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Abstract. Telomeres are protective structures located
at the ends of all eukaryotic chromosomes. Telomere
shortening upon cell division restricts the proliferative
capacity of most normal human cells due to the lack of
telomerase, an enzyme synthesizing telomeric DNA
de novo. Since most tumor cells are reliant on the
activity of telomerase to maintain the stability of

predominantly short individual telomeres, inhibition
of this enzyme presents an attractive approach for a
mechanism-based anticancer therapy. Here, we re-
view advances and obstacles in targeting telomerase
and telomeres and discuss potential applications of
such approaches for the clinic.
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Introduction

Telomeres are DNA-protein complexes that cap the
end of linear eukaryotic chromosomes preventing
them from degradation, recombination, fusions with
other chromosomes and being mistaken for DNA
double-strand breaks. Human telomeric DNA con-
sists of repeated units of TTAGGG/AATCCC dou-
ble-stranded sequences ending in a single-stranded G-
rich 3’ overhang, that contributes to a higher-order
terminal loop structure, the t loop [1]. This specialized
structure is built and stabilized by proteins like
telomeric-repeat-binding factors TRF1 and TRF2,
and protection of telomeres-1 (POT-1), which bind
specifically to telomeric DNA. In humans, telomere
length is in the range of 2–15 kb [2]. A loss of telomeric
DNA is found with each cell division due to the end-
replication problem [3], nucleolytic processing of the
5’ strand [4] and oxidative damage [5]. Since short
telomeres drive eukaryotic cells into replicative

senescence, the maintenance of functional telomeres
is crucial for continued proliferation. Almost all
eukaryotic cells depend on the enzyme telomerase, a
reverse transcriptase, for the de novo synthesis of
telomeres [reviewed in ref. 6].
The ribonucleoprotein complex telomerase uses an
RNA component TR as a template for the production
of telomeric repeats via the catalytic subunit TERT
[7]. Telomerase activity in most human cells is down-
regulated during embryogenesis leading to successive
telomere shortening, which ultimately limits their
proliferative capacity [mortality stage 1 (M1) or
replicative senescence]. The growth arrest in M1 is
mediated by DNA damage signaling of a few short
telomeres and can be bypassed by inactivation of cell
cycle checkpoint genes like p53, resulting in continued
proliferation eventually leading to critically short
telomeres and massive cell death [mortality stage 2
(M2) or crisis]. Very infrequently, single cells can
escape M2 by maintenance of their telomeres, becom-
ing immortal cancer cells; this is realized in 90 % of all
human tumor cells by reactivation of telomerase [8]
(Fig. 1). Although mortality stages M1 and M2 are* Corresponding author.
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considered as tumor suppressor mechanisms, critically
short telomeres may also promote genetic instability
in a distinct genetic context [9].
The fact that the vast majority of tumor cells exhibit
telomerase activity in order to bypass the telomere
checkpoint and to obtain unlimited growth potential
makes this mechanism an attractive target for selec-
tive cancer therapy. Numerous approaches have been
described during the last 10 years on how to exploit
this hallmark of cancer cells for therapeutic purposes
(Fig. 2). In principle, they can be divided into the
following major categories: (i) Direct or indirect
inhibition of the enzyme activity and consecutive
telomere decapping, (ii) immunotherapy using
hTERT as tumor-associated antigen and (iii) gene
therapy with telomerase promoter driven suicide
genes.

Targeting hTERT

Since the rate-limiting compound of telomerase
activity is hTERT and its expression is basically
restricted to tumor cells, it is the ideal target for
telomerase-based therapies. The rationale for target-
ing telomerase was supported in 1999 by two inde-
pendent studies demonstrating that over-expressing
dominant-negative (DN) mutants of hTERT resulted
in telomerase inhibition, concomitant telomere short-
ening and subsequent growth arrest and apoptosis in
various tumor cell lines [10, 11]. However, these
studies directly face a major difficulty of such ap-
proaches, namely a lag phase between the initiation of
telomerase inhibition and an impact on the prolifer-
ative capacity correlated with the initial telomere
length of the investigated cell lines [12, 13]. Therefore,
tumor cells with long telomeres will keep growing
upon telomerase inhibition until substantial telomere
erosion will has occured. This side effect limits the
application of telomerase inhibitors in situations of
high tumor mass in a patient.

Figure 1. Telomere dynamics and telomerase inhibition. Telomerase is down-regulated during embryonic development (�), which leads to
telomere shortening with successive cell divisions in most somatic cells. Continued proliferation is associated with telomere dysfunction
(blue bar) and growth arrest. Bypassing telomere-dependent growth barriers – termed mortality stages M1 and M2 – and reactivation of
telomerase (+++) allow immortalization in 90% of all tumor cells. Adult stem cells from highly proliferative tissues undergo telomere
erosion despite detectable levels of telomerase activity (+). Telomerase inhibition over an adequate period of time (red bar) could
selectively kill tumor cells and spare other telomerase-positive cells like stem cells, since tumor cells exhibit predominantly shorter
telomeres.
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Nucleoside analogs
Tested originally in the ciliate Tetrahymena, nucleo-
side analogues like 3’-azido-2’,3’-dideoxythymidine
(AZT) showed less than an efficient and specific
inhibition of telomerase [14]. Other reverse tran-
scriptase inhibitors such as L-dTTP and L-dGTP also
have low specificities for telomerase [15], in contrast
to 6-thio-7-deaza-2’-deoxyguanosine 5’-triphosphate
(TDG-TP), which is not only more specific but also
has a low IC50 (0.06 mM) [16].
Although other nucleoside triphospate analogs like
arabinofuranyl-guanosine (Ara-G), dideoxynosine
(ddI) and dideoxyguanosine (ddGTP) inhibit telo-
merase and induce telomere shortening as well [17], in
vivo studies supporting the efficiency of nucleoside
analogs are still missing.

Non-nucleosidic catalytic inhibitors
A large-scale screen of a chemical library identified
the highly selective isothiazolone-derived telomerase
inhibitor 2-[3-(trifluoromethyl)phenyl]isothiazolin-3-
one (TMPI), which most likely acts at a cysteine
residue (IC50 1 mM) [18].
The quinone antibiotic beta-rubromycin inhibited
activity of human telomerase with an IC50 of 3 mM,
in addition to showing activities on retroviral reverse
transcriptase, mammalian DNA polymerases and
terminal deoxynucleotidyl transferase, classifying it
as a more diversified DNA polymerase inhibitor [19,
20].
At first more promising was the discovery of a
synthetic, non-nucleosidic compound (2-((E)-3-naph-
talen-2-yl-but-2-enolylamino)-benzoic acid)
(BIBR1532), a potent and highly selective telomerase
inhibitor capable of inducing telomere shortening and
senescence in human cancer cells [21]. BIBR1532

Figure 2. Targeting telomerase. Various strategies to achieve the common purpose of telomerase inhibition include repression of
telomerase genes, posttranslational modifications of the telomerase proteins, direct ablation of enzymatic activity and blocking of the
accesibility of telomerase substrate, the telomere. Note the potential dual role of hTERTin telomere maintenance and cell survival, making
hTERT a particularly interesting target for telomerase-based cancer therapies. For details see text.
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seems to interfere with the processivity of the
telomerase enzyme, in the manner of a mixed-type
non-competitive inhibitor with a proposed drug-bind-
ing site distinct from the sites for deoxyribonucleo-
tides and the DNA primer. Conformational changes in
the telomerases catalytic center make BIBR1532
mechanistically similar to non-nucleosidic inhibitors
of HIV1 reverse transcriptase [22].
Despite a high specificity for telomerase and a low IC50

of 0.093 mM, the lag phase was even more pronounced
than in the genetic approach described above. While
DN-hTERT-over-expressing clones of the lung cancer
cell line NCI H460 typically stopped dividing after 25
population doublings (PDs), a similar effect on the
growth of cells of the same line treated with 10 mM
BIBR1532 did not occur until 130 PDs [12] (Fig. 3). It
is likely that both approaches interfere with the
enzymatic activity of telomerase, eventually resulting
in telomere dysfunction. The difference in the timing
of the effect may be found in the extent of telomerase
inhibition. Over-expression of DN-hTERT is accom-
panied by a complete ablation of the enzyme activity,
which is a prerequisite for a grave disturbance of
telomere function with a direct consequence on the
growth capacity of the cells. Minimal telomerase
activity possibly remaining in the BIBR1532-treated
cells could be sufficient to repair the damage on
telomeres, which subsequently does not have such a
significant effect on proliferation. Data of our own
laboratory suggest that the degree of telomere dys-
function is decisive for the efficiency of telomerase
inhibition. The number of decapped chromosome
ends and end-to-end fusions per metaphase, as a
measure of telomere dysfunction, is twofold higher in

the genetic compared to the pharmacological ap-
proach [12]. Interestingly, when using the compound
at higher concentrations ranging from 30 to 80 mM, a
direct cytotoxic effect was observed in malignant cells
of the hematopoietic system, which appears to derive
from direct damage to the structure of individual
telomeres, in contrast to normal hematopoietic pro-
genitor cells, which were not affected [23]. In general,
a selective decapping of chromosomes in tumor cells
with concomitant cell death is a highly investigated
strategy bypassing extensive lag phases in the course
of conventional telomerase inhibition.
A similar compound 2,3,7-trichloro-5-nitroquinoxa-
line (TNQX), like BIBR1532 a mixed-type non-
competitive inhibitor, is a highly potent (IC50 =
1.4 mM) and selective antitelomerase agent, which
caused progressive telomere erosion and induction of
the senescence phenotype in the breast cancer MCF7
cell line [24]. A later survey found no evidence for
such activities of related water-soluble benzohetero-
cycle triosmium clusters in the same cell line, suggest-
ing problems for their cellular uptake, and even
resulting in an acute cytotoxicity [25].

Targeting hTERT mRNA
Newer genetic approaches introduce small interfering
RNAs (siRNAs) complementary to sequences pres-
ent in the hTERT mRNA in various cell lines in order
to deplete hTERT expression and telomerase activity
[26 – 30]. Besides telomere shortening and inhibition
of cell proliferation, down-regulation of hTERT
expression by siRNA attenuated the tumor growth
in a xenograft model [30]. Interestingly, depletion of
hTERT by siRNA in cervical cancer cells facilitated

Figure 3. DN-hTERT versus pharmacological telomerase inhibition. The gold standard for telomerase inhibition is still a dominant-
negative mutant of the telomerase catalytic subunit hTERT (DN-hTERT). Over-expressing DN-hTERT leads to complete ablation of
telomerase activity and growth inhibitory effects, e.g. after only 25 population doublings (PD*) in clones of the lung cancer cell line NCI-
H460 [12]. Pharmacological telomerase inhibitors like the non-nucleosidic compound BIBR1532 often reveal a more pronounced lag
phase [21] despite high specificity for telomerase and low IC50 values, mainly due to a reduced bioavailability of such compounds and
incomplete telomerase inhibition. An effect on the growth of cells similar to DN-hTERT in the NCI-H460 line treated with 10 mM
BIBR1532 did not occur until 130 PDs. CPDL, cumulative PD level.
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the induction of apoptotic cell death by chemother-
apeutic agents via the activation of Bax protein, which
in turn could be abolished by Bax knockout [31].
Moreover, such hTERT siRNA treatment of carcino-
ma cells increased the sensitivity not only to chemo-
therapeutic agents but also to ionizing radiation [32].
Similar to siRNA approaches, antisense-based treat-
ments of tumor cells using phosphorothioate anti-
hTERT oligomers can cause a rapid loss of tumor cell
viability and induce apoptosis independent of telo-
merase enzymatic function [33 – 37]. For a review, we
refer the reader to Folini and Zaffaroni [38].
A third attempt to disrupt hTERT mRNA expression
is the use of hammerhead ribozymes, small catalytic
RNA motifs that catalyze self-cleavage reactions.
Targeting the 5’ end of hTERT mRNA by such means
inhibited telomerase activity in endometrial cancer
cell lines [39]. Other anti-hTERT hammerhead ribo-
zymes have pro-apoptotic effects on various tumor
cell lines, again mostly independent of telomere
shortening [40 –42]. In line with the hTERT siRNA
studies, such hTERT-specific hammerhead ribozymes
could chemosensitize cancer cells [40], highlighting
the advantages of a combined treatment using con-
ventional chemotherapy and anti-telomerase strat-
egies.
In general and in contrast to DN mutant hTERT,
inhibited hTERT protein expression related to its
mRNA disruption seems to prevent potential hTERT
downstream pathways apart from functions in telo-
mere maintenance. This novel dual role of hTERT
provides an opportunity in attacking two essential
cancer properties, namely unrestricted proliferation
and protection from apoptosis by targeting only one
molecule.

hTERT phosphorylation inhibitors
Telomerase activity can be modulated by a variety of
protein kinases. In such a way, protein kinase C (PKC)
increases telomerase activity via hTERT phosphor-
ylation [43]. PKC inhibitors like bis-indolylmaleimide
I (BIS) and H-7 were shown to inhibit telomerase
activity in nasopharyngeal [44, 45] and cervical [46]
cancer cells. Recently, the exact mechanism by which
PKC activates telomerase was elucidated, demon-
strating the relevance of hTERT phosphorylation by
PKC for telomerase holoenzyme integrity and func-
tion [47]. Interestingly, the same study provided
evidence that disruption of PKC phosphorylation by
BIS significantly increases the chemosensitivity of
tumor cells to cisplatin.
Protein kinase B (Akt) also phosphorylates hTERT
which in turn enhances telomerase activity [48].
Overall, inhibiting protein kinases does not seem to
be the most specific way to suppress telomerase

activity due to the broad spectrum of molecules
targeted by those enzymes.

Inhibiting hTERT transcription
Since telomerase activity seems to be controlled
mainly by regulation of hTERT transcription, a
complex network of transcription factors is required
[for a review see ref. 49]. Several tumor suppressor/
oncogene pathways are involved in natural hTERT
repression, including the Mad1/c-Myc and the trans-
foming growth factor (TGF)-beta pathway, which
could be exploited to inhibit cancer growth [50 – 52].
In this regard, recent studies demonstrated that
natural products like gambogic acid and genistein
are able to repress c-Myc, a known activator of
hTERT transcription, which ultimately results in a
reduction of telomerase activity in cancer cells [53,
54]. Interestingly, genistein also showed a down-
regulation of Akt activation and thereby hTERT
phosphorylation, indicating a double effect on telo-
merase activity [54].
Ceramides have been demonstrated to have a repres-
sion effect on other positive regulators of hTERT
transcription, namely Sp1/Sp3 [55].
In addition, arsenic is thought to inhibit hTERT
transcription via c-Myc and Sp1 repression, but it has
carcinogenic properties as well [56, 57].

Inhibiting hTERT nuclear translocation
Telomerase activity can also be regulated by the
translocation of hTERT between the cytoplasm and
the nucleus [58], exhibiting another point for attack-
ing telomerase-positive tumor cells. Tumor necrosis
factor alpha (TNF-alpha) modulated telomerase ac-
tivity by inducing translocation of hTERT protein
from the cytoplasm to the nucleus by direct interaction
with NF-kappaB p65. This TNF-alpha-induced
hTERT nuclear translocation could in turn be blocked
by specific inhibitors of the NF-kappaB pathway [59].
Since NF-kappaB is a key actor in tumorigenesis,
targeting it should be effective in the prevention and
treatment of cancer.

Targeting hTR

The telomerase core components hTERTand hTR are
essential and sufficient to reconstitute telomerase
activity [60]. In contrast to hTERT, hTR is constitu-
tively expressed in most cells, but does not seem to
have a function in telomerase-negative cells, render-
ing it a valuable target for telomerase-inhibition.
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Antisense (template and non-template specific)
Antisense oligonucleotides could either target the
hTR template region to inhibit directly the enzymatic
activity of telomerase or hTR non-template regions to
disrupt the assembly of the telomerase holoenzyme.
The hTR template region must be exposed since it
interacts directly with the telomeric DNA which
makes it the perfect target for such oligonucleotides.
In fact, using a long antisense-RNA-targeting tem-
plate and non-template regions proved the identity of
hTR as the RNA component of telomerase that
caused telomere shortening and cell death in HeLa
cells [61]. A vector derived from this hTR antisense
construct was transfected into human malignant
glioma cells where it inhibited telomerase activity
and subsequently induced either apoptosis or differ-
entiation [62]. Although initial antisense approaches
like the ones mentioned above functioned in principal
they also revealed major weaknesses of the systems
used in terms of impaired cellular uptake, stability and
bioavailability [63]. Further development coud be
achieved by modifications of the oligonucleotides,
increasing their stability and bioavailability. Among
the compounds stablized in this way are peptide
nucleic acids (PNAs) carrying a pseudopeptide back-
bone consisting of N-(2-aminoethyl) glycine instead of
the sugar phosphates in the DNA, which bind RNA
with high affinity [reviewed in refs. 64 and 65). While
targeting very specific regions in hTR by PNAs,
telomerase activity could be inibited with IC50 values
in the pico- to nanomolar range [66]. High-affinity
recognition by overlapping PNAs was performed to
identify nucleotides within the RNA active site of
telomerase that are determinants for inhibitor recog-
nition [67].
In general, the cellular uptake of PNAs is inefficient
and could be enhanced by electroporation [68],
lipofection [69, 70], the use of PNA-cationic peptide
conjugates [71] or photochemical internalization [72],
all of which eventually improve the extent of telomer-
ase inhibition in various cell lines, in part resulting in
telomere shortening and reduced cell survival [68, 70,
72].
In contrast to high selectivity of inhibition by PNAs,
phosphorothioate (PS) oligomers inhibit telomerase
in a non-sequence-selective fashion, binding to the
primer binding site of hTERT but poorly to hTR [73].
In general, the inhibition for PNAs is considerably
more efficient than inhibition by analogous PS
oligomers [66]. Nevertheless, an inhibitory effect on
telomerase activity and cell growth in a colorectal
cancer cell line was demonstrated using PS oligomers
[74].
Despite low binding affinity relative to PNAs 2’-O-
methyl-RNA (2’-O-MeRNA) RNAs with methyl-

substituted ribose, show potent telomerase inhibition
in human cancer cell lines with concomitant telomere
shortening leading to apoptosis [75, 76].
Telomerase inhibition at nanomolar concentrations
was achieved using RNAs with methoxyethyl-substi-
tuted ribose [2’-O-(2-methoxyethyl)-RNA] in DU145
prostate cancer cells [77]. The pharmacokinetic prop-
erties of these molecules were enhanced by PS linkers
and the use of corresponding RNA/DNA hybrids.
2’,5’-Oligoadenylate (2 –5A) antisense oligomers
were also shown to be potent inhibitors of telomerase
[78, 79]. 2 – 5A oligomers are supposed to recruit
RNase L which in turn cleaves the RNA template [80].
Treatment of prostate, bladder and glioma cancer cells
with appropriate 2– 5A antisense telomerase RNAs
exhibited promising results in vitro and in vivo, similar
to the significant suppression of tumor growth through
induction of apoptosis in nude mice models [81 – 84].
Synergistic effects were described for treatment of
malignant glioma cells with 2 – 5A oligomers in
combination with cisplatin [85].
Interstingly, the short-term pro-apoptotic effect of
2 – 5A antisense oligomers seems to be independent of
telomere shortening and might be activated by
caspase family members [86].
Another group of oligomeric telomerase inhibitors
contain N3’-P5’ phosphoramidate (NP) linkages and a
variety of 2’-deoxy, 2’-hydroxy, 2’-methoxy, 2’-ribo-
fluoro and 2’-arabino-fluoro substituents in the ribose
rings [87]. These compounds demonstrated sequence-
specific and dose-dependent activity, with IC50 values
in the sub-nanomolar concentration range [87]. A
further improvement is provided by sulfur containing
N3’-P5’ thio-phosphoramidates (NPS) which combine
the advantages of PS and NP oligonucleotides [88].
Much attention has been paid to the optimized 13-mer
NPS GRN163 complementary to a sequence partially
overlapping the hTR template and (like all NPS
oligomers) working rather in the mode of a template
antagonist than through the classic antisense mecha-
nism including RNase-H activation [89]. GRN163
exhibited telomerase inhibition at nanomolar concen-
trations, gradual telomere shortening, followed by
cellular senescence and/or apoptosis in tumor cells,
dependent on the initial telomere length [89, 90]. The
efficiency of GRN163 in several xenograft models was
also higher when cells with shorter telomeres, like
DU145 prostate cancer cells, were used [74, 89, 91]. As
with other oligonucleotides, the cellular uptake of
such a compound is a major obstacle and is facilitated
by the use of lipid carriers applied together with the
compound [88, 89]. In this regard, a lipid modification
of GRN163 (GRN163L), where a palmitoyl group is
directly attached to the thio-phosphoramidate, was
shown to enhance the potency of telomerase inhib-
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ition and biodistribution [92 – 94]. Xenograft models
of human lung and liver cancer substantiate the
efficacy of GRN163L at pharmacological doses,
smooth the way for this compound into the clinic
[93, 95]. GRN163L has recently received clearance by
the US Food and Drug Administration to enter human
phase I/II clinical testing for chronic lymphocytic
leukemia.

Ribozymes
Hammerhead ribozymes cleaving the hTR template
were able to inhibit telomerase activity in cell extracts
[96], endometrial carcinoma and melanoma cells [97,
98]. More recently, the efficacy of telomerase inhib-
ition in terms of telomere shortening and a lower
proliferation rate with hTR-directed ribozymes was
shown in human breast cancer cells [99]. Interestingly,
ribozyme-mediated suppression of telomerase RNA
in a murine melanoma model revealed that tumor
invasion and metastatic potential were reduced,
suggesting that telomerase controls the expression of
several glycolytic pathway genes [100].

RNA/DNA heteroduplex
The DNA synthesis by telomerase requires the
transient formation of a duplex consisting of the
hTR RNA and telomeric DNA, which could be
theoretically disturbed by agents binding specifically
to this heteroduplex. Several compounds of this type
showed promising lead activity in the low micromolar
range [101, 102]. However, it remains unclear how
RNA/DNA duplexes involved in other cellular proc-
esses would be affected by such approaches. Never-
theless, the susceptibility of this heteroduplex was
recently demonstrated by the identification of hPif1, a
human helicase that inhibits telomerase activity.
Ectopic expression of hPif1 caused telomere short-
ening in HT1080 cells, likely by unwinding the DNA/
RNA duplex [103].

Mutant hTR template/siRNA
In Tetrahymena and yeast, mutations in the template
region of telomerase RNA resulted in the synthesis of
mutant telomeres and in impaired cell growth and
survival [104, 105]. Over-expression of mutant hTR in
immortal human cells led, furthermore, to a reduction
in plating efficiency and growth rate and an increase in
the number of senescent cells in colony-forming assays
[106]. More recently, a mutant hTR was reported to
increase the sensitivity to antitumor agents in cancer
cells with different initial telomere lengths and
mechanisms of telomere maintenance and without
requiring overall telomere shortening [107].
siRNAs targeting hTR are in principle able to inhibit
telomerase activity [108]. Recently, lentiviral co-

transduction of a mutant hTR and an siRNA directed
against wild-type hTR – each separately providing
pro-apoptotic effects – was shown to result in a fast
and synergistic killing of cancer cells independent of
p53 and telomere shortening [109]. The same group
investigated the cellular and gene expression respons-
es in line with siRNA-mediated telomerase RNA
knockdown in cancer cells indicating a novel response
pathway, which includes suppression of specific genes
implicated in angiogenesis and metastasis, and which
is distinct from the expression profile changes induced
by telomere-uncapping mutant template telomerase
RNA [110]. These studies add evidence for functions
of telomerase in tumor growth and progression be-
sides telomere maintenance and suggest a form of
�telomerase-addiction� of cancer cells. Nevertheless,
the efficacy of approaches combining mutant hTR and
siRNA seem to depend on a catalytically active
hTERT that is able to act on telomeres, as the use of
different hTERT variants in such experiments dem-
onstrated [111].

Targeting additional telomerase components

The telomerase holoenzyme requires besides the
catalytic subunit hTERT and the RNA template
hTR many other factors for its assembly, activation,
stabilization and regulation which could in theory be
targeted to inhibit telomerase activity [reviewed in ref.
112]. In vivo and in vitro experiments with antisense
oligonucleotides against each of six telomerase com-
ponents demonstrated a decrease of telomerase
activity, providing a rationale for these approaches
[113].

Telomerase-associated protein 1
The function of the telomerase-associated protein 1
(TP1) remains unclear although it is a main compo-
nent of the holoenzyme. However, treatment of
leukemic cells with poly(ADP-ribose) polymerase
(PARP) inhibitors suppressed telomerase activity by
down-regulating TP1 expression while leaving
hTERT and hTR expression unaffected [114].

Chaperones
Blocking the interaction of hTERT with the molec-
ular chaperones p23 and Hsp90 inhibits the assembly
of active telomerase in vitro [115]. Since a wide range
of oncogenic key proteins including c-Raf-1, ErbB2,
mutant p53, c-Met and Akt/PKB require Hsp90, its
inhibition should block multiple-mission-critical on-
cogenic pathways in the cancer cell, making Hsp90 an
exciting new target for the treatment of cancer [for a
review see ref. 116]. Two well-known Hsp90 inhib-
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itors (geldanamycin and 17-allylamino,17-deme-
thoxygeldanamycin (17-AAG)) demonstrated inhib-
ition of telomerase activity in human melanoma cells
and subsequent growth arrest. Interestingly, the
sensitivity for 17-AAG was significantly increased
in cell clones stably transduced with a hammerhead
ribozyme targeting hTR [117]. Recent data from
Hsp90 inhibitor experiments suggest that Hsp90 is
needed for loading telomerase onto the telomere
rather than for the assembly of telomerase [118].
Another study in which depletion of functional
Hsp90 by siRNA caused dramatic telomere short-
ening followed by apoptosis in prostate cancer cells
provided evidence of a novel mechanism directly
contributing to telomere erosion while cells exhibit a
high level of nitric oxide synthase (NOS)-dependent
free radical production [119]. Currently, several
geldanamycin- and non-geldanamycin-based com-
pounds are in clinical development.

Gene therapy using telomerase promoter sequences

Since hTERT transcription is largely restricted to
tumor cells, the hTERT promoter is a perfect instru-
ment to guide the expression of therapeutic genes to
these cells.
Proof of principle was given by two initial studies using
hTERT promoter-driven vectors for caspase-8 and
Bax gene expression, which in each case elicited
tumor-specific apoptosis in vitro and suppressed
tumor growth in nude mice [120, 121]. Another
study demonstrated that hTERT- and hTR-promot-
er-driven expression of diphtheria toxin A chain (DT-
A) killed bladder and hepatocellular cancer cells
while sparing telomerase-negative cells [122].
A constitutively active caspase-6 (rev-caspase-6)
should induce apoptosis independently of the initiator
caspases. An hTERT/rev-caspase-6 construct induced
apoptosis in malignant glioma cells, but not in
telomerase-negative cells. In addition, the growth of
tumors in nude mice was significantly suppressed by
the treatment with this construct [123].
The herpes simplex thymidine kinase (HSTK) could
also be expressed under the control of the hTERT
promoter specifically in various tumor cells, sensitiz-
ing them to the pro-drug ganciclovir. Moreover, this
vector caused tumor regression and survival upon
ganciclovir treatment in a xenograft model while
preventing the hepatotoxicity encountered with con-
stitutive promoters [124].
Further analogous studies successfully used the
hTERT promoter to express the Fas-associated pro-
tein with death domain (FAAD) [125], the TNF-
related apoptosis-inducing ligand (TRAIL) [126] and

the bacterial nitroreductase which sensitizes human
cancer cells to the pro-drug CB1954 [127].
Although these results are promising since they
demonstrated the feasibility of hTERT-promoter-
driven suicide strategies, they are hard to translate
into the clinic due to low transduction rates of the used
vector systems in cancer cells. This restriction can be
overcome by using replicating viruses which allow
rapid lysis, spreading of infection and oncolysis
throughout the tumor while leaving normal cells
unaffected [reviewed in ref. 128]. Several studies
used conditionally replicating adenoviruses (hTERT-
Ad) expressing E1 genes under control of the hTERT
promoter which presented selective replication, on-
colysis and spreading in telomerase-positive cancer
cells in addition to growth-inhibitory effects in xeno-
graft models [129 – 132]. The oncolytic effects of such
viruses could be enhanced by modification of their
tropism [133] or their combinatorial application with
chemotherapeutic agents [134] and histone deacety-
lase inhibitors [135]. A higher specificity and broad
anticancer spectrum was demonstrated by the dual
promoter-controlled oncolytic adenovirus CG5757
which features the promoters of hTERT and human
E2F1 genes, to drive E1 gene expression. The E2F1
promoter is active in tumor cells that have a defective
retinoblastoma (Rb) pathway, as in 85 % of all tumor
types which should complement hTERT promoter
activity in the 90 % telomerase-positive tumor cells
[136].

Telomerase immunotherapy

Immunotherapy attempts to stimulate the immune
system to attack cancer cells via its exposure to an
antigen highly specific for the cancer cells. After
hTERT was recognized as a widely expressed tumor-
associated antigen (TAA) capable of triggering anti-
tumor cytotoxic T lymphocyte (CTL) responses [137,
138], it became evident that the telomerase catalytic
subunit would be a valuable target for this type of
therapy. Mouse model systems using TERT RNA-
transfected dendritic cells (DCs) have confirmed
these in vitro observations by the induction of
immunity against tumors of unrelated origin [139]. It
is promising that there are no signs of autoimmunity
expressed by hTERT-specific CTLs not lysing either
telomerase-positive CD34+ hematopoietic progeni-
tor cells or activated T lymphocytes in vitro [137, 138,
140], making hTERT a candidate for a �universal
cancer vaccine� [141]. Since these successful prelimi-
nary studies, rapid progress has been made in the
development of telomerase-dependent immunother-
apy towards clinical application. A phase I clinical

Cell. Mol. Life Sci. Vol. 64, 2007 Review Article 913



trial demonstrated the immunological feasibility of
vaccinating patients against telomerase. Here,
hTERT-specific T lymphocytes were induced in four
of seven patients with advanced breast or prostate
carcinoma after vaccination with dendritic cells pulsed
with hTERT peptide, resulting in partial tumor
regression in one patient [142]. Another clinical trial
was directed against hTERT mRNA-transfected den-
dritic cells in patients with metastatic prostate cancer
[143]. A trial investigating vaccination with hTERT
peptides in patients with non-small cell lung cancer
demonstrated immune responses in 12 of 24 evaluable
patients during the primary regimen, with a complete
tumor response observed in 1 patient [144]. After
demonstration of the safety, tolerability and clinical
response to telomerase vaccinations, clinical phase II
and III trials are currently underway to evaluate the
potential of immunotherapy exploiting hTERT as a
universal cancer antigen.

Targeting the telomere

Telomerase inhibition can be achieved not only by
affecting the holoenzyme but also by sequestration of
its substrate, the telomere itself. Admittedly, there is a
major concern targeting telomeres, since – unlike
telomerase – they are present in normal and cancer
cells, hence the risk of cytotoxicity in the course of
such approaches. Nevertheless, blocking the access of
telomerase to the telomere by altering its structure has
been well investigated, since it has the potential for
more rapid growth-inhibitory effects in tumor cells
than �classic� telomerase inhibition [145, 146].
DNA sequences which are rich in guanine like the
telomere are capable of forming four-stranded struc-
tures called G-quadruplexes. In a first study, it was
shown that telomeric G-quadruplexes can be stabi-
lized by K+ which in turn inhibits telomere elongation
by telomerase [147]. A small molecule (2,6-diami-
doanthraquinone) was discovered that had similar G-
quadruplex-stabilizing effects [148]. Since then a large
number of quadruplex ligands of different compound
classes have been developed potentially inhibiting
telomere accessibility for telomerase. G-quadruplex-
stabilizing agents include cationic porphyrins
(TMPyP4) [149], perylenes (PIPER) [150], trisubsti-
tuted acridines (BRACO19) [151], bisacridines [152],
pentacyclic acridines (RHPS4) [153], natural products
(telomestatin) [154], ethidium derivatives [155], di-
benzophenanthrolines [156], triazines (12459) [157],
fluoroquinophenoxazines (QQ58) [158] and anionic
porphyrins (NMM) [159].
In particular, telomestatin appears very promising due
to its high selectivity toward quadruplexes compared

to other nucleic acid conformations [154, 160].
Telomestatin induces apoptosis in various tumor cell
lines and is more selective for cancer cells than for
normal progenitor cells [160– 165]. In addition, telo-
mere shortening is observed in cells treated with
telomestatin, but appears earlier than expected for
simple telomerase inhibition [160, 166]. Telomestatin
treatment of U937 cells in a xenograft mouse model
displayed decreased tumor telomerase levels and
reduced tumor volumes without any signs of toxicity
[167]. Most recent publications indicate a mode of
action of telomestatin by dissociation of telomere-
binding proteins TRF2 and POT1 eventually inducing
a rapid decrease of the telomeric (3’)-overhang and of
the double-stranded telomeric repeats [168 – 170].
Finally, a total synthesis of telomestatin has been
achieved in good accordance with the natural product
[171].
BRACO-19, a member of the family of trisubstituted
acridines produces growth inhibition and senescence
in human tumor cell lines at subcytotoxic concentra-
tions, after days rather than weeks [172]. A fast in vivo
efficacy was seen for BRACO-19 against a uterus
carcinoma xenograft model which produced growth
inhibition of 96% compared with controls [173].
Nevertheless, the very poor permeability of BRACO-
19 might be its main biopharmaceutical limitation.
Further applications will require a suitable formula-
tion to warrant adequate delivery across cellular
barriers [174].

Targeting telomere-associated proteins

As mentioned above telomere-binding proteins like
TRF2 play a fundamental role in the stability of the
telomere. Over-expression of a DN-TRF2 in human
cancer cell lines leads to rapid telomere loss and
senescence or apoptosis [145, 146, 175].
The other important duplex telomeric DNA binding
factor TRF1 inhibits telomere elongation by telomer-
ase [reviewed in ref. 176]. The poly(ADP-ribose)
polymerase tankyrase catalyzes poly(ADP-ribosyl)a-
tion of TRF1 blocking the ability of TRF1 to bind to
the telomere. This eventually results in the disruption
of the t loop structure allowing telomerase to act on
the telomere, rendering tankyrase itself an attractive
target for cancer therapy. In fact, it was demonstrated
recently that pharmacological targeting of tankyrase 1
enhances telomere shortening by means of a telomer-
ase inhibitor and results in earlier crisis of human
cancer cells [177]. Thus, telomerase inhibition in
combination with PARP inhibition might represent a
potential strategy to circumvent the problem of the lag
phase by application of a telomerase inhibitor alone.
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Indeed, several PARP inhibitors are currently in
clinical trials, not only for cancer but also for other
diseases such as stroke, myocardial ischemia, diabetes
and central nervous system injury.

Conclusions

The impact of telomerase in tumor development and
sustainment has been clearly established during the
last decade, suggesting that targeting this enzyme is a
valid strategy to combat cancer. However, translation
of this knowledge into the clinic appears to be slow.
Using genetic approaches, the complete inhibition of
telomerase activity has been shown to induce a strong
antiproliferative signal in various cancer cell lines and
xenografts. However, a major obstacle with direct
inhibition of telomerase activity is the problem of the
delay in antiproliferation depending on the length of
telomeres in a given tumor cell. From a clinical
perspective, preselection of patients with very short
telomeres and low tumor burden may be necessary to
show any effect within a short time of treatment.
Consequently, there is a need for measurement of the
telomere length in a pathological specimen. Alterna-
tively, telomerase inhibitors could be used as an
adjuvant treatment in combination with surgery,
radiation treatment and conventional chemotherapy.
Another potential application could be postremission
therapy in order to eliminate minimal residual disease.
Thus, treatment may have to be administered contin-
uously for weeks to months and the success of a
telomerase inhibitor therapy requires compounds that
are be sufficiently well tolerated, have a low toxicity
profile and are easy to administer (ideally orally). It
will be challenging to design clinical studies in which
endpoints such as telomerase suppression and telo-
mere shortening are monitored properly.
Unfortunately, the development of non-nucelosidic
telomerase inhibitors has not yet generated com-
pounds which are capable of inducing a complete
inhibition of the enzyme activity in an in vivo situation
over a longer time period. It is likely that even low or
transient telomerase activity is sufficient to repair the
damage on telomeres which subsequently does not
have a significant effect on proliferation. However, it
is interesting that an oligonucelotide-based therapeu-
tic has moved from preclinical development into a
phase I/II clinical trial in patients with chronic
lymphocytic leukemia. This compound, GRN163L,
is a telomerase RNA (hTR) template antagonist agent
with a lipid palmitate moiety preventing hTR forming
a complex with hTERT. It has been reported that this
oligonucleotide has sufficient cellular uptake and
biodistribution at even low concentrations in vivo,

which is crucial for fulfilling the criteria of success
mentioned above. Furthermore, it is not excluded that
significant off-target effects may occur upon treat-
ment by this approach. Nevertheless, the ongoing trial
is a landmark in the development process of telomer-
ase therapeutics, and it will be challenging to deter-
mine if the preclinical concepts hold true for the
treatment of cancer patients.
Another potential way to circumvent the lag phase
and to induce direct telomere damage in tumor cells is
by small-molecule G-quadruplex-interactive agents
which lead to rapid onset of senescence or apoptosis. It
will be crucial to identify compounds with low toxicity,
high efficacy and specificity at nanomolar concentra-
tions in order to translate these concepts into the
clinic. A further perspective would be to inhibit not
only the activity of telomerase but to suppress or
knockdown hTR or hTERT, as was demonstrated by
siRNAs. In addition to effects on telomeres, other
response pathways related to angiogenesis and meta-
stasis seem to be specifically involved. However, the
translation of this approach seems to be more
sophisticated than using drugs.
Apart from the effects on tumor cells, it is often argued
that telomerase inhibition might also affect prolifer-
ation of highly proliferative organs such as germ cells,
stem cells and lymphocytes which express low levels of
telomerase activity. However, since they have in
general longer telomeres than tumor cells, telomere
loss is likely to be moderate without reaching critical
telomere dysfunction [178] (see also Fig. 1). Given the
detrimental effects of conventional cytotoxics on the
hematopoietic stem cell pool, this issue should not
raise too much concern. However, clinical studies
need to address this question carefully.
In summary, translation of the biology of telomeres
and telomerase into the clinic has started (inhibitors,
immunotherapy, oncolytic virus therapy), and has to
be seen as the result of extensive basic research during
the last 15 years. Whether or not we are entering a new
era of targeted therapy for cancer can only be
answered by the outcome of well-designed clinical
trials.
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