrc-lmb.cam.ac.uk/skk/Cell2/index.cgi?Home

Extra-TRAIN extragenic regions and transcriptional 
regulators of 230 genomes of bacteria and 
archaea

http://www.era7.com/ExtraTrain

BacTregulators transcriptional regulators of AraC and TetR 
families

[281] http://www.bactregulators.org

PRODORIC detailed information about operon and pro-
moter structures, including huge collections 
of transcription factor binding sites

[282] http://prodoric.tu-bs.de

ODB Information about 2000 known operons in 
more than 50 genomes and about 13,000 
putative operons in more than 200 genomes

[145] http://odb.kuicr.kyoto-u.ac.jp

TRACTOR_DB predicted new members of 74 regulons in 17 
gamma-proteobacterial genomes

[283] http://www.tractor.lncc.br

BIND biomolecular interaction network database 
that contains complete information about 
interactions and reactions arising from 
biopolymers (protein, RNA and DNA), as 
well as small molecules, lipids and carbo-
hydrates.

[284] http://www.bind.ca

DBTBS Bacillus subtilis promoters and TFs [285] http://dbtbs.hgc.jp

MtbRegList regulatory DNA motifs, TFs and experimen-
tally identified transcription start points in 
Mycobacterium tuberculosis 

[286] http://www.USherbrooke.ca/vers/MtbRegList

EcoCyc a comprehensive source of information 
on promoters, operons, genetic networks, 
TFBSs, functionally related genes, protein 
complexes and protein-ligand interactions 
in E. coli

[224] http://ecocyc.org

RegulonDB promoters, TFs, TFBSs, terminators, oper-
ons, regulons, transcriptional regulatory net-
works, and growth conditions in E. coli

[77] http://regulondb.ccg.unam.mx/index.html

DPInteract binding sites for E. coli DNA-binding pro-
teins

[287] http://arep.med.harvard.edu/dpinteract

PromEC E. coli promoters with experimentally iden-
tified transcriptional start sites

[288] http://margalit.huji.ac.il/promec
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printing, but in many cases the collection of these bind-
ing sites is too small for sufficient coverage. When the 
authors tested for OxyR binding to six targets predicted 
to have high scores in a computational search in E. coli 
with a motif based on nine known OxyR binding sites, 
only three of them were found to be bound by OxyR in 
DNase I footprinting assays, whereas one predicted bind-
ing site with a low score was revealed to be bound with 
high affinity [199].
An additional problem in pattern searching is that some 
TFs have no consensus sequence common to all or al-
most all of their target genes. For example, the PhoP 
regulator has conserved Mg2+-responsive modulation of 
gene expression [200], but the previously characterized 
(T/G)GTTTA(A/T) motif cannot be detected in many 
promoters newly discovered to be the direct targets of 
PhoP [201].

Biochemical dissecting of transcription factor-DNA 
interactions

Detection of direct binding of transcription factor to 
target DNA
As described above, EMSA has been used widely in de-
tecting and verifying the direct association of candidate 
DNA fragments with a known sequence-specific DNA-
binding protein [202–204]. Three controls in EMSA can 
be utilized to ensure the specificity of the TF-DNA in-
teraction: (i) the most common test is to add unlabeled 
competitor DNA, including target DNA and non-target 
poly(dI-dC) · poly(dI-dC), to compete for the TF of inter-
est. Specificity of binding is indicated when excess unla-
beled target DNA reduces the amount of labeled TF-DNA 
complex, while excess non-target DNA has no effect [203, 
204]; (ii) site-specific mutagenesis of the presumed DNA 
binding site can be used to examine specificity. Altering 
conserved nucleotides in the putative binding region may 
abolish TF-DNA interactions [205]; and (iii) another test 
of specificity is the ‘supershift’ assay. Antibody to the TF 
of interest added to the preformed TF-DNA complex can 
further retard its mobility (supershift) during electropho-
resis [206]. 

Location of transcription factor binding sites
A DNase I footprinting assay is used to identify a pre-
cise TFBS at single-base pair resolution [207]. The end-
labeled DNA probe incubated with the TF of interest 
is treated lightly with the restriction enzyme DNase I, 
which digests nucleic acids starting within the strand and 
makes single-strand breaks (nicks) in the DNA without 
damaging the bases (Fig. 12). With this mild digestion, 
some DNA molecules are not cut at all, and most are cut 
only once. Different molecules are cut in different places, 
so that one gets a family of labeled fragments ending at 

positions throughout the DNA. However, the DNA site 
bound by the TF is protected against restriction enzyme 
cleavage. From the position of the cleavage sites absent, 
the position and extension of the binding site can be de-
duced (see examples in [208]).

Determination of transcription start points
Primer extension can be used to map the 5′ terminus of 
an RNA transcript, which allows one to determine the 
start site of transcription and helps to localize the core 
promoter region [209]. The length of the cDNA reflects 
the number of bases between the labeled nucleotide of 
the primer and the 5′ end of the RNA, and the yield of 
primer extension product reflects the abundance of tar-
geted RNA (Fig. 13) (see examples in [210]).
The above three methods are the most commonly used 
over the last 20 years for biochemical characterization 
of specific TF-DNA interactions. Reports using these 
methods can be found in almost every issue of high-qual-
ity microbial journals. As complementary experiments 
for verification of candidate TF targets that are identi-
fied through genome-wide screening methods, including 
ChIP-chip [170], microarray expression analysis [211] 
and computational prediction [199], they are now proving 
their greater utility in gene regulation research. In addi-
tion to prototypes using radiochemicals, non-radioactive 
derivatives have also been established [212–214]. A big 
advantage of these methods over traditional radioactive 
methods is that the DNA probe can be labeled with differ-
ent fluorescein dyes, which provides simultaneous detec-
tion with capillary electrophoresis and automated DNA 
sequencing [215, 216].

Public databases for prokaryotic transcriptional 
regulation

The amount of both experimentally validated and compu-
tationally predicted knowledge of prokaryotic transcrip-
tional regulation is ever increasing, providing important 
insights into a variety of biological processes. To make 
maximum use of these data, electronic databases have been 
widely developed in the past few years (Table 3). Most of 
them are integrated with useful tools that are either Web 
based or downloadable, as well as links to related Web 
sites and even training courses. These databases serve the 
scientific community as a repository for data to facilitate 
access and to be used subsequently for specific investi-
gations. Given the attraction of unceasing improvement 
and easy access, more and more people in the community 
now appreciate the importance of databases in spreading 
knowledge. It should be noted here that the majority of da-
tabase authors and curators receive little or no remunera-
tion for their efforts and that it is still difficult to obtain 
money for creating and maintaining a database [217].
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Four (EcoCyc, RegulonDB, DPInteract and PromEC) of 
the 14 databases listed in Table 3 are specific for E. coli, 
which represents the best-studied biological model and the 
primary reference organism. In addition to a long history 
of intense biochemical and genetic investigations, much 
research on computational biology, including transcrip-
tion and regulation, has been reported on E. coli over the 
past few years. The large amount of accumulated knowl-
edge on this bacterium constitutes the foundation for the 
proposal of the International E. coli Alliance (IECA) 
[209], and also strongly benefits current studies in genet-
ics, genomics, transcriptomics, proteomics, bioinformat-
ics and systems biology of every other organism. The four 
databases of E. coli represent the relevant knowledge in 
a computable and easy-to-use manner, providing a blue-
print for predicting regulatory elements (promoters, TFs, 

TFBSs and operons), reconstructing the metabolic path-
ways with regulatory information and finally modeling 
regulatory networks.

From specific gene regulation to regulatory network

Network motifs
Transcriptional regulatory networks (TRNs), which con-
trol gene expression temporally in a cell, provide the solid 
framework for structural and functional analysis of gene 
regulation in an organism. The most basic components in 
TRNs are TFs and their target genes. The regulatory in-
teractions – binding of TFs to the promoters of their target 
genes – in a TRN are usually depicted as a directed graph 
in which nodes are connected by edges [218]. Nodes re

Figure 12. DNase I footprinting. Promoter DNA samples are generated by PCR. The noncoding or coding strand of promoter DNA is 
radioactively labeled, and incubated with a purified TF protein. After partial digestion with DNase I, the resulting fragments are analyzed 
by denaturing gel electrophoresis. The sequence ladders containing the products of a sequencing reaction are generated with the same 
primers used to synthesize the DNA fragment for DNase I treatment. The DNA sequence ladders are used as co-ordinates of the region 
protected against DNase I cleavage. 
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present TFs and their target genes, while edges represent 
direct regulatory interactions, either activation or repres-
sion.
Network motifs are defined as the over-represented pat-
terns of topological interaction between nodes (TFs and 
target genes); they recur in many different parts of a 
network at frequencies much higher than those found in 
randomized networks [219, 220]. In general, the known 
true TRNs in bacteria and yeast can be categorized by 
six basic motifs (Fig. 14) [220, 221]. The first motif is 
the feed-forward loop in which the first TF regulates a 
second one and both regulate a common target gene. The 

second motif, called ‘bin-fan’, consists of two input TFs 
that bind together to two genes. The above two motifs ap-
pear to be the major network motifs found in bacteria and 
yeast. In contrast, the following four motifs are relatively 
rare in the existing TRNs [220, 221]: (i) a single-input 
module that is defined by a set of target genes that are 
controlled by a single TF; (ii) an autoregulation loop that 
consists of a regulator that targets itself; (iii) for a multi-
component loop, two TFs that regulate each other; and 
(iv) in a regulator chain motif, a set of TFs that regulate 
one by one to constitute a regulatory chain.
Network motifs represent the simplest units of the net-
work architecture, allowing an easily interpretable view of 
the TRNs [220]. Each of these motifs plays a specific in-
formation-processing role in the network. Network motifs 
can self-organize to produce TRNs because of the large 
ratio of genes to TFs in the genomes; in this way links 
that are already present in the motifs, without the addition 
of extra connections, define an extensive network that in-
cludes the majority of nodes in the entire network [222]. 
The stability of the TRNs to small perturbations is highly 
correlated with the relative abundance of these network 
motifs, which is a driving force defining the non-random 
organization of the networks [223]. It has been shown that 
TFs whose transcripts have short half-lives are signifi-
cantly enriched in motifs [222]. This enrichment enables 
the network to adapt quickly to environmental changes and 
mitigates gene expression fluctuations, or internal noise.

The true transcriptional regulatory network  
in E. coli
The RegulonDB [77] and EcoCyc [224] databases con-
tain a comprehensive set of experimental evidence on 
the direct regulatory interactions between TFs and their 
targets genes in E. coli, providing a prerequisite for the 
construction of the genome-wide true TRN. Although 
the earlier versions of these two databases have different 
content due to the variable use of gene names and syn-
onyms, they are synchronized beginning with version 9.0 
of EcoCyc and 4.4 of RegulonDB [225]. The TF-DNA 
interaction datasets in RegulonDB and EcoCyc was used 

Figure 13. Primer extension. An oligonucleotide primer is designed 
to be complementary to a portion of the RNA transcript of each op-
eron. The primer is end-labeled, hybridized to the RNA and extended 
by reverse transcriptase using unlabeled deoxynucleotides to form 
a single-stranded DNA complementary to the template RNA. The 
resultant cDNA is analyzed on a sequencing gel as for DNase I foot-
printing. To serve as sequence ladders, sequencing reactions were 
also performed with the same primers used for primer extension.
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Figure 14. The six basic network motifs detected in the TRNs. (a) The network motifs. (b) A presumed TRN in which the six motifs in 
(a) can be found.
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to generate the genome-wide TRN of E. coli as early as 
4 years ago, with an emphasis on identifying statistically 
over-represented motifs [220]. More recently, a extended 
E. coli TRN [226, 227] was reconstructed from Regu-
lonDB and Ecocyc, with an emphasis on determining 
global topological properties.
The feed-forward loop (FFL) is the only three-node mo-
tif and the most predominant motif in the true TRNs of 
E. coli [220, 226, 227]. Theoretical analysis of the func-
tions of the eight structural types of FFLs, as shown in 
Figure 15, indicates that the four incoherent FFLs act as 
sign-sensitive accelerators – they speed up the response 
time of the target gene expression following stimulus 
steps in one direction (e.g. off to on) but not in the other 
direction (on to off) – while the other four coherent FFLs 
act as sign-sensitive delays [228]. Thus, FFLs have im-
portant functions in controlling the dynamic response of 
the target gene. Both coherent and incoherent FFL behav-
ior is sign sensitive; they accelerate or delay responses to 
stimulus steps, but only in one direction.
The newly defined genome-wide TRN of E. coli exhibits a 
distinct multi-layer hierarchical structure [227] (Fig. 16). 
Its primary features are the following: 

1)	 Through the identification of a few multi-component 
loop (MCL) motifs in the network, further survey as-
signs the two genes in each MCL to a single operon 
and thus the same layer. The resulting straightforward 

top-down relationships in the TRN strongly indicate 
the lack of feedback regulation at transcription level. 
It is thought that feedback control might be through 
other interactions at the post-transcriptional level, 
rather than through TF-DNA interaction at the tran-
scriptional level. 

2)	 All of the known six network motifs can be detected 
in the network, while the three-node motif of FFL is 
most highly representative. 

3)	 The distribution of the eight types of FFLs (see above) 
is different from that observed in the previous network 
[220]. In addition, in contrast to the previous notion 
that most motifs overlap and generate distinct homolo-
gous motif clusters and then clusters of different mo-
tifs are connected to make super clusters [229], most 
FFLs interact and form a giant motif cluster. There-
fore, using a more complete and reliable network is 
important for investigating the structure and function 
of gene regulation. 

4)	 The majority of genes are regulated by two or more 
interacting FFLs or other more complicated network 
motifs together with TFs not belonging to any network 
motifs. Only a small portion of the genes are solely 
regulated by only one FFL. 

5)	 TFs within more top layers regulate many genes. In-
deed, the previously identified global transcription 
regulators [10, 21] are located in the few topmost lay-
ers.

Modeling transcriptional regulatory networks from 
various sources of data
Microarray expression data represent the most widely 
available data source for the inference of TRNs. In par-

Figure 15. The eight types of FFLs. In the FFL, two TFs (X and Y) 
jointly regulate a single target gene (Z), meanwhile X controls Y. 
The FFL has three regulatory interactions, each of which can be 
either positive (activation) or negative (repression). Thus, there are 
in total eight structural types of these positive and negative interac-
tions, four of which are termed ‘coherent’ – the sign of the direct 
regulation path (from X to Z) is the same as the overall sign of the in-
direct regulation path (from X through Y to Z) [220, 227, 228]. The 
other four types are called ‘incoherent’, for which the signs of the 
direct and indirect regulation paths are opposite. Some FFL types 
appear in the network more frequently than others [220, 227, 228].
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ticular, genome-wide analysis of changes in gene expres-
sion in response to the disruptions of TFs produce wide 
sets of potential target genes for many TFs in a organism 
such as E. coli [230]. A common subsequent practice is 
to search for cis-acting DNA patterns in the upstream 
sequences of co-expressed genes revealed by microarray 
experiments, although it is often prone to inherent noise. 
Use of large-scale microarray expression data alone or in 
combination with computational promoter analysis has 
provided a powerful framework for TRN reconstruction 
[231–233]. Modeling TRNs in this context is far beyond 
the clustering analysis that only tells us which genes are 
co-regulated rather than what regulates what [234]. TF-
binding data measured by ChIP-chip outline the ability of 
TFs to bind all regulatory regions on a genome, leading to 
great improvement in reconstructing the TRN structures 
over gene expression data [221]. However, current ChIP-
chip studies on the prokaryotes only beginning. That not-
withstanding, a combination of all these data will provide 
a much more sophisticated view of how individual genes 
are ranked in the TRNs (Fig. 17).
A variety of mathematical models have been applied to 
interfer genetic networks, including Boolean networks 
[235], linear models [236], Bayesian networks [237] etc. 
Several excellent reviews [238–240] address these issues 

that thus will not be discussed in this paper. Alternatively, 
statistical methods [241–243] have been proposed to 
identify modules of co-regulated genes from microarray 
expression data and/or ChIP-chip data. These methods 
can be divided into steps that first group genes into mod-
ules that are defined as genes co-regulated by one or more 
TFs, then relate each module to the cellular conditions or 
environmental stimuli that control it and finally discover 
connections between these modules to reconstruct the 
TRNs. Advances in compiling the interactions between 
TFs and target genes for the reverse engineering of TRNs 
will require the development of new and more powerful 
computational and visualization tools, especially those 
integrating diverse data types and transforming them into 
biological models. Algorithms are certainly proposed by 
experts in biostatistics, but the tools should be presented 
in a user-friendly format to allow numerous biological 
researchers to gain more information from their experi-
ments.

Conclusions

Current efforts to measure global changes in gene ex-
pression with DNA microarrays, map genome-wide TF-

Figure 17. Modeling TRN from a combined source of data. Shown are various data sources for TRN modeling. A combination of these 
data will provide a much more sophisticated view of how individual genes are ranked in the TRNs.
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DNA interactions with ChIP-chip, find cis-acting DNA 
elements in the promoters of genes of interest by com-
putational methods, and detect specific TF-DNA inter-
actions and locate TFBSs within upstream sequences of 
the regulated genes with conventional biochemical tech-
niques have already produced good understanding of the 
genetic circuitry of transcription regulation in prokary-
otes. Continuing studies should identify more and more 
target genes of more and more TFs in prokaryotes, espe-
cially model organisms such as E. coli. This would pro-
vide needed data for reconstructing regulatory networks. 
A gene in cells may be regulated by different TFs, and 
the contribution from different TFs may function under 
different conditions. The relationships between TFs and 
structural genes may be much more complex than we 
imagine. A considerable challenge is thus to find novel 
environmental cues under which TFs trigger gene regula-
tion [244]. Data from mRNA expression and TF-DNA 
interactions give only limited information that does not 
include post-transcriptional events and protein-protein 
or protein-metabolite interactions. The TRNs thus give 
only part of the picture of cell cycles. A complete genetic 
network should be a three-dimensional architecture in-
volving regulators, enzymes, structural genes, functional 
RNAs and metabolites, which controls temporal changes 
in gene expression for growth, proliferation, adaptation 
and development. The genetic networks reconstructed 
in the future will be no doubt very complex. ‘The more 
complex the networks become, the closer they are to mir-
roring the dynamic changes that occur in a living cell’ 
[245].
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