
Abstract. Controlling iron/oxygen chemistry in biology
depends on multiple genes, regulatory messenger RNA
(mRNA) structures, signaling pathways and protein cata-
lysts. Ferritin, a protein nanocage around an iron/oxy
mineral, centralizes the control. Complementary DNA
(antioxidant responsive element/Maf recognition ele-
ment) and mRNA (iron responsive element) responses
regulate ferritin synthesis rates. Multiple iron-protein in-
teractions control iron and oxygen substrate movement
through the protein cage, from dynamic gated pores to
catalytic sites related to di-iron oxygenase cofactor sites.
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Maxi-ferritins concentrate iron for the bio-synthesis of
iron/heme proteins, trapping oxygen; bacterial mini-fer-
ritins, DNA protection during starvation proteins, reverse
the substrate roles, destroying oxidants, trapping iron and
protecting DNA. Ferritin is nature’s unique and con-
served approach to controlled, safe use of iron and oxy-
gen, with protein synthesis in animals adjusted by dual,
genetic DNA and mRNA sequences that selectively re-
spond to iron or oxidant signals and link ferritin to pro-
teins of iron, oxygen and antioxidant metabolism.

Key words. Iron; oxygen; mRNA regulation; DNA regulation; ferritin.

Introduction

The dependence of aerobes on iron and oxygen for life is
an apparent paradox in biology. On the one hand, both el-
ements are absolutely necessary for central reactions in
respiration. On the other hand, iron and oxygen chemistry
produce free radicals that damage DNA, lipids and pro-
teins, and have been implicated in the etiology of cancer
and aging [1]. As a result, cellular iron is tightly regulated
and compartmentalized by nature to maximize controlled
reactions with oxygen in cells, just as gasoline is com-
partmentalized to maximize reactions with oxygen in
combustion engines. The ferritin family of nanocage pro-
teins is central to the natural regulation of iron in cells.

Thousands of iron atoms combined with oxygen atoms
are concentrated inside the proteins as solids that over-
come the 1014-fold gradient between iron concentrations
in ferritin and the aqueous environment to provide physi-
ological iron concentrations for biochemical reactions. In
addition, excess iron is trapped with oxygen in the ferritin
mineral to minimize radical chemistry and reactive oxy-
gen species (ROS) [2]. Deletion of a ferritin gene is lethal
in mice [3], and several human diseases are associated
with mutations in ferritin [4, 5]. In animals, ferritin oc-
curs as a mixture of subunits comprised of the more
generic H type, and the animal-specific L type. When as-
sembled, ferritin with each type of subunit mixture differs
in the rates and mechanisms for mineralizing iron [6–10].
In vivo, each cell type synthesizes a specific ratio of H-
ferritin and L-ferritin protein subunits during differentia-* Corresponding author.
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tion; the H:L protein subunit ratio is usually stable except
during chronic iron overload [11–13]. H-ferritin subunit
proteins have multiple catalytic sites, one/H-subunit, that
oxidize and couple two ferrous atoms within millisec-
onds, >80,000¥ faster than an L subunit protein, re-
viewed in reference [8]. The products of the active site in
animal H-ferritins are a diferric-oxo mineral precursor
and hydrogen peroxide [10, 14]; the peroxide product is
both a genetic signal [15–17], and a dangerous metabolite
causing radical chemistry and cell damage. The role that
hydrogen peroxide, generated during ferritin mineraliza-
tion, plays in cell homeostasis is not clear, but could re-
late to the evolution of the animal gene for catalytically
inactive L-ferritin to avoid overwhelming antioxidant re-
sponse systems. The cell specificity of the H:L protein
subunit ratio could reflect, for example, part of the cell-
specific control of hydrogen peroxide concentration and
signaling.
A multi-layered system of genetic controls has evolved to
regulate ferritin synthesis under the control of both iron
and oxygen, which emphasizes the key role played by fer-
ritin in controlling iron and oxygen interactions. Both H-
ferritin and L-ferritin synthesis are known to be con-
trolled at the level of transcription and translation in re-
sponse to iron and oxygen, creating an intricate system of
regulation and revealing the importance of sensitive sig-
nal responses for ferritin expression. 

Cellular regulation of ferritin transcription

Most studies examining transcriptional regulation of fer-
ritin have focused on H-ferritin genes. In the early studies
of Torti and colleagues, cytokine regulation was the focus
(reviewed in [18]). Where they observed that induction of
H-ferritin by tumor necrosis factor a [19] and interleukin
1a [20], required an nuclear factor kB (NF-kB) sequence
located 4.8 kb upstream of the transcription start site [21].
Others showed differentiation-dependent increases in
transcription rate required a cis-acting NF-Y sequence
0.077 kb upstream of the transcription start site [22] or
thyroid hormones [23]. In contrast, c-myc decreased H-
ferritin expression [24].
Both oxidants and antioxidant response inducers regu-
late H-ferritin gene transcription, in addition to cy-
tokines and hormones. For example, hydrogen peroxide
activates the murine gene [25]. Antioxidant response in-
ducers (phase II enzyme-inducing compounds) such as
tert-butylhydroquinone, oltipraz and 1,2-dithiole-3-
thione have similar effects [26]. The DNA sequence re-
sponsible for the hydrogen peroxide response is an an-
tioxidant responsive element (ARE), 4.1 kb upstream of
the transcription start site. Deletion of the H-ferritin
ARE promoter sequence ablated the transcriptional re-
sponse to the oxidant stressors [26]. The ARE is found in

the promoter of several antioxidant response and detoxi-
fication genes such as thioredoxin reductase and quinone
reductase and allows for a concerted defense against ox-
idative insults.
Recent studies from our lab [27] on the L-ferritin gene
identified a functional ARE 1.4 kb upstream from the
transcription start site which contrasts with the H-fer-
ritin gene where the ARE is located at 4.1 kb [26]. The
ARE in the human L-ferritin gene has high homology to
other functional AREs [27], and also contains a Maf
recognition element (MARE) subdomain, which is
known to regulate heme-responsive genes through the
heme binding repressor Bach 1 [28]. ARE inducers
which activate transcription of L-ferritin include those
for the murine H-ferritin gene and other antioxidant re-
sponse genes such as tert-butylhydroquinone or sul-
foraphane [27]. Quantitative effects of the antioxidant
response inducers of the human L-ferritin gene were
comparable to thioredoxin reductase and quinone re-
ductase [27, 29]. Iron inducers (ferric ammonium cit-
rate) had little effect on the DNA-ARE, in contrast to
antioxidant response inducers for other DNA-AREs, or
iron for the iron responsive element (IRE) messenger
RNA (mRNA) regulator. The antioxidant inducer tert-
butylhydroquinone had little effect on the IRE, indicat-
ing that the responses of the DNA and mRNA regula-
tory elements to iron and oxidant signals were selective
and complementary [27].
Iron induction of L-ferritin gene transcription only occurs
after chronic or acute exposure to very high iron doses,
and has been observed using nuclear run-on assay in
HeLa cells and rats [12, 30], and Northern blots in rats
and frogs [11, 13]. The effects of high concentrations of
iron on ferritin mRNA concentrations, shown by using
microarray analyses, were a 1.5-fold increase in L-ferritin
with no change in H-ferritin [31]; treatment with the iron
chelator deferoxamine decreased L-ferritin mRNA 1.5-
fold. The iron effect was specific to the L-ferritin subunit;
the mechanism for the differential regulation by iron of
L-ferritin and H-ferritin is not known.
Hemin (ferric-protoporphyrin IX chloride), which in-
duces MARE/ARE genes such as heme oxygenase and b-
globin [32, 33], affected ferritin expression in cultured
cells [22, 34–36]. In our recent studies we showed that the
hemin effect on transcription required the native MARE/
ARE sequence and was iron independent, since the re-
sults for hemin and protoporphyrin IX were comparable
[27]. Moreover, when both the MARE/ARE and the
mRNA regulator, the IRE, were present, the hemin re-
sponse was synergistic, possibly because of direct effects
of hemin on DNA and mRNA protein repressors [27, 37,
38]. Ferritin linked to other iron genes such as ferroportin
and the transferrin receptor by the mRNA-IRE, and to
oxygen and antioxidant responses genes by the DNA-
ARE, is at the center of iron and oxygen regulation.
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Cellular regulation of ferritin mRNA translation

Ferritin synthesis rates respond to changes in cellular iron
and oxygen, or oxidants in plants, animals and bacteria
[18, 39–43] (fig. 1). However, the dual control points for
synthesis of ferritin protein, transcription (concentration
of mRNA) and translation (utilization of mRNA for pro-
tein synthesis), appear at this time to be specific to cyto-
plasmic ferritin in animals. Thus, the genetic mechanisms
and the gene structure vary, as well as the cellular loca-
tion of the ferritin protein itself, even though the signals
and the nuclear gene product (ferritin protein) are con-
served (fig. 1). Whether organelle/nuclear cross-talk
eliminates the need for mRNA control, or whether incor-
poration of information for organelle targeting overrides
the mRNA control, is not known.
In animal ferritin mRNA, a specific 3D loop-helix-loop-
helix structure called the IRE is defined by sequence
analysis, nuclear magnetic resonance (NMR) spec-
troscopy and chemical probing [44–47]. The IRE struc-
ture, through binding a protein repressor, IRP-1 or IRP-2,
controls rates of ribosome binding to ferritin mRNA.

Synthesis of a group of proteins for iron or oxygen me-
tabolism is controlled by variant, mRNA-specific IRE
structures, which create a hierarchal/graded set of re-
sponses to iron or oxygen signals [48]. Ribosome binding
is regulated when the IRE is in the 5¢ untranslated (UTR)
region, by interfering with eIF4F/ribosome interactions
[49], but when an IRE is in the 3¢ UTR, embedded in
AURE sequences as in the transferrin receptor mRNA,
protein synthesis is controlled through degradation/
turnover of the mRNA. The family of mRNA-specific
IRE structures, and the iron-responsive element binding
proteins 1 and 2 (IRP-1, IRP-2), repressors of translation
or degradation, form a natural, combinatorial array of
RNA/protein complexes [48] where responses to the
same signals vary quantitatively.
Interactions between the IRE and IRP-1 or -2 reflect cell
concentrations of iron, hydrogen peroxide, nitric oxide
and dioxygen, as these inorganic compounds or elements
influence the formation of mRNA/repressor complexes.
Sensing mechanisms for IRP-1 and -2 are not fully un-
derstood but have a number of potential links to other
metabolic systems. For example, phosphorylation, a com-
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Figure 1. Comparison of the genetic target and signals that regulate ferritin synthesis in plants animals and bacteria. Modified from X. Liu,
K. Hintze, B. Lonnerdal and E. Theil [Biochemical Research, in press]. Symbols: blue circles, nuclei with double-stranded DNA; red
squares, ferritin (animal mitochondrial precursor); red circles, animal mitochondria; green squares, plant plastid precursor; green ovals,
plant plastid or in the cytoplasm; complexes of blue helices with red ovals, mRNA/ribosome complexes; grey circle and blue stem loop,
IRE (iron responsive element)/IRP (iron regulatory repressor protein) complex of ferritin mRNA. In bacterial cells, ferritin is shown in the
cytoplasm along with mini-ferritin (Dps protein); mini-ferritin is also shown complexed to DNA as in bacterial chromatin. 

Ferritin Regulation and Subcellular Distribution

Animals Plants Bacteria

Protein Location* Gene regulation Signals

Animals Cytoplasm, DNA, mRNA Fe, O2, H2O2

Mitochondria

Plants Plastid DNA Fe3+(Cit)6 or 
Fe3+ + ascorbate

Bacteria Cytoplasm, DNA Stress, Starvation
DNA complex

* All cells, varied with development/environment



monly used regulatory signal, was shown by Eisenstein
to alter formation of a FeS cluster that inhibits RNA bind-
ing and confers aconitase activity on the protein [50, 51];
IRP-1 also binds heme [37, 52]. The heme precursor, d-
aminolevulinic acid, has been shown to promote IRP-1 in
RNA binding activity [53] which suppresses ferritin
translation.
IRP-2/IRE interactions are regulated by protein turnover,
in apparent contrast to IRP-1, and are dependent on an
iron or oxygen-dependent ubiquitination and proteaso-
mal degradation pathway. A 73-amino acid sequence in
IRP-2 absent in IRP-1 was, at one time, considered as a
site for modification by iron or heme binding [54, 55],
but elimination of the domain had little effect on iron or
heme-mediated IRP-2 degradation; mRNA binding was
altered, however [56]. An alternative IRP-2 degradation
mechanism, particularly important during anoxia, re-
cently studied by Leibold and co-workers, is an iron- and
oxygen-dependent 2-oxo-glutarate hydroxylase [57]. In
another oxygen-related study, Rouault and co-workers,
using macrophages isolated from either IRP-1 or -2
knockout mice cultured in either 3 or 21% oxygen, ob-
served altered L-ferritin expression in 3% oxygen when
cells lacked IRP-2 but not IRP-1 [58]. Such data suggest
that IRP-1 and -2 can complement each other at high oxy-
gen tension, but that IRP-2 is the only functional repres-
sor at low oxygen tensions. Redundancy of IRP-1 and -2
functions may only be relevant in cell types exposed to
the higher levels of oxygen, and indicates the importance
of oxygen as a signal in ferritin expression, a conjecture
supported by antioxidant response elements in both H-
and L-ferritin genes.
Oxidative stress can also alter IRP/IRE interactions. For
instance, IRP-1 RNA binding is diminished by xanthine
oxidase-generated oxidative stress in rat liver lysates
[59]. However, the opposite effect has been observed us-
ing intact cells and the hydrogen peroxide generator glu-
cose oxidase, and was preventable by protein phosphatase
inhibitor treatment, indicating cell- or membrane-depen-
dent variation and sensitivity [60]. Both IRP-1 and -2 can
be phosphorylated by protein kinase C, which increases
IRE binding [61]. An example of oxidative stress that al-
ters the IRE/IRP-1 complex occurs when cells are ex-
posed to hydrogen peroxide. IRP-1 exists without or with
a peroxide-sensitive FeS cluster that, when disrupted,
converts IRP-1 to the mRNA binding and explains, at
least in part, observations of increased IRP-1 RNA bind-
ing after exposure to hydrogen peroxide [60].
The IRE-mRNAs are a family that encodes proteins of
iron metabolism, with common, noncoding regulatory el-
ements that are very highly conserved phylogenetically
(95%), but which have mRNA-specific variations (~70–
85% sequence conservation) among the IRE sequences in
a single organism [48]. The mRNA-specific differences
in the IRE family affect IRP-1 and -2 binding [62–64] and

relate to bulges or loops in the middle of the IRE helix;
the specific folds observed in vitro, can also be observed
by IRE ‘footprinting’ in vivo [65]. IRE/IRP interactions
display selectivity analogous to interactions of combina-
torial DNA promoters with repressors [66]. Higher-order
structural features of some IRE-mRNA structures have
been revealed by NMR spectroscopy [45–47] and nucle-
ases sensitive to RNA folds (reviewed in reference [48]).
IRP-2 binding is more selective than IRP-1, and is partic-
ularly sensitive to the structure in the middle of the base-
paired stem, the bridging base pair across the terminal
loop and flanking regions [62, 64, 67]. Specific base pairs
in the stem contribute smaller effects than changing the
loop or bulge/loop structures [68–70]. Additional effects
of RNA context are known, such as base-paired flanking
regions [71], but the full picture of the contribution of
IRE-mRNA structure itself to regulation remains to be
developed. The differences among the mRNA-specific
IRE structures corresponded to differences observed in
sensitivity to iron in vivo [72].

Structure and function of the ferritin family

Ferritins share a unique protein cage structure, 8–12 nm
in outer diameter [7, 8], that most closely resembles
small, spherical viruses. How nature encodes the infor-
mation for assembly of protein subunits into hollow cages
is not fully understood. But in the case of ferritin, the
structure has been preserved throughout evolution, even
though the primary sequence can vary so much as to
be almost unrecognizable. Bacterial ferritin from Esche-
richia coli, for example, was thought to be completely un-
related to eukaryotic ferritins, but has a similar crystal
structure and function to human ferritin [73]; eukaryotic
ferritins share 65–90% sequence identity. In the case of
bacterial mini-ferritins or Dps proteins [8], which were
named for DNA protection during starvation, intra-genus
sequence can be as high as 85%, e.g. in Bacilli; however,
the conservation of E. coli/Bacillus anthracis sequence is
only 28% [X. Liu and E. C. Theil, unpublished results];
the secondary and quaternary structures of all Dps pro-
teins are very similar (see [8, 74, 75] for a review and e.g.
[74–78]).
Polypeptide subunits of ferritin spontaneously fold into
four helix bundles and assemble into hollow spheres with
inner cavities 5–8 nm in diameter, depending on whether
there are 12 (mini-ferritins) or 24 (maxi-ferritins) sub-
units. When there are only 12 subunits in a ferritin, as in
the bacterial Dps mini-ferritin proteins, the catalytic site
for iron oxidation and hydrogen peroxide or dioxygen re-
duction is created between two subunits with residues
contributed by each subunit [75–78]. In the case of maxi-
ferritins, whether in bacteria, plants or animals, the reac-
tion sites are within each subunit, buried deep within the
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helix bundles, and with iron residues contributed by each
helix in the subunit. A gene duplication in animals en-
codes the catalytically inactive L-ferritin subunit, a pro-
tein with a very different charge distribution [8] created
by an apparently small number of changes in amino acids
[9]. Each tissue has a specific ratio of H:L subunits in fer-
ritin proteins [6–8].
The three types of iron sites identified in ferritins are: (i)
ferroxidase, (ii) nucleation and (iii) iron entry/exit pores
[7, 79]. Catalytic activity is a property of mini- and maxi-
ferritins and both form ferric-oxy minerals. Kinetic prod-
ucts of the Fe2+ oxidation reactions and the acceptors of
the reactions between substrates appear to differ [80–83].
The ferroxidase sites in maxi-ferritin subunits, which oc-
cur in the center of the helix bundle of ferritin-H subunits
in animals, plants and bacteria [6–8], have been mainly
characterized in cytoplasmic ferritins of animals. There,
the catalytic site couples two ferrous ions with dioxygen,
via a diferric peroxo intermediate, e.g. [68], to form two
products: a diferric oxo/hydroxo precursor of the ferritin
mineral and hydrogen peroxide [8, 10, 14, 68, 84, 85].
Peroxide can be a signaling molecule [15], and might in-
fluence the increased expression of the animal-specific
L-ferritin subunit, which increases during chronic iron
overload [11–13]. 
The ferroxidase activity of maxi-ferritins has been stud-
ied extensively by our group and those led by Arosio, Chi-
ancone, Chasteen and Harrison. In eukaryotic ferritins,
the catalytic site binds two iron atoms, one each in sites A
and B, which are about 15 Å from the entry pore. The path
taken by iron ions to the ferroxidase site is unknown. But
the distance is traversed rapidly (ms) [9]. Site A, in maxi-
ferritins, has three invariant amino acid residues con-
tributed from helices A, B and C (E23, E58, H61, or E27,
E62 and H65 in an alternate numbering system). In a
number of other di-iron sites such as those in the related
oxygenase families, exemplified by ribonucleotide re-
ductase, D9-fatty acid desaturases and methane monoxy-
genase, both iron atoms are bound by E,ExxH, ligand
sets, and the iron remains at the active site as a cofactor.
In ferritins, by contrast, iron is a substrate that leaves the
active site; the second iron site, site B, is much weaker.
Site B has three invariant amino acids, E58, E103, and
Q137, plus a fourth iron ligand at residue 140 that is
variable; the relationship of residue 140 to Fe has been
observed in ferritin chimeras [9] and in other metal ion
co-crystal structures [86–88]. Examples of the distribu-
tion of residue 140 in natural eukaryotic ferritins are D in
Arabidopsis or frog liver, A in human liver, pig, bean, rice
or maize, and S in soy, frog, rat, mouse cytoplasm and hu-
man/mouse mitochondrial ferritins. The variation in
residue 140 of site B in the ferritin ferroxidase site ex-
plains at least in part the observed kinetic differences be-
tween ferritins in vitro [9, 85, 89–91]. While the physio-
logical significance of the different active sites in H-fer-

ritin subunits at residue position 140 remains unknown,
the cell or organelle specificity of expression [11, 92] in-
dicates a biological role.
In the mini-ferritins, each ferroxidase site is formed by
amino acids from two subunits, at the subunit dimer in-
terface facing the mineralization cavity [74–76, 81]. The
sites have been less well characterized than in eukaryotic
ferritins [82], but it is clear that the iron and oxygen
chemistry appear to have different physiological roles in
the two proteins based on the oxidative sensitivity of Dps
mutants. In maxi-ferritins, especially in eukaryotic maxi-
ferritins, oxygen is used to concentrate and mineralize
iron, both of which are substrates. In bacterial Dps mini-
ferritins, iron is used to detoxify oxygen (or hydrogen
peroxide) [81–83]. The ferroxidase site Fe ligands are
currently being studied, e.g. [82]. How the iron moves
from the entry pores to the ferroxidase sites, from the fer-
roxidase sites to the mineralization cavity and from the
mineral in the cavity to the exit pores remains a mystery.
The active sites in the mini-ferritins are just beginning to
be probed by mutagenesis [82], and the mechanisms for
the switch between dioxygen hydrogen peroxide electron
acceptors is under current investigation.
Nucleation sites in ferritins are clusters of conserved car-
boxylate residues that face the inner cavity of ferritins,
where the mineral forms. In maxi-ferritins, substitution
of the nucleation site carboxylate with alanine in L-fer-
ritin subunits completely inactivated protein-dependent
mineralization [9, 93]. However, in H-ferritin subunits
with catalytically active ferroxidase sites, the mineraliza-
tion rates were unchanged by mutations at the nucleation
sites [94], presumably because formation of the diferric
mineral precursors at the ferroxidase sites was sufficient
for mineralization at normal rates. Future experiments
will be required to fully define the routes taken by iron af-
ter leaving the ferroxidase site.
Gated pores through which iron, thought to be Fe2+, en-
ters and leaves the protein nanocage are formed by six
sets of helix segments, a pair from each of three subunits,
which create eight equivalent, gated pores in maxi-fer-
ritins and four pores in mini-ferritins (fig. 2). Mutation
analysis has shown that the pore residues D127 and E130
[95, 96] in maxi-ferritins control entry of ferrous iron to
the di-iron catalytic sites, but there are no crystal struc-
tures of the mutant proteins. In contrast, R72/D122 and
L110/L134, the pore gates for iron exit, control electron
transfer to the ferric ferritin mineral and/or chelation of
iron dissolved from the mineral, and mutated pores have
been observed in protein crystals [97] (fig. 2). Mutation
of any of the four pore gate residues increases rates of
iron chelation [98]; in one mutant, L134P, the mineral
was removed from the protein nanocages 30-fold faster
than wild type. High electrostatic negativity around the
pores in mini- and maxi-ferritins [8] is thought to attract
the iron cations. 
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Ferritin is a normal part of foods, such as legumes, and
the iron in ferritin is well-absorbed [100]. Recent exper-
iments in humans confirm those in model animals [101–
104] and confirm earlier preliminary observations [105].
The resistance of soy ferritin to digestion and the detec-
tion of soybean ferritin inside cultured cell models of gut
enterocytes indicate that the ferritin macromolecule in-
teracts directly with the gut cells and raise the possibility
that soybean ferritin pores may play a role in iron ab-
sorption.

Ferritin and infection

Two types of ferritin play specific roles during infection
and inflammation. Ferritin in host cells is the canonical
maxi-ferritin with 24 subunits that has accumulated iron
resulting from diminished iron recycling via hepcidin
signaling [106–108]. A mini-ferritin in the cells of the in-
vading bacteria has 12 subunits [8].
Macrophage ferritin accumulates during inflammation,
when serum iron decreases and iron in specific cells in-
creases, leading to ferritin with more iron/protein cage.
The protein cages of such ferritin, when compared with
protein isolated from the same tissue in control animals,
has increased iron uptake; when both types of ferritins
are mineralized in vitro, rates of iron release are de-
creased compared with the ferritin from control tissue

[109]. The differences in the protein account, at least in
part, for the increased amount of iron/protein in the mol-
ecule, but the molecular changes responsible for the al-
tered function of ferritin protein are unknown [110, 111].
Lysosomes in cells accumulating iron during inflamma-
tion, also have increased amounts of ferritin and the fer-
ritin degradation product hemosiderin. Whether lysoso-
mal ferritin protects the lysosomes, represents the result
of increased cytoplasmic ferritin, is damaged ferritin tar-
geted for degradation or all of the preceding possibilities
is the subject of some discussion [112–114]. Worth not-
ing is the fact that most experimental studies of tissues
with increased iron and ferritin use as a stimulus exter-
nal ‘elemental iron’ such as ferrous sulfate or ferric am-
monium citrate or iron carbonyl. Given the emerging
complexity of iron signaling [106, 108, 115], changes in
iron homeostasis induced by excess elemental iron,
which increases total body iron, may be inadequate to
model changes in iron homeostasis when iron distribu-
tion changes among specific cells, with total body iron
remaining relatively constant (inflammation, chronic
disease and infection). When maxi-ferritins use dioxy-
gen to concentrate iron by conversion to the mineralized,
hydrated ferric oxide, dioxygen is coincidently removed
from the cytoplasm, which may itself change expression
of the proteins of iron homeostasis.
Pathogen ferritins that are particularly important to host
protective mechanisms are the mini-ferritins [8], or Dps
proteins, that protect DNA [40] when exposed to ferrous
ions and hydrogen peroxide in vitro [74, 81] and confer
cellular resistance to oxidative damage in vivo [77, 78].
When the Dps protein structure was determined for the
E. coli Dps protein, the mini-ferritin relationship to eu-
karyotic ferritins was immediately recognized [74] and
confirmed as a mini-ferritin in subsequent studies with
Dps proteins from a variety of human pathogens, e.g.
Helicobacter, Streptococcus, Listeria, and Bacillus [75–
78, 116]. Mini-ferritins using iron to detoxify oxygen/
hydrogen peroxide by conversion to a mineral, hydrated
ferric oxide, coincidently remove iron from the cyto-
plasm. Siderophores are synthesized in response to the
deficit of environmental iron and are often associated
with virulence [117]. During infection or inflammation,
it is the ‘iron deficiency’ created by the host redistribu-
tion of iron, with a deficit in serum and an increase in
macrophages, that is considered as the main stimulus to
bacterial siderophore production. However, an induced
iron deficit in the bacterial cytoplasm caused by Dps ac-
tivity may also contribute to siderophore induction in the
invading bacterium. Evolution of natural actions and re-
actions between hosts and pathogens on the oxygen and
iron battlefield appear to depend on multiple layers of
regulation including both gene (DNA) and template
(mRNA) activity.
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Figure 2. A ferritin pore, unfolded by mutation of a pore gate
residue, L134P. The pore appears black because the peptide chain is
disordered and does not diffract X-rays in the protein crystal. Pores
can be unfolded by physiological concentrations of urea (1 mM) or
temperatures which do not unfold the protein nanocages, shown in
green and white [99]. Redrawn from data in reference [97]. The fig-
ure was created from PDB 1BG7file by X. Liu.



Summary and perspective

Taming the corrosive chemistry of iron and oxygen,
which we take for granted in daily life, depends on an
array of genes, regulatory mRNA structures, signaling
pathways, protein catalysts and subcellular compart-
ments. Ferritin, a center for controlling iron and oxygen,
is a protein nanocage with highly conserved and unique
properties that is coordinately regulated by both DNA
(ARE/MARE) and mRNA (IRE) sequences to link fer-
ritin with members of three gene families: those for iron
and dioxygen metabolism and antioxidant responses.
Multiple iron-protein interactions in the ferritins control
the entry and exit of iron, which concentrates in a large,
hydrated mineral form of Fe2O3 in the protein cavity;
mineralization begins with coupling of two iron atoms
with oxygen at protein binding sites related to those of
di-iron oxygenases, but differing in the role of iron as
a substrate rather than a cofactor. Maxi-ferritins (24
subunits) concentrate iron for protein synthesis and to
protect cells from iron/oxygen radical chemistry. Mini-
ferritins (12 subunits) in bacteria, long known as Dps
proteins, protect bacterial DNA and play a role in mini-
mizing host attempts to damage invading bacteria with
oxidants. The unique ferritin structure and function, syn-
thesized at rates controlled by both DNA and mRNA
mechanisms, integrates iron, oxygen and antioxidant
metabolism, illuminates the complexity of matching in-
organic chemistry to life and models regulatory biology
for all elements.
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