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Abstract. The RecQ helicases belong to the Super-
family II group of DNA helicases, and are defined by
amino acid motifs that show sequence similarity to the
catalytic domain of Escherichia coli RecQ. RecQ
helicases have crucial roles in the maintenance of
genome stability. In humans, there are five RecQ
helicases and deficiencies in three of them cause
genetic disorders characterised by cancer predisposi-

tion, premature aging and/or developmental abnor-
malities. RecQ helicase-deficient cells exhibit aber-
rant genetic recombination and/or DNA replication,
which result in chromosomal instability and a de-
creased potential for proliferation. Here, we review
the current knowledge of the molecular genetics of
RecQ helicases, focusing on the human RecQ helicase
disorders and mouse models of these conditions.
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Introduction

Helicases are the enzymes that separate the comple-
mentary strands of energetically stable, double-
stranded, nucleic acid structures utilizing the energy
derived from hydrolysis of ATP. The single-stranded
(ss) RNA or DNA molecules thus produced are then
used as templates or substrates in various biological
processes, such as DNA replication, recombination,
repair and transcription. One of the most highly
conserved groups of DNA helicases is the RecQ
family, which is named after the prototypical family
member found in bacteria. RecQ was initially identi-
fied in Escherichia coli as a factor involved in
modulating resistance to thymine starvation and in
homologous recombination [1, 2]. The RecQ helicases
contribute to the maintenance of genome stability
across various species [3–7]. Interestingly, the number

of RecQ enzymes expressed by a particular organism
is apparently correlated with their genome size. Some
bacteria and archaea do not possess any recQ genes
and, in most of these cases, these organisms possess a
genome that is smaller than 2 Mbp; exceptions being
Mycobacterium tuberculosis (4.40 Mbp) and Myco-
bacterium leprae (3.26 Mbp) [8]. Those bacteria and
archaea that possess a large genome generally express
one or two RecQ homologues [8]. To date, no
eukaryotic organism has been found that lacks a
�RECQ� gene. Saccharomyces cerevisiae has one
RecQ homolog (Sgs1) [4]; at least two are found in
Drosophila melanogaster, and four homologues have
been found in Caenorhabditis elegans [9]. Mammals
and birds have five homologues, which are designated
RECQ1, BLM, WRN, RECQ4 and RECQ5 in
humans [10–14]. Currently, the intense interest in
the RecQ helicase family is driven largely by con-
nections with human genetic disease. Defects in at
least three of five human RecQ homologues are
responsible for defined genetic diseases, and we refer* Corresponding author.
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to these as Bloom�s syndrome (BS, mutations in
BLM), Werner�s syndrome (WS, mutations in WRN)
and the RECQ4 syndromes [Rothmund-Thomson
syndrome (RTS), RAPADILINO, and Baller-Gerold
syndrome (BGS)] [12, 13, 15–17]. These disorders
display various features of premature aging, cancer
predisposition and developmental abnormalities. In
this review, we focus on recent molecular genetic
studies of these RecQ helicase family diseases, with an
emphasis on insights gleaned from analysis of mouse
models of these conditions.

Bloom�s syndrome

Clinical features and the molecular genetics of BS
BS is a rare genetic disease characterised by severe
growth retardation and dramatic cancer predisposi-
tion [5, 18, 19]. The most common physical character-
istics of affected individuals are a narrow face with a
prominent nose, a butterfly-shaped facial rash that is
induced by sunlight exposure, a high-pitched voice
and abnormal skin pigmentation, especially on sun-
exposed parts of the body. Some BS patients also show
learning disability, mental retardation, immune defi-
ciency, diabetes and/or mild anaemia. Men with BS
cannot produce mature sperm and this results in
infertility. Affected females are rarely infertile, and at
least four pregnancies in BS females have been
confirmed [5, 20]. However, menstruation is, in
many cases, irregular and tends to cease at an
unusually young age. One of the most characteristic
symptoms of BS is cancer predisposition. Various
kinds of malignancies appear early in life and within
various tissues. With the possible exception of mela-
noma (perhaps because affected individuals avoid
sunlight exposure) it would appear that BS individuals
succumb to the full range of cancers seen in the normal
population. However, they do so several decades
earlier in life than is expected. Some patients also
develop tumours that are normally very rare in the
general population, such as osteosarcoma, Wilms
tumour, and medulloblastoma. Moreover, multiple
independent tumours are a feature in some cases.
Genomic instability is proposed to drive tumorigen-
esis in BS. Significantly, a higher frequency of somatic
mutation is observed in cells from BS patients. The
frequency of mutation at the hypoxanthine phosphor-
ibosyltransferase (HPRT) gene locus in BS cells is
elevated 10-fold and the frequency of mutation at
GPA locus is more than 50-fold higher than that in
control cells [21, 22]. BS cells also show an abnormally
high rate of micronucleus formation [23], and homol-
ogous recombination [24]. The hallmark feature of BS
is an increased rate (10-fold) of sister-chromatid

exchanges (SCEs), which is used as a molecular
diagnosis of the disorder [25, 26]. SCEs are expected
to have no functional consequence if the exchanges
are precise, because sister chromatids have an iden-
tical sequence. However, if SCEs occur either un-
equally using identical sequences or between non-
identical repeat sequences, they can lead to chromo-
somal rearrangements, such as duplications, deletions
and translocations. Moreover, a likely source of
functionally significant genetic exchanges in BS cells
occurs when the homologous chromosome is utilised
as a repair template and not the sister chromatid,
because this can trigger loss of heterozygosity (LOH).
This relationship between chromosomal instability,
LOH and tumorigenesis was revealed in a mouse
model of BS [27, 28], which we discuss below.
The mode of inheritance of BS is autosomal recessive.
BS is extremely rare, but is somewhat more common
in Jewish persons of Eastern European descent
(Ashkenazi Jews) [29]. Ellis et al. [12] identified the
gene responsible for BS by a positional cloning
approach and named it BLM. The primary structure
of BLM is homologous that of to E. coli RecQ. Most
mutations in BS patients are either nonsense or
frameshift mutations that cause truncation of the
BLM protein. These truncated BLM proteins are
expected to be non-functional because they either
lack the essential catalytic helicase domain and/or the
nuclear localization signal (NLS) located in the C-
terminal region of BLM [30]. Missense mutations
have also been found in BLM in BS cases. Analysis of
these missense mutations has been performed in a
limited number of cases and, where tested, these
mutations destroy the enzymatic function of BLM [31,
32]. The most common mutation is the so-called
BLMAsh allele, which contains a frameshift mutation
(6-bp deletion and 7-bp insertion) in exon 10 that
causes premature translation termination. It was esti-
mated that approximately 1% of the Ashkenazi Jewish
population carry this allele [33], but this mutation has
also been found in individuals of non-Ashkenazi
ancestry [34]. Taken together, these data indicate the
BS is caused by loss of function mutations in BLM.

Biochemical functions of the BLM helicase
BLM is a helicase that separates the complementary
strands of duplex DNA. Although not shown formally,
BLM, like other RecQ helicases, probably trans-
locates unidirectionally (3�–5�) along one strand of the
duplex [35]. However, more recent studies suggest
that BLM is a DNA structure-specific helicase
[36–38]. BLM can unwind 3�-tailed duplexes, bubble
structures, forked duplexes, G-quadruplex structures,
DNA displacement loops (D-loops) and four-way
junctions modelling the Holliday junction recombi-
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nation intermediate [36, 38–40]. The eukaryotic
ssDNA binding protein, RPA, stimulates the unwind-
ing activity of BLM [41]. Interestingly, BLM possesses
what appears to be the opposite activity to that of a
helicase. BLM can catalyse the annealing of the
complementary single strands of DNA [42, 43]. The
annealing activity of BLM does not require ATP or
Mg2+, unlike its helicase activity, and annealing is
actually inhibited by ATP. This suggests that ATP
binding and hydrolysis triggers an alteration in the
mode of action of BLM. The mechanism for this ATP-
driven �switch� is not clear, but it may be significant
that DNA strand annealing-proficient forms of BLM
bind ssDNA in a manner that is different from that of
strand annealing-deficient variants [42].
BLM can interact with topoisomerase IIIa (TopoIIIa)
and can stimulate its DNA strand passage activity [44,
45]. TopoIIIa is a type IA topoisomerase that can
relax negative supercoiled DNA and can generate or
resolve catenated structures [46]. Recently, BLAP75
was identified as a new factor that can interact with
BLM-TopoIIIa [47, 48]. The primary structure of
BLAP75 is similar to that of the yeast Rmi1 protein.
Yeast rmi1 mutants show phenotypes similar to those
of top3 mutants, and yeast Rmi1p binds Sgs1p and
Top3p in that organism [49, 50]. At this moment, the
precise function of BLAP75/RMI1 is not known, and
it is not clear if this protein possesses any catalytic
functions. We describe a function of the BLM-Top-
oIIIa-BLAP75/RMI1 complex in the next section.

Roles of BLM in homologous recombination and in
the DNA damage response
One of the characteristic phenotypes of BS cells is an
elevated level of SCEs. The mechanism of SCE
creation is not understood in detail, but at least
some SCEs require homologous recombination for
their formation [51, 52]. Biochemical studies showed
that BLM preferentially disrupts two structures that
typically form as intermediates in homologous re-
combination; D-loops and Holliday junctions [38, 40,
53]. One possible role for BLM is to negatively control
homologous recombination reactions. Homologous
recombination occurs via two major steps; strand
exchange and resolution. RAD51, a highly conserved
�recombinase� protein, binds to ssDNA ends and
exchanges strands between homologous regions
(Fig. 1a). After strand exchange, a triple-stranded
intermediate, termed a D-loop, is formed. D-loops can
either be destroyed by an unwinding reaction, or be
converted into four-way junctions (Holliday junc-
tions). BLM may suppress homologous recombina-
tion by unwinding the invading strand from the D-
loop. Indeed, this reaction can be catalysed very
efficiently in vitro by BLM [38, 53]. If the D-loops are

converted into Holliday junctions, these junctions
have to be resolved otherwise the recombining
molecules will remain covalently intertwined. The
mechanism by which this occurs in eukaryotes is
unknown. However, two possible mechanisms have
been proposed. One mechanism, like that in bacteria,
is for a specific endonuclease enzyme to resolve the
Holliday junctions. In bacteria, the cleavage of Holli-
day junctions by these so-called resolvase enzymes
generates one of two recombination products; a
crossover or a non-crossover. The non-crossover
class does not involve exchanging the flanking regions
of chromosome, while the crossover class exchanges
the flanking genetic markers. Since SCEs represent
crossing-over events, the higher level of SCEs in BS
cells can be explained by an elevated level of crossover
recombination. BLM might suppress crossovers by
destroying all forms of aberrant or unwanted strand
invasion events through D-loop unwinding, as dis-
cussed above. Another possibility is that BLM pro-
motes the process of synthesis-dependent strand
annealing (SDSA) that only gives rise to non-cross-
overs (Fig. 1a). This has been proposed from studies in
Drosophila [54], although recent evidence has argued
against this being likely because BLM deficiency leads
to structural alterations in both the template and the
donor sequences, which would not be predicted from
an SDSA model [55]. A third possibility is that BLM
promotes resolution of Holliday junctions to generate
exclusively or predominantly non-crossover products.
In this regard, a new model for the resolution of
Holliday junctions has been proposed recently. The
BLM-TopoIIIa-BLAP75/RMI1 complex was shown
to resolve double-Holliday junctions without cross-
over (Fig. 1b) [56, 57]. Both BLM and TopoIIIa are
essential for this resolution [56] and BLAP75/RMI1
strongly stimulates the reaction [57, 58]. Unlike
classical bacterial Holliday junction resolution, this
new pathway does not require the endonucleolytic
cleavage of Holliday junctions. It is proposed that
BLM drives the convergence of the double Holliday
junctions via branch migration, which converts the
double Holliday junctions into a hemicatenane
(Fig. 1b). Following this, the TopoIIIa-BLAP75/
RMI1 complex �resolves� the hemicatenane structure
using the ssDNA strand passage activity of TopoIIIa.
In this way, the double Holliday junction is removed
without any crossing over (Fig. 1b) [56–59]. Because
this reaction is mechanistically distinct from classical
resolution, it has been termed Holliday junction
dissolution [56]. Recent data indicate that the Droso-
phila orthologues of BLM and TopoIIIa also catalyse
dissolution [60].
Cell biological studies showed that BLM localises to
promyelocytic leukaemia (PML) bodies in the ab-
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sence of DNA damage [61–63]. The PML gene was
originally identified as a site of translocation in a case
of promyelocytic leukaemia, and the PML protein is
required for the integrity of the PML body [64–66].
The function of PML bodies is still under investiga-
tion, but one role is suggested to be a storage site for
proteins involved in the response to DNA damage.
BLM can also form nuclear foci at sites of DNA
replication, likely indicating a role for BLM at sites of
damaged DNA replication forks (see below). Indeed,
BLM dissociates from PML bodies and translocates to
sites of DNA damage after treatment of cells with
DNA damaging agents and replication inhibitors, such
as hydroxyurea (HU), g-rays and camptothecin [63,
67–69]. BLM foci induced by DNA damage colocalise
with other DNA repair factors, especially with ho-
mologous recombination proteins such as RAD51,
BRCA1, and the MRE11-RAD50-NBS1 complex [63,
70–72]. The dynamic behaviour of BLM has been well
documented after the treatment of cells with HU.
BLM dissociates from PML bodies quickly (<1 h) and
localises to nuclear foci that represent sites of stalled
replication forks. At 4 h after removal of HU, BLM
has returned to the PML bodies [73]. Interestingly, the

rapid relocalisation of BLM from PML bodies does
not occur in cells with a defect in the stress-activated
kinase, ATR. A defect in the homologous kinase,
ATM, required for the cellular response to DNA
double strand breaks (DSBs), does not affect this
function of BLM. However, the late response of BLM,
in returning back to PML bodies, seems to require
ATM. One way in which BLM might be controlled is
through direct post-translation modification by these
and other kinases. Indeed, BLM is known to be a
phosphoprotein. Curiously, however, BLM phosphor-
ylation peaks during mitosis, even in response to g-
irradiation and following exposure to DNA replica-
tion blocking agents such as HU. The Thr99 and
Thr122 residues of BLM are phosphorylated by ATM
kinase after g-irradiation [74]. Indeed, a recent study
confirmed that BLM is one of early responders to
DSBs by the use of laser-induced DSBs [75]. The
Thr99 and Thr122 residues are also phosphorylated in
response to replication inhibition; but in this case, the
phosphorylation is predominantly ATR dependent.
Cells harbouring a T99A/T122A double substitution
in BLM display hypersensitivity to HU and a greater
degree of G2/M checkpoint arrest after release from

Figure 1. Model of homologous recombination of BLM-dependent resolution with out crossover. (a) Blunt DNA ends are first processed to
generate 3’ ssDNA tails. This tail is bound by Rad51, which then initiates a search of homology. Rad51 catalyses DNA strand invasion to
create a D-loop. Some D-loops are converted into Holliday junctions. BLM could act to destroy D-loops or eliminate Holliday junctions by
reverse branch migration. (b) A model for how BLM can act alongside its partners, topoisomerase IIIa and RMI1, to eliminate double
Holliday junctions. BLM promotes convergent Holliday junction branch migration to create a hemicatenane. The hemicatenane is
resolved by the strand passage activity of topoisomerase IIIa in conjunction with RMI1. This process is termed Holliday junction
dissolution. See text for details.
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an S-phase blockade induced by HU than the corre-
sponding cells expressing wild-type BLM [68]. These
results suggest that BLM phosphorylation (on Thr99
and Thr122 and perhaps on other residues) has a
crucial role in the recovery of cells from replicative
stresses [68]. One possible role for BLM on the rescue
of stalled forks is to promote replication forks
regression, as has been shown biochemically [76].
BLM also seems to influence the signalling cascade
that occurs following DNA damage. For example,
p53BP1 accumulation after HU treatment is not
observed in BS cells [73], and the formation of
MRE11-RAD50-NBS1 foci is delayed [77]. Taken
together, these studies strongly suggest that BLM is
one of the early responders to DNA damage and likely
plays a role, directly or indirectly, in the recruitment of
other DNA repair factors to sites of DNA damage and
stalled replication forks. A recent study showed that
BLM is also phosphorylated by the MPS1 kinase,
which plays a role in the spindle assembly checkpoint
[78]. Ser144 on BLM is an important target for this
kinase. Since cells carrying a BLM mutant with a
S144A substitution cannot maintain a stable chromo-
some content, MPS1-dependent BLM phosphoryla-
tion seems to be important for ensuring that chromo-
some segregation is faithful. The role played by BLM
in this process is not clear at this stage. However, our
recent data indicate that BLM localises to anaphase
bridges that represent delayed or failed sister-chro-
matid disjunction, suggesting a role for BLM directly
in �resolving� such structures (Kok Lung Chan and
IDH, unpublished data).
There are conflicting reports concerning the sensitiv-
ity of BS cells to radiation and DNA damaging drugs.
Some studies suggest a degree of g-ray sensitivity,
while others do not. Given that BS patients have been
treated with therapeutic doses of x-rays for their
malignancies without reports of adverse toxicity
reactions, it seems unlikely that BS can be considered
a radiosensitivity disorder, unlike ataxia telangiectasia
caused by ATM deficiency. These conflicting reports
may reflect the fact that many studies have not used
isogenic cell lines. Our previous analyses using
isogenic cells indicated clear sensitivity of BS cells to
HU, in line with data from yeast and chicken models of
BLM deficiency. Indeed, there have been consistent
results from studies in chicken DT-40 cells lacking
blm, which have indicated hypersensitivity to UV
light, methyl methanosulphonate and 4-nitroquino-
line-1-oxide, but not to g-rays [52, 79].

A mouse model of BS
The generation of mouse models is an extremely
useful way to study the function of a particular gene
product at the organism level, because tissue culture

systems are limited to a study of cell autonomous
functions. Moreover, studies on human patients with
BS are complicated both by ethical issues and by the
extreme rarity of the disorder. Currently, several
groups have attempted to generate mice defective in
Blm.
The first Blm-knockout mouse study was reported by
Chester et al. in 1998 [80]. The region of Blm
upstream of the helicase domain was replaced by a
neomycin-resistance cassette. The homozygote mice
showed embryonic lethality. Homozygote embryos
were smaller than Blm-proficient embryos, which is
consistent with the small stature of human BS
patients. Homozygote embryos also showed anae-
mia, which is a feature of some BS patients. More-
over, elevated apoptosis was detected from embry-
onic day (E) 6.5 to 11.5 in the Blm–/– embryos. Viable
cells could, however, be isolated from the embryos.
The proliferation rate of these Blm–/– mouse embry-
onic fibroblasts (MEFs) is reduced, and an elevated
level of SCEs is evident. These phenotypes are also
consistent with data from analysis of human BS cells.
We have summarised the phenotypes of these and
other Blm–/– mice and compared them to the human
condition (Table 1).
Luo et al. [27] were able to generate a Blm-hypomor-
phic mouse model (called Blmm3/m3 mice). The gene
targeting strategy was designed to delete exon 2 of
Blm, which they called the Blmm1 allele. However,
they discovered the clone contained three copies of
the targeting construct that had inadvertently inte-
grated into the intron between exons 3 and 4. They
named this allele Blmm2. Since the targeting construct
contained loxP sites flanking the neomycin-resistant
cassette, they then removed all three neomycin-
resistant genes from the Blmm2 allele using the Cre
site-specific recombinase. This resulted in the dupli-
cation of exon 3, generating the Blmm3 allele. They
found that Blmm2/m2 mice were embryonic lethal.
However, both Blmm2/m3 mice and Blmm3/m3 mice
were viable and fertile. Blmm3/m3 mice in the C57BL/
6�129S5 genetic background did not show the ex-
pected small body size. Because human BS patients
often show immune deficiency and a reduced level of
IgM [81], the Blmm3/m3 were analysed for immune
deficiency and were found to express a reduced
amount of IgM. Blmm3/m3 mice showed a higher level
of tumour formation than wild-type controls. Blmm3/m3

mice were crossed with ApcMin/+ mice, which is a model
for familial adenomatous polyposis (FAP). Blmm3/m3

ApcMin/+ mice showed higher numbers of polyps in the
small intestine than did Blm+/+ ApcMin/+ mice, con-
firming the role of Blm as a tumour suppressor gene.
Blmm1/m3 embryonic stem (ES) cells and MEFs showed
elevated levels of SCEs, and mitotic homologous
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recombination, which in turn led to an abnormally
high frequency of LOH. This is a plausible molecular
defect for explaining the role of Blm as a tumour
suppressor. We have summarised the phenotypes of
Blmm3/m3 mice in Table 1.
Approximately 1% of Ashkenazi Jews carry the
BLMAsh mutation. This allele contains a frameshift
mutation within exon 10 that causes premature trans-
lation termination. To simulate this allele, Goss et al.
[82] deleted exons 10, 11 and 12 and replaced them
with an Hprt gene cassette (to generate the BlmCin

allele). BlmCin/Cin mice showed embryonic lethality.
Primary lung fibroblasts from BlmCin/+ mice showed a
higher number of micronuclei, although there was no
detectable increase in SCEs. To investigate the
haploinsufficiency of Blm, murine leukaemia virus
(MLV) was infected into wild-type and BlmCin/+ mice.
Although animals of both genotypes developed T cell
leukaemia, wild-type mice had a longer average
lifespan than the BlmCin/+ mice. In addition, BlmCin/+

ApcMin/+ mice were analysed because the gastrointes-
tinal tract is a common site of cancer in BS patients.
BlmCin/+ ApcMin/+ mice showed higher numbers of
tumours than did Blm+/+ ApcMin/+ mice. This is similar
to the findings discussed above with Blmm3/m3 mice, but
in this case, an effect was seen even with Blm
heterozygous mice.
Chester et al. [83] generated a conditional knockout
mouse model because Blm null mutant mice are not
viable. In this conditional mouse model, exon 8 of
the Blm gene can be excised using the Cre-loxP
system. Using transgenic mice expressing Cre-
recombinase, these authors could inactivate the
Blm gene in selected tissues. These mice showed
tissue-specific tumours and chromosome instabili-
ties, which correlated with the inactivation of Blm
gene, indicating that direct loss of Blm is associated
with tumorigenesis.

Since Blmm3/m3 mice are viable and show a cancer
predisposition phenotype, these mice have been
crossed with other mice modelling human disease,
such as telomerase-deficient (Terc–/–) and tuberous
sclerosis 1-deficient (Tsc1+/–) mice [84, 85]. The
telomerase mice are discussed later in this review in
the WS section. Tuberous sclerosis is an autosomal
dominant disease characterised by the development of
benign hamartomatous growths in various tissues,
such as brain, skin, heart, lung and kidney. At least two
genes, TSC1 and TSC2, have been identified from
human patients. Several groups have generated mouse
models, and Tsc1+/– and Tsc2+/– heterozygous mice are
each predisposed to the development of renal tu-
mours. Wilson et al. [84, 85] reported that Blmm3/m3

Tsc1+/– mice display a synergistically higher level of
tumour formation compared to Blm+/m3 Tsc1+/– mice.
A higher frequency of LOH was also observed in the
Blmm3 genetic background [85]. These studies suggest
that a Blm defect accelerates not only APC-depend-
ent tumorigenesis (see above) but also Tsc-dependent
tumorigenesis.

New applications for Blm-deficient cells and mice
Since Blmm3/m1 cells show an elevated level of LOH,
these cells have been utilised for novel genetic screens.
Such phenotype-driven genetic screening is not easy in
diploid organisms because of a requirement for the
creation of homozygous mutations. The elevated
LOH activity in Blm mutant cells, however, makes it
feasible to isolate homozygous mutants. For example,
Guo et al. [86] identified known and novel factors of
mismatch repair using Blm-mutated ES cells. In
parallel, Yusa et al. [28] utilised a similar, but some-
what more sophisticated, system for related studies.
Since Blm mutations cause various negative effects,
such as increased mutation and unwanted LOH, these
authors generated a system in which Blm-expression

Table 1. Symptoms of Bloom�s syndrome and phenotypes of mouse models.

Bloom�s syndrome Mouse model-1 (Blm–/–)
80

Mouse model-2 (Blm m3/m3)
27

Embryonic lethality N.D. +++ –

Small stature +++ +++ –

Male sterility +++ N.D. –

Immune deficiency + N.D. � (Less IgM)

Anaemia � +++ –

Cancer predisposition +++ N.D. +++

Elevated SCEs +++ +++ +++

Chromosomal instability +++ +++ +++

Elevated apoptosis +++ +++ +++

+++: strong effect; +: mild effect or strong effect in limited cases;� : very mild effect; –: not observed; N.D.: not determined; SCE: sister-
chromatid exchange.
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can be turned on or off. Using a tetracycline-regulated
system, they managed to inactivate and reactivate
expression of the Blm gene. In the presence of
doxycycline, an analogue of tetracycline, Blm protein
was depleted from cells, but the expression of the Blm
mRNA was recovered rapidly after the withdrawal of
the doxycycline. They confirmed that this transient
inactivation of Blm is sufficient to induce efficient
LOH.
Suzuki et al. [87] have performed genome-wide
screening in the mouse. Using Blmm3/m3 mice, they
identified several known, as well as novel, tumour
suppressors. Since Blmm3/m3 mice have an increased
frequency of insertional mutagenesis, they were able
to perform large scale screening of tumour suppres-
sors genes relevant to retrovirally induced B cell
lymphoma. Thus, Blm-deficient cells or mice have
made it possible to perform genome-wide genetic
screening in mammalian cells. This innovation will
likely bring many new applications in mouse genetics.

Werner�s syndrome

WS is an autosomal recessive inherited condition that
can be considered as a �progeroid� disorder in that it is
associated with the premature development of many
of the typical symptoms of old age [88]. This disease is
generally rare, but it should be noted that most of the
existing patients (about two thirds of the total) are
Japanese. Genetic studies indicate that 1 in 160 of the
Japanese population is a carrier of the disorder.
People with WS grow normally until around puberty,
but then fail to undergo the normal growth spurt and
consequently show short stature. Symptoms of aging
then start to appear progressively. Epstein et al. [88]
reported that people with WS start to show greying of
hair (at a mean of 20 years of age), skin changes
(25.3 years), loss of hair (25.8 years), voice changes
(26.6 years), skin ulceration (33.0 years), and diabetes
(34.2 years). The average age of death is around
47 years [88]. Later, Goto et al. [89] confirmed these
data through an investigation of Japanese families.
Men with WS are generally infertile. Most of them
have small testes and show abnormal seminiferous
tubules. Affected females, however, are not always
infertile. At least 53 pregnancies have been confirmed
in WS individuals and, in two cases, multiple siblings
were conceived. However, in the most severe cases,
affected females do not even menstruate. The cells
isolated from WS patients show a reduced ability to
proliferate, which may be one of the underlying
reasons for premature aging. We discuss the possible
role of cellular senescence in the aging process in the
next section.

Molecular genetics and biochemistry of WS
In 1996, Yu et al. [13] identified the gene responsible
for WS and named it WRN. About 90 % of patients
diagnosed with WS carry mutations in WRN. So far,
over 30 different classes of WRN mutation have been
discovered [90–93]. Virtually all known WRN muta-
tions cause truncation of the WRN protein, and these
truncated WRN polypeptides cannot localise to the
nucleus because the dominant nuclear localisation
signal sequence in WRN is located near to the C
terminus of the protein [94]. There are two common
mutations. One is the WRN R367Stop, which is the
most frequent mutation found in Caucasian patients,
although some Japanese also carry this mutation. The
other is a splice site mutation at exon 26, which leads
to deletion of exon 26 coding information from the
WRN mRNA. This mutation is common in patients of
Japanese origin.
The WRN protein contains a central domain homol-
ogous to E. coli RecQ [13]. The unique aspect of WRN
structure is that it also possesses an exonuclease motif
in the N-terminal region. Indeed, the WRN protein
exhibits both ATP-dependent 3�–5� helicase activity
and 3�–5� exonuclease activity [95–99]. WRN prefer-
entially unwinds particular types of DNA structures,
such as bubble and forked structures [36, 100, 101]. In
addition, WRN can also catalyse the branch migration
of Holliday junctions [102]. The WRN exonuclease
domain is homologous to the nuclease domain of E.
coli DNA polymerase I. The structure of this domain
of WRN has been recently determined [103]. The
exonuclease activity of WRN is neither powerful nor
processive, but this activity can be stimulated by the
Ku protein complex [104, 105]. Interestingly, the
exonuclease activity of WRN also has preferred
DNA substrates [101, 106]. WRN is able to digest
bubbles, stem loops, and three-way and four-way
junctions (Holliday junctions). WRN is reported to
interact physically with several proteins involved in
DNA replication, recombination and repair. A de-
tailed description of these interactions is beyond the
scope of this article, and we refer readers to recent
reviews that cover this topic [107–109].

Cellular senescence and telomere maintenance in WS
cells
Primary cells from WS patients show replicative
senescence in culture at much earlier passages than is
characteristic of control cells. This rapid senescence
is not generally well correlated with the length of
telomeres (the sequences that cap the ends of the
linear chromosomes) in the WS cells. During the
serial passage of primary WS cells, the average length
of telomeres appears to decline faster than it does in
control cells ; nevertheless, at a single-cell level,
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telomere erosion rates are normal [110]. It would
appear that telomeres in cells from WS are �unstable�
rather than simply being prone to excessive short-
ening. These studies suggest that WRN has a crucial
role for maintaining the structural integrity of the
telomere. Indeed, WRN protein localises to telo-
meres and can interact with telomere binding pro-
teins, including TRF2, Ku and POT1 [105, 111–117].
Recent studies have suggested that WRN may be
involved in the telomerase-independent telomere
lengthening mechanism called ALT (alternative
lengthening of telomeres). The molecular mecha-
nism of ALT is not yet understood, but involves
recombination-mediated copying of telomeric se-
quences from intact telomeres or extra-chromosomal
telomeric circles. This would be consistent with the
known role of Sgs1p in an ALT-like process in yeast
[118–121]. However, mouse genetic studies have
indicated that, in the absence of WRN, telomeric
recombination is elevated [122].
Several studies showed that TRF2, one of the
telomere maintenance proteins, regulates the exonu-
clease activity of WRN. This regulation influences the
ability of WRN to process telomeric ends that form
into T-loops, a proposed loop-back structure in which
the G-rich single-stranded end invades internal telo-
meric sequences to generate a three-stranded struc-
ture (a form of D-loop). Machwe et al. [115] showed
that TRF2 recruits WRN to T-loop structures, and that
telomeric ends can be released from T-loops by the
exonuclease activity of WRN [116]. Opresko et al.
[117] also demonstrated that WRN could release
telomeric-ends from T-loops, but in this study the role
of TRF2 appeared to be to limit the exonuclease
activity of WRN. The POT1 protein (protection of
telomeres-1 protein) can also interact with WRN. The
function of POT1 is to bind the single-stranded G-rich
portion of telomeres, and it plays a role in capping
telomeric ends and preventing them being recognised
as DNA damage (i.e. DSBs in DNA). Interestingly,
POT1 strongly stimulates the unwinding of T-loops by
WRN in vitro [117]. These studies suggest that WRN
may have an important role in the release of telomeric
ends from T-loops, presumably to permit DNA
metabolic process such as DNA replication to occur.
Importantly, Crabbe et al. [123] reported that the
helicase activity of WRN is important for DNA
synthesis on lagging strands at telomeres. At this
time, it is not clear whether telomere instability in WS
cells is correlated with rapid replicative senescence of
those cells, but it is becoming clear that WRN plays an
important role in the maintenance of telomeric
structures in proliferating cells. Studies on the mouse
WRN-knockout are consistent with this proposal (see
below).

A simple proliferative defect likely would not be
sufficient to explain the accelerated aging in WS,
because BS cells also show poor proliferation and yet
BS patients do not show widespread premature aging
symptoms. In WS, many pathological aging features
appear most dramatically in the skin. Histological
studies have shown that the appendages and epider-
mis are atrophic and that the thickness of epidermis is
reduced in WRN patients [88]. In addition, the
numbers of hair follicles and sebaceous glands are
reduced. These histological studies indicate that there
are a reduced number of cells in the epidermis.
According to recent studies concerning skin develop-
ment, skin stem cells differentiate into transit-ampli-
fying cells, which in turn differentiate into interfollic-
ular epidermis, hair follicles and sebaceous glands
[124, 125]. It is known that c-Myc promotes differ-
entiation of stem cells to transit-amplifying cells for
the sebaceous gland and interfollicular epidermis
lineages [126, 127]. Interestingly, WRN can limit
MYC-induced cellular senescence [128]. It is possible
that MYC-dependent differentiation may be highly
accelerated in the skin development of WS patients,
which results in accelerated aging in this organ.
Therefore, skin aging in WS patients may be due to
the combined effect of a low proliferation potential
and accelerated MYC-dependent differentiation.
However, this remains mere speculation at this stage.

Mouse models of WS
At least four examples of the generation of Wrn-
knockout mice have been reported.
The first report of a Wrn-knockout mouse model was
in 1998 [129]. The targeting construct was designed to
replace helicase motifs II to IV with a neomycin-
resistance cassette. Unexpectedly, the targeted allele
expressed a mutant Wrn protein that contains deletion
of motifs III and IV. Therefore, this allele is generally
referred to as the WrnDhel/Dhel mutation. WrnDhel/Dhel

mice were born with a reduced Mendelian ratio of 1
(+/+): 2.0 (+/–): 0.8 (–/–) on a NIH black Swiss�129/
SvEv outbred background, and of 1 (+/+): 1.9 (+/–):
0.6 (–/–) on a 129/SvEv inbred background. However,
the surviving homozygote mutant mice grew normally
and displayed no clear phenotype. WrnDhel/Dhel ES cells
showed a higher frequency of spontaneous mutation,
and hypersensitivity to topoisomerase inhibitors such
as etoposide and camptothecin. Moreover, a reduced
growth rate was observed in the homozygote MEFs.
The WrnDhel/Dhel mice have been crossed to so-called
pink-eyed unstable mice, which have a 70-kb internal
duplication at the pink-eyed (p) gene locus [130].
Using these mice, the frequency of deletion between the
duplicated sequences was analysed. The WrnDhel/Dhel

mutation led to a significantly higher frequency of
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spontaneous and camptothecin-induced deletion mu-
tation than that seen in the pink-eyed mice alone. This
study suggests that Wrn protein suppresses abnormal
recombination events. Moreover, WrnDhel/Dhel mice
have been crossed to Parp1-knockout mice [131].
Parp1 gene encodes poly(ADP-ribose) polymerase-1,
and this gene product is involved in single-strand
break repair as well as base excision repair. The
double-mutant mice showed an increased level of
tumorigenesis and chromosomal instability compared
to controls.
Wang et al. [132] generated transgenic mice that
express human WRN with a putative dominant-
negative mutation (K577M). The K577M version of
WRN causes an inactivation of helicase activity, but
the exonuclease activity is unaffected. Fibroblast cells
from the K577M transgenic mice showed hypersensi-
tivity to 4-NQO and a reduced proliferative capacity.
Wrn-truncation mutant mice were developed by
Lombard et al. [133]. Since no Wrn protein could be
detected in these mice, this allele is considered to be a
loss of function Wrn mutation. Chimeric mice from
targeted ES cells (129/SvJ background) were crossed
to BALB/c mice. Unlike WrnDhel/Dhel mice, these mice
did not show the abnormal Mendelian ratio following
heterozygous crosses. The knockout mice were fertile,
and no clear phenotype was observed. Homozygote
MEFs did not show hypersensitivity to camptothecin
or 4-NQO. Splenocytes from mutant mice could
proliferate normally, but MEFs showed a degree of
accelerated senescence. Lifespan was also normal in
these mice.
Knock-in mice that carry a one base substitution at the
splice acceptor site of exon 26 were generated by
Ichikawa et al. [134]. This mutation, called Mut-4, is
found frequently in human WS patients of Japanese
origin. These mutant mice showed no clear abnormal-
ities and were fertile.
Overall, the phenotypes of the Wrn-mutated mice
described above are much milder than those seen in
human patients. However, this seems contrary to
several molecular/cell biology studies that indicate an
important role for WRN in telomere maintenance.
Because the telomeres of mouse chromosomes are
much longer than those of human chromosomes, it
seemed possible that the lack of phenotype of the
Wrn–/– mice reflected a degree of �protection� of the
mice against genome instability due to their having
long telomeres. To address this possibility, Chang et al.
[135] established double-knockout mice lacking Wrn
and telomerase (Wrn–/– Terc–/–) and these were bred
for several generations and compared to similarly
bred Terc–/– or Wrn–/– mice. A high proportion of the
Wrn–/– Terc–/– double-knockout mice showed prema-
ture aging phenotypes between generation 4 and 6

(G4-G6), by which time the telomeric ends of
chromosomes had eroded significantly. The double-
mutant mice died significantly earlier and body mass
was smaller than in the Wrn–/– or Terc–/– controls. Bone
density was also lower and all of affected mice showed
osteoporosis. Out of 12 affected double mutants, 10
also showed glucose intolerance and some affected
mice showed insulin resistant by 4 months of age.
Affected double-knockout mice also displayed alope-
cia by 8 months and the frequency of tumour forma-
tion was higher than that of controls. These pheno-
types are typically observed in people with WS,
strongly arguing for a key role for Wrn at telomeres.
We have summarised the phenotypes of Wrn–/– Terc–/–

double-knockout mice and compared them to the
symptoms of human WS (Table 2).

Recently, Laud et al. [122] showed that telomere SCEs
are elevated in Wrn-deficient cells, providing further
evidence that Wrn suppresses telomere instability. In
addition, Du et al. [136] established Wrn–/– Blmm3/m3

Terc–/– triple mutated mice, which showed significant
telomere length erosion even by G3. These triple
mutant displayed several aging phenotypes that arose
even earlier than was seen in the Wrn–/– Terc–/– mice,
including loss of fertility, reduced testis mass and
absence of spermatogenesis, reduced body mass,
kyphosis (a curved spine), reduced bone density, and
a reduced rate of wound healing. These observations
strongly suggest that Wrn is involved in a telomere-
dependent senescence pathway, at least in mouse, and
that this phenotype is only revealed when telomeres
become critically short. It would also seem that Blm is
in some way able to partially compensate for loss of

Table 2. Symptoms of Werner�s syndrome and phenotypes of
mouse models.

Werner�s syndrome Mouse model
(Wrn–/– Terc–/–)

Small body +++ ++

Low bone density ? ++

Greying hair +++ ++

Hair loss +++ ++

Skin ulceration +++ ++

Cataract +++ ++

Diabetes + ++

Reduced male fertility + ?

Chromosomal instability +++ +++

Elevated apoptosis +++ +++

Low proliferative capacity +++ +++

+++: strong effect in nearly all cases; ++: strong effect but only in
affected (39/62); +: mild effect or strong effect in limited cases; –:
not observed.
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Wrn function in mice, and that in the absence of both
of these RecQ helicases, accelerated aging is ob-
served.

RECQ4 syndromes (RTS, RAPADILINO syndrome
and BGS)

Unlike the BLM and WRN genes, which were isolated
by positional cloning approaches, the RECQ4 gene
was cloned by virtue of its homology to RecQ
helicases [14]. The same group later found that
mutations in this gene are responsible for at least
some cases of RTS [15, 137]. Unexpectedly, not only is
RTS a RECQ4 disorder, but RAPADILINO syn-
drome and BGS are also caused by the mutations in
this gene [16, 17]. RTS is a rare autosomal recessive
disorder characterised by poikiloderma, greying and
loss of hair at an early age, cataracts, small stature,
skeletal and dental abnormalities, and a predisposi-
tion to cancer (especially osteosarcoma). The skin is
usually normal at birth, but red patches start to appear
at between 3 and 6 months of age. Subsequently,
poikiloderma develops. Some patients show photo-
sensitivity, although this is highly variable. It is notable
that any skin cancer that develops in RTS cases can
occur on skin regions not normally exposed to the sun.
RAPADILINO syndrome is also a rare autosomal
recessive disorder that is characterised by radial
hypoplasia or aplasia (RA), patellar hypoplasia or
aplasia and cleft or high arched palate (PA), diarrhoea
and dislocated joints (DI), little size and limb malfor-
mation (LI), and nose slender and normal intelligence
(NO). This syndrome is largely found in Finland (14
individuals from 11 families) but non-Finnish cases
have been reported. People with RAPADILINO
syndrome do not display obvious cancer predisposi-
tion. The other distinct difference between RAPA-
DILINO and RTS is the occurrence of poikiloderma.
Poikiloderma is one of the hallmarks of RTS, but is
only rarely observed in patients with RAPADILINO
syndrome.
Recently, the gene responsible for BGS was identified.
van Maldergem et al. [17] noticed clinical overlaps
between RTS, RAPADILINO and BGS, and subse-
quently identified RECQ4 mutations in two unrelated
BGS families. Clinical symptoms of BGS are radial ray
hypoplasia, skeletal dysplasia, short stature, and
craniosynostosis. Craniosynostosis is not observed in
either RTS or RAPADILINO, and, thus far, a predis-
position to cancer has not been reported as a feature of
BGS.
Table 3 summarises the clinical symptoms of the three
RECQ4 syndromes. Radial ray defects, short stature,
and patellar abnormalities seems to be common to all

three syndromes. Poikiloderma is observed in both
RTS and BGS. However, palatal abnormalities and
joint dislocation are only seen in RAPADILINO
syndrome. Cataracts, dental and nail abnormalities,
sparse hair, and cancer predisposition are typically
observed only in RTS patients. Although a range of
different RECQ4 mutations have been found in these
syndromes, including nonsense mutations, missense
mutations, frameshifts, splice site mutations, and
intronic deletions, it is difficult to reconcile how
these mutations lead to three distinct syndromes.
Additional mouse genetic analysis will likely be
necessary to explain this puzzling issue. Such pheno-
typic complexity associated with defects in a single
gene is not unprecedented, since mutations in XPD in
humans can give rise to xeroderma pigmentosum,
Cockayne�s syndrome and trichothiodystrophy
[138–142].
The enzymatic function of RECQ4 is poorly under-
stood. Recently, the biochemical activities of RECQ4
were analysed using purified recombinant protein
[143]. Although RECQ4 has ATPase activity, as
expected, no DNA helicase activity could be detected.
However, RECQ4 possesses an ATP-independent
ssDNA annealing activity that is similar to that seen
with BLM, WRN, RECQ1 and RECQ5b [42, 54,
143–145]. RECQ4 can interact with the ubiquitin
ligases, UBR1 and UBR2, but the biological role of
these complexes is unknown. Petkovic et al. [146]
showed that RECQ4 foci form in the nucleus and co-
localise with PML bodies in the absence of DNA
damage. RECQ4 relocalises within the nucleus after
treatment with etoposide, and then co-localises with
RAD51 foci, a pattern that is similar to that seen with
BLM.

Mouse model studies on Recq4
Several RECQ4-knockout mice have been establish-
ed in different laboratories. However, the phenotypes
of these mice vary considerably.
Ichikawa et al. [134] reported the first RecQ4-knock-
out mice, in which the region spanning exons 5–8 was
deleted. This region encodes a portion of RECQ4 that
is upstream of the conserved helicase domain. All of
these knockout mice died in early embryonic stages
(E3.5–E6.5) in both the 129/SvJ�C57BL/6J and the
129/SvJ�BALB/c genetic backgrounds.
Exon 13 deletion in mice was reported by Hoki et al.
[147]. The expression level of Recq4 in homozygotes
was strongly reduced (to only 1 % or 2 %), but
nevertheless was detectable, and therefore it is likely
that a truncated Recq4 protein may be expressed from
this allele. About 40 % of homozygote newborn mice
died immediately after birth, and 80 % of the surviving
homozygote mice died within 2 days. Severe growth
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retardation and skin abnormalities were observed in
these Recq4–/– mice. In the rare survivors, hair loss was
observed at around 6 weeks, and most mice showed
dry skin at 3–4 months of age. This was correlated with
smaller dermal papilla, lower hair follicle density, and
thinner layers of inner and outer root sheaths. Bone
dysplasia and dystrophic teeth were observed, and
thymic and splenic development was retarded. These
observations suggest that the Recq4 mutation affects
the development of highly proliferative cells. How-
ever, poikiloderma and tumour formation were not
seen in these mice, perhaps because of their short
lifespan. Later, Yang et al. [148] independently
generated a knockout model with the same allele.
However, these knockout mice showed embryonic
lethality and even the heterozygote mice showed
reduced bone mass. Variation in the genetic back-
ground or in environmental stresses might be respon-
sible for these differences between apparently iden-
tical models.
Another helicase domain deletion allele was gener-
ated by Mann et al. [149]. In this, exon 9–13 of Recq4
was replaced with Hprt gene cassette; 16 % of the
homozygous mutant mice died within 24 h of birth.
Surviving homozygous mice grew normally and
growth retardation was not observed. However, they
displayed skin and skeletal abnormalities. All homo-
zygous mice showed hypo- or hyper-pigmented skin
by 12 months of age. Around 5 % of knockout mice
had skeletal defects of the limbs at birth, and all of
analysed mice also showed a palatal patterning defect
that was not seen in controls. Interestingly, this Recq4
mutation enhanced the number and size of intestine
adenoma in the ApcMin/+ genetic background. At the

cellular level, there was some evidence of genome
instability: 24% of Recq4-mutated MEFs showed
hyperploidy, and premature centromere separation
was a feature.
We have summarised the phenotypes of the different
Recq4–/– mice and compared them to the human
condition (Table 3). Although these mutant mouse
models show different phenotypes, most of the
phenotypes observed are typical of symptoms associ-
ated with the RTS and/or RAPADILINO syndromes.

RECQ1 and RECQ5

RECQ1 and RECQ5 are RecQ family members that
more closely resemble the prototypical E. coli RecQ
protein in terms of size. At present, no human disease
condition has been identified in which mutations in
RECQ1 or RECQ5 are a feature. We therefore limit
our discussion of the biology of these homologues to
the phenotypes of mouse or other eukaryotic knock-
out derivatives that lack RECQ1 or RECQ5. We
refer readers to previous reviews for a discussion of
the biochemical properties of these proteins [107,
150].
recq1-deficient chicken DT40 cells have been estab-
lished, but no clear phenotype was observed except for
a slow-growth phenotype that was present only in a
blm-deficient genetic background [151]. Recently, a
Recq1-knockout mouse model was reported [152].
The homozygote mice did not show any particular
developmental abnormalities, but cells from these
mice showed an elevated frequency of chromosomal
instability and a role in the DNA damage response.

Table 3. Symptoms of RecQ4 diseases and phenotypes of mouse models.

Rothmund-Thomson
syndrome

RAPADILINO
syndrome

Baller-Gerold
syndrome

Recq4 mouse
model-1
147

Recq4 mouse
model-2
149

Small stature +++ +++ + +++ –

Patellar abnormality – + +++ N.D. N.D.

Radial ray defect + +++ + ? +++

Dental and nail
abnormalities

+ – – +++ N.D.

Poikiloderma +++ – +++ – +++

Cataract +++ – – – N.D.

Sparse hair + – – + –

Cancer predisposition + (Osteosarcoma) � (only 1 case) – – +

Palatal abnormalities – +++ – N.D. +++

Joint disjunction – +++ – N.D. N.D.

Craniosynostosis – – +++ N.D. N.D.

+++: nearly all cases; +: limited cases; –: not observed; N.D.: not determined.
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The RECQ5 gene encodes three differentially spliced
mRNAs, encoding RECQ5a, b and g. However, only
RECQ5b localises to the nucleus [153], and this
isoform has been shown to interact with both top-
oisomerase IIIa and b [153]. RECQ5b also has 3�–5�
DNA helicase activity, ssDNA annealing activity, and
can catalyse branch migration of Holliday junctions
[144, 154]. These biochemical functions are very
similar to those of BLM. Therefore, it was proposed
that RECQ5b might serve as a �backup� system for
BLM. To understand the cellular function of RECQ5
and the functional redundancy between RECQ5 and
BLM, Recq5 single and Recq5 Blm double-mutant
cells were established in both mouse ES cells and
chicken DT40 cells [151, 155]. Recq5–/– mouse ES cells
show a mild slow-growth phenotype and a slightly
higher level of sensitivity to g-rays. In contrast, the
recq5-knockout DT40 cells do not show a slow growth
phenotype and are not hypersensitive to UV, MMS
and MMC. Recq5–/– mouse ES cells and MEFs display
a significantly higher number of SCEs, a phenotype
similar to that of Blm-mutant cells. Interestingly, the
rate of SCEs in the Recq5 Blm double-knockout cells
is even higher than that in either single mutant. Again,
however, this phenotype was not conserved in chicken
cells, as the frequency of SCEs in recq5 single mutant
DT40 cells was comparable to that found in wild-type
cells. Nevertheless, a conserved role for RecQ5 in SCE
suppression was suggested by the finding that the rate
of SCEs in the blm recq5 double-knockout DT-40 cells
is higher than that in blm single mutant. These studies
indicate that RECQ5 might possess a function in-
volved in control of SCE levels that is redundant to
that of BLM.
Recq5-knockout mice have been generated, but no
striking phenotype has been observed thus far. These
mice were reported to be viable, fertile and show
normal postnatal growth and development [155].

Perspective

More than 10 years has passed since the BLM and
WRN genes were cloned and their gene products
shown to be RecQ helicase family members. Shortly
after this, the RECQ4 and RECQ5 genes were also
cloned. Since then, biochemical and cell biological
studies of the RecQ family have suggested various
possibilities as to how these gene products serve to
maintain chromosome stability. For instance, the
BLM-TopoIIIa-BLAP75/RMI1 complex can dissolve
double-Holliday junctions without crossover, which
provides a plausible mechanism by which BLM might
suppress SCEs. However, the current situation is far
from providing a clear molecular understanding of the

key cellular roles of the RecQ family. Recent studies
strongly indicate that BLM is involved in repair of
stalled DNA replication forks, and that WRN is
required for telomere stability. However, the bio-
chemical function of RECQ4 is poorly understood
because it lacks helicase activity, and the precise role
that it might play in DNA replication remains to be
defined. Clearly, further biochemical and cellular
biological studies are needed to identify the role(s)
played by RECQ1 and RECQ5 in DNA replication/
repair. At this time, it is hard to explain the basis of the
various symptoms that appear in those syndromes
caused by loss of RecQ gene products. There are
several clinical symptoms in common among the
various RecQ syndromes, including growth retarda-
tion, premature aging and/or cancer predisposition.
As things stand, there is such a paucity of information
concerning the molecular basis of aging, that RecQ
disorders should provide a vital link between DNA
metabolism and the aging process. Lower proliferative
capacity may be one factor in growth retardation and
aging, but it is not clear why the lower proliferation
abilities of cells isolated from the different RecQ
helicase disorders produce such different outcomes.
Instead, it seems likely that at least certain forms of
genome instability can lead to increased cell death and
senescence, which leads to accelerated aging pheno-
types and developmental abnormalities. In the last ten
years, we have learned a lot about the biochemistry of
the RecQ helicases, but our knowledge of RecQ
�biology� is lagging some way behind. To plug this gap
is a key challenge for the future.
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