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Abstract

For medical image segmentation, contrastive learning is the dominant practice to improve the 

quality of visual representations by contrasting semantically similar and dissimilar pairs of 

samples. This is enabled by the observation that without accessing ground truth labels, negative 

examples with truly dissimilar anatomical features, if sampled, can significantly improve the 

performance. In reality, however, these samples may come from similar anatomical regions 

and the models may struggle to distinguish the minority tail-class samples, making the tail 

classes more prone to misclassification, both of which typically lead to model collapse. In this 

paper, we propose ARCO, a semi-supervised contrastive learning (CL) framework with stratified 

group theory for medical image segmentation. In particular, we first propose building ARCO 

through the concept of variance-reduced estimation and show that certain variance-reduction 

techniques are particularly beneficial in pixel/voxel-level segmentation tasks with extremely 

limited labels. Furthermore, we theoretically prove these sampling techniques are universal in 

variance reduction. Finally, we experimentally validate our approaches on eight benchmarks, 

i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings, 

and our methods consistently outperform state-of-the-art semi-supervised methods. Additionally, 

we augment the CL frameworks with these sampling techniques and demonstrate significant 

gains over previous methods. We believe our work is an important step towards semi-supervised 

medical image segmentation by quantifying the limitation of current self-supervision objectives 

for accomplishing such challenging safety-critical tasks.1

1 Introduction

Model robustness and label efficiency are two highly desirable perspectives when it comes 

to building reliable medical segmentation models. In the context of medical image analysis, 

a model is said to be robust if (1) it has a high segmentation quality with only using 

extremely limited labels in long-tailed medical data; (2) and fast convergence speed [1, 2, 3]. 

The success of traditional supervised learning depends on training deep networks on a large 

amount of labeled data, but this improved segmentation/model robustness often comes at the 

1Codes are available on here.
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cost of annotations and clinical expertise [4, 5, 6]. Therefore, it is difficult to adopt these 

models in real-world clinical applications.

Recently, a significant amount of research efforts [7, 8, 9, 10] have resorted to unsupervised 

or semi-supervised learning techniques for improving the segmentation robustness. One of 

the most effective methods is contrastive learning (CL) [11, 12, 13, 14]. It aims to learn 

useful representations by contrasting semantically similar (positive) and dissimilar (negative) 

pairs of data points sampled from the massive unlabeled data. These methods fit particularly 

well with real-world clinical scenarios as we assume only access to a large amount of 

unlabelled data coupled with extremely limited labels. However, pixel-level contrastive 

learning with medical image segmentation is quite impractical since sampling all pixels 

can be extremely time-consuming and computationally expensive [15]. Fortunately, recent 

studies [16, 17] provide a remedy by leveraging the popular strategy of bootstrapping, which 

first actively samples a sparse set of pixel-level representation (queries), and then optimize 

the contrastive objective by pulling them to be close to the class mean averaged across 

all representations in this class (positive keys), and simultaneously pushing apart those 

representations from other class (negative keys). The demonstrated imbalancedness and 

diversity across various medical image datasets, as echoed in [18], show the positive sign of 

utilizing the massive unlabeled data with extremely limited annotations while maintaining 

the impressive segmentation performance compared to supervised counterparts. Meanwhile, 

it can lead to substantial memory/computation reduction when using pixel-level contrastive 

learning framework for medical image segmentation.

Nevertheless, in practical clinical settings, the deployed machine learning models often 

ask for strong robustness, which is far beyond the scope of segmentation quality for such 

challenging safety-critical scenarios. This leads to a more challenging requirement, which 

demands the models to be more robust to the collapse problems whereby all representations 

collapse into constant features [14, 13, 19] or only span a lower-dimensional subspace [20, 

21, 22, 23], as one main cause of such fragility could be attributed to the non-smooth feature 

space near samples [24, 25] (i.e., random sampling can result in large feature variations 

and even annotation information alter). Thus, it is a new perspective: how to sample most 
informative pixels/voxels towards improving variance reduction in training semi-supervised 
contrastive learning models. This inspires us to propose a new hypothesis of semi-supervised 

CL. Specifically, when directly baking in variance-reduction sampling into semi-supervised 

CL frameworks for medical image segmentation, the models can further push toward state-

of-the-art segmentation robustness and label efficiency.

In this paper, we present ARCO, a semi-supervised strAtifed gRoup Contrastive learning 

framework with two perspectives (i.e., segmentation/model robustness and label 
efficiency), and with the aid of variance-reduction estimation, realize two practical solutions 

– Stratified Group (SG) and Stratified-Antithetic Group (SAG) – for selecting the most 

semantically informative pixels. ARCO is a group-based sampling method that builds a set 

of pixel groups and then proportionally samples from each group with respect to the class 

distribution. The main idea of our approach is via first partitioning the image with respect 
to different classes into grids with the same size, and then sampling, within the same 
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grid, pixels semantically close to each other with high probability, with minimal additional 
memory footprint.

Subsequently, we show that baking ARCO into contrastive pre-training (i.e., MONA [17]) 

provides an efficient pixel-wise contrastive learning paradigm to train deep networks that 

perform well in long-tailed medical data. ARCO is easy to implement, being built on top of 

off-the-shelf pixel-level contrastive learning framework [13, 14, 26, 27, 28], and consistently 

improve overall segmentation quality across all label ratios and datasets (i.e., five 2D/3D 

medical and three semantic datasets).

Our theoretical analysis shows that, ARCO is more label efficient, providing practical 

means for computing the gradient estimator with improved variance reduction. Empirically, 

our approach achieves competitive results across eight 2D/3D medical and semantic 

segmentation benchmarks. Our proposed framework has several theoretical and practical 

contributions:

• We propose ARCO, a new CL framework based on stratified group theory to 

improve the label efficiency and model robustness trade-off in CL for medical 

image segmentation. We show that incorporating ARCO coupled with two special 

sampling methods, Stratified Group and Stratified-Antithetic Group, into the 

models provides an efficient learning paradigm to train deep networks that 

perform well in those long-tail clinical scenarios.

• To our best knowledge, we are the first work to show the benefit of certain 

variance-reduction techniques in CL for medical image segmentation. We 

demonstrate the unexplored advantage of the refined gradient estimator in 

handling long-tailed medical image data.

• We conduct extensive experiments to validate the effectiveness of our proposed 

method using a variety of datasets, network architectures, and different label 

ratios. For segmentation robustness/accuracy, we show that our proposed method 

by demonstrating superior segmentation accuracy (up to 11.08% absolute 

improvements in Dice). For label efficiency, our method trained with different 

labeled ratios – consistently achieves competitive performance improvements 

across all eight 2D/3D medical and semantic segmentation benchmarks.

• Theoretical analysis of ARCO shows improved variance reduction with 

optimization guarantee. We further demonstrate the intriguing property of ARCO 

across the different pixel-level contrastive learning frameworks.

2 Related work

Medical Image Segmentation.

Contemporary medical image segmentation approaches typically build upon fully 

convolutional networks (FCN) [29] or UNet [30], which formulates the task as a dense 

classification problem. In general, current medical image segmentation methods can be cast 

into two sets: network design and optimization strategy. One is to optimize segmentation 

network design for improving feature representations through dilated/atrous/deformable 
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convolutions [31, 32, 33], pyramid pooling [34, 35, 36], and attention mechanisms [37, 

38, 39]. Most recent works [40, 41, 6] reformulates the task as a sequence-to-sequence 

prediction task by using the vision transformer (ViT) architecture [42, 43]. The other is to 

improve optimization strategies, by designing loss function to better address class imbalance 

[44] or refining uncertain pixels from high-frequency regions improving the segmentation 

quality [45, 46, 47, 48, 49]. In contrast, we take a leap further to a more practical clinical 

scenario by leveraging the massive unlabeled data with extremely limited labels in the 

learning stage. Moreover, we focus on building model-agnostic, label-efficiency framework 

to improve segmentation quality by providing additional supervision on the most confusing 

pixels for each class. In this work, we question how medical segmentation models behave 

under such imbalanced class distributions and whether they can perform well in those 

challenging scenarios through sampling methods.

Semi-Supervised Learning (SSL).

SSL aims to train models with a combination of labeled, weakly-labeled and unlabelled data. 

In recent years, there has been a surge of work on semi-supervised medical segmentation 

[8, 9, 50, 48, 16, 51, 52, 17, 10, 53, 54], which makes it hard to present a complete 

overview here. We therefore only outline some key milestones related to this study. In 

general, it can be roughly categorized into two groups: (1) Consistency regularization 

was first proposed by [55], which aims to impose consistency corresponding to different 

perturbations into the training, such as consistency regularization [56, 57], pi-model [58], 

and mean-teacher [59, 60]. (2) Self-training was initially proposed in [61], which aims 

at using a model’s predictions to obtain noisy pseudo-labels for performance boosts with 

minimal human labor, such as pseudo-labeling [7, 62], model uncertainty [8, 63], confidence 

estimation [64, 65, 66], and noisy student [67]. These methods usually lead to competitive 

performance but fail to prevent collapse due to class imbalanceness. In this work, we focus 

on semi-supervised medical segmentation with extremely limited labels since the medical 

image data is extremely diverse and often long-tail distributed over anatomical classes. We 

speculate that a good medical segmentation model is expected to distinguish the minority 

tail-class samples and hence achieve better performance under additional supervision on 

hard pixels.

Contrastive Self-Supervised Learning.

Self-supervised representation learning is a subclass of unsupervised learning, but with 

the critical distinction that it incorporates “inherent” supervision from the input data itself 

[68]. The primary aim of self-supervised representation learning is to enable the model to 

learn the most useful representations from the large amount of unlabelled data for various 

downstream tasks. Self-supervised learning typically relies on pretext tasks, including 

predictive [69, 70, 71], contextual [72, 73], and generative [74] or reconstructive [75] tasks.

Among them, contrastive learning is considered as a popular approach for self-supervised 

representation learning by pulling the representations of similar instances closer and 

representations of dissimilar instances further apart in the learned feature space [11, 12, 

13, 14]. The past five years have seen tremendous progress related to CL in medical image 

segmentation [50, 23, 76, 48, 16, 17, 77], and it becomes increasingly important to improve 
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representation in label-scarcity scenarios. The key idea in CL [11, 12, 13, 14] is to learn 

representations from unlabeled data that obey similarity constraints by pulling augmented 

views of the same samples closer in a representation space, and pushing apart augmented 

views of different samples. This is typically achieved by encoding a view of a data into a 

single global feature vector. However, the global representation is sufficient for simple tasks 

like image classification, but does not necessarily achieve decent performance, especially 

for more challenging dense prediction tasks. On the other hand, several works on dense 
contrastive learning [50, 23], aim at providing additional supervision to capturing intrinsic 

spatial structure and fine-grained anatomical correspondence, while these methods may 

suffer from class imbalance issues. Particularly, very recent work [16, 17] for the first time 

demonstrates the imbalancedness phenomenon can be mitigated by performing contrastive 

learning yet lacking stability. By contrast, a key motivation of our work is to bridge the 

connection between model robustness and label efficiency, which we believe is an important 

and under-explored area. We hence focus on variance-reduced estimation in medical image 

segmentation, and show that certain variance-reduction techniques can help provide more 

efficient approaches or alternative solutions for handling collapse issues, and improving 

model robustness in terms of accuracy and stability. To the best of our knowledge, we are 

the first to provide a theoretical guarantee of robustness by using certain variance-reduction 

techniques.

3 Methodology

In this section we set-up our semi-supervised medical segmentation problem, introduce key 

definitions and notations and formulate an approach to incorporate stratified group theory. 

Then, we discuss how our proposed ARCO can directly bake in two perspectives into deep 

neural networks: (1) model robustness, and (2) label efficiency.

3.1 Preliminaries and setup

Problem Definition.—In this paper, we consider the multi-class medical image 

segmentation problem. Specifically, given a medical image dataset X, Y , we wish to 

automatically learn a segmentator, which assigns each pixel to their corresponding K-class 

segmentation labels. Let us denote x as the input sample of the student and teacher networks 

F ⋅)2, consisting of an encoder E and a decoder D, and F  is parameterized by weights θs and 

θt.

Background.—Contrastive learning aims to learn effective representations by pulling 

semantically close neighbors together and pushing apart other non-neighbors [11]. Among 

various popular contrastive learning frameworks, MONA [17] is easy-to-implement while 

yielding the state-of-the-art performance for semi-supervised medical image segmentation 

so far. The main idea of MONA is to discover diverse views (i.e., augmented/mined 

views) whose anatomical feature responses are homogeneous within the same or different 

occurrences of the same class type, while at the same time being distinctive for different 
class types.

2The student and teacher networks both adopt the 2D UNet [30] or 3D VNet [78] architectures.
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Hereinafter, we are interested in showing that certain variance-reduction techniques coupled 

with CL frameworks are particularly beneficial in long-tail pixel/voxel-level segmentation 

tasks with extremely limited labels. We hence build our ARCO as a simplification of the 

MONA pipeline [17], without additional complex augmentation strategies, for deriving the 

model robustness and label efficiency proprieties of our medical segmentation model. 

Figure 1 overviews the high-level workflow of the proposed ARCO framework. Training 

ARCO involves a two-phase training procedure: (1) relational semi-supervised pre-training, 

and (2) anatomical contrastive fine-tuning. To make the discussion self-contained, we defer 

the full details of ARCO to the appendix E.

3.2 Motivation and Challenges

Intuitively, the contrastive loss will learn generalizable, balanced and diverse representations 

for downstream medical segmentation tasks if the positive and negative pairs correspond 

to the desired latent anatomical classes [50, 16, 17]. Yet, one critical constraint in real-

world clinical scenarios is severe memory bottlenecks [15, 16]. To address this issue, 

current pixel-level CL approaches [16, 17] for high-resolution medical images devise their 

aggregation rules by unitary simulators, i.e., Naïve Sampling (NS), that determines the 

empirical estimate from all available pixels. Despite the blessing of large learning capacity, 

such aggregation rules are unreliable “black boxes”. It is never well understood which 

rule existing CL models should use for improved model robustness and label efficiency; 

nor is it easy to compare different models and assess the model performance. Moreover, 

unitary simulators, especially naïve sampling, often incur high variances and fail to identify 

semantically similar pixels [24], limiting CL stability. As demonstrated in Figure 3, regions 

of similar anatomical features should be grouped together in the original medical images, 

resulting in corresponding plateau regions in the visualization of the loss landscape. This is 

consistent with the observations uncovered by the recent empirical findings [79, 80].

If we take a unified mathematical perspective, the execution of simulation can be 

represented either through an adaptive rule, or by a unitary simulation. To tackle the two 

critical issues, we look back at adaptive rules. We hence propose two straightforward yet 

effective techniques – Stratified Group (SG) and Stratified-Antithetic Group (SAG) – to 

mitigate the undesirable high-variance limitation, and turn to the following idea of sampling 

the most representative pixels from groups of semantically similar pixels. In particular, 

our proposed solution is based on stratified group simulation to adaptively characterize 

anatomical regions found on different medical images. This characterization is succinct, and 

regions with the same anatomical properties within different medical images are identifiable. 

In practice, we first partition the image with respect to different classes into grids with the 
same size, and then sampling, within the same grid, the pixels semantically close to each 
other with high probability, with minimal additional memory footprint (Figure 2).

In what follows, we will theoretically demonstrate the important properties of such 

techniques (i.e., SG and SAG), especially in reduced variance and unbiasedness. Here the 

reduced variance implies more robust gradient estimates in the backpropagation, and leads 

to faster and stabler training in theory, as corroborated by our experiments (Section 4). 

Empirically, we will demonstrate many practical benefits of reduced variances including 
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improved model robustness, i.e., faster convergence and better segmentation quality, through 

mitigating the collapse issue.

3.3 Stratified Group Sampling

To be consistent with the previous notation, we denote an arbitrary image from the 

given medical image dataset as x ∈ X, and P as the set of pixels. For arbitrary function 

ℎ:X × P ℝ, we define the aggregation function H3 as:

H x = 1
P p ∈ P

ℎ x; p .

(3.1)

As a large cardinality of P prevents efficient direct computation of H, an immediate 

approach is to compute H x  by first sampling a subset of pixels D ⊆ P according to certain 

sampling strategy, and then computing H x; D = ∑p ∈ D ℎ x; p / D . SG sampling achieves 

this by first decomposing the pixels into M disjoint groups Pm satisfying ∪m = 1
M Pm = P, and 

then sampling Dm ⊆ Pm so that D = ∪m = 1
M Dm. The SG sampling can then be written as:

HSG x; D = 1
M m = 1

M 1
Dm p ∈ Dm

ℎ x; p .

SAG, built upon SG, adopts a similar form, except for an additionally enforced symmetry on 

Dm: ∀m, ∃cm ∈ Pm, such that for any p ∈ Dm,

cm − p = p′ − cm, for some p′ ∈ Dm .

Here cm denotes the center of the group Pm
4. The implementation of SG and SAG involves 

two steps: (1) to create groups Pm m = 1
M , and (2) to generate each Dm ⊆ Pm. For the latter, we 

consider independent sampling within and between groups, i.e., Dm ⫫ Dm′ for m ≠ m′, and 

p ⫫ p′∀p, p′ ∈ Dm, where the variance of SG sampling is as follows.

Lemma 3.1. Suppose in SG sampling, for each m, Dm is sampled from Pm with sampling 

variance σm
2 and sample size Dm = nm. Then the variance satisfies Var HSG = ∑m = 1

M σm
2nm/n, and 

SAG with the same sample size satisfies Var HSAG ≤ 2 Var HSG .

To ensure the unbiasedness property, we adopt the setting of proportional group sizes [85, 

86], i.e., Dm ∝ Pm  for all m. It turns out that such setting also enjoys the variance-reduction 

property.

3The pixel-level contrastive loss ℒcontrast is an example of an aggregation function (up to normalizing constant) according to Eqn. 
(E.2).
4The choice of cm is flexible. For example, if the convex hull of the pixels in Pm form a circle, then cm can be taken as the geometric 
center.
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Theorem 3.2 (Unbiasedness and Variance of SG). SG with proportional group sizes is 
unbiased, and has a variance no larger than that of NS. That is: E HSG x = H x , and

Var HSG = Var HNS − 1
n ∑

m = 1

M
Ep ∼uinf. Pm[ℎ(x; p)] − Ep ∼uinf. P[ℎ(x; p)] 2 .

The last term is the intra-group variance, which captures the discrepancy between the pixel 

groups Pm m = 1
M . Theorem 3.2 guarantees that the variance of SG is no larger than that 

of NS, and SG has strictly less variance than NS as long as all the pixel groups do not 

share an equal mean over ℎ x; p , which is almost-sure in medical images (See Figure 3). 

For SAG, Lemma 3.1 guarantees its variance is of the same magnitude as that of SG, and 

at worst differs by a factor of 2. Since the pixel/voxel-level contrastive loss ℒcontrast is an 

aggregation function over pixels by definition (E.2), it benefits from the variance-deduction 

property of SG/SAG. In Section 4.1, we will see that such variance reduction allows ARCO 

to achieve better segmentation accuracy, especially along the boundary of the anatomical 

regions (Figure 4).

Training Convergence.—We further demonstrate the benefit of variance reduction 

estimation in terms of training stability. Specifically, leveraging techniques from standard 

optimization theory [87, 88, 89], we can show that variance-reduced gradient estimator 

through SG sampling leads to faster training convergence. Suppose we have a loss function 

ℒ θ  with the model parameter θ, and use stochastic gradient descent (SGD) as the 

optimizer. A gradient estimate θ ≈ ∇ ℒθ) is computed at each iteration. It is well-known 

that the convergence of SGD depends on the quality of the estimate g θ  [87]. Specifically, 

we make the common assumptions that the loss function is smooth and the gradient estimate 

has bounded variance (More details in Appendix A.3), which can be formulated as below:

∥ ∇ℒ θ − ∇ℒ θ′ ∥2 ≤ L ∥ θ − θ′ ∥2 , E ∥ g θ − ∇ℒ θ ∥2 ≤ σg
2 .

Under these two assumptions, the average expected gradient norm of the learned parameter 

satisfies the following:

1
T t = 1

T
E ∥ ∇ℒ θt ∥2

2 ≤ C 1
T + σg

T .

For general non-convex loss function, the above implies convergence to some local 

minimum. Importantly, the slow rate σg/ T  depends on standard deviation σg, indicating 

a faster convergence can indeed be achieved with a more accurate gradient estimate. This 

indicates our proposed sampling techniques demonstrate universality in variance reduction, 

as they can be applied to a wide range of scenarios that involve pixel/voxel-level sampling 

(See Appendix A.3). In Figure 5, we observe that using SG enables faster loss decay with 
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smaller error bar, showing that it outperforms other methods in both convergence speed and 

stability. See Section 4.2 and Appendix A.3 for more details.

4 Experiments

In this section, we present experimental results to validate our proposed methods across 

various datasets and different label ratios in Appendix B. We use 2D UNet [30] or 3D VNet 

[78] as our backbones. Further implementation details are discussed in Appendix C.5

4.1 Main Results

In this subsection, we first examine whether our proposed ARCO can generalize well across 

various datasets and label ratios. Then, we investigate to what extent ARCO coupled with 

two samplers can realize two essential properties: (1) model robustness; and (2) label 
efficiency. The quantitative results for all the compared methods on eight popular datasets: 

(1) Medical image segmentation tasks: three 2D benchmarks (i.e., ACDC [81], LiTS [82], 

MMWHS [83]), two 3D benchmarks (i.e., LA [84], in-house MP-MRI) under various label 

ratios (i.e., 1%, 5%, 10%) are collected in Table 1, Table 5 (Appendix G), Table 6 (Appendix 

H), and Table 9 (Appendix I and J), respectively; (2) General computer vision tasks: To 

further validate the effectiveness, we experiment on three popular segmentation benchmarks 

(i.e., Cityscapes [97], Pascal VOC 2012 [98], indoor scene segmentation dataset – SUN 

RGB-D [99]) in the semi-supervised full-label settings. We follow the identical setting 

[100] to sample labelled images to ensure that every class appears sufficiently in our three 

datasets, (i.e., CityScapes, Pascal VOC, and SUN RGB-D). The results are collected in 

Appendix Section K. Several consistent observations can be drawn from these extensive 

evaluations with eighteen segmentation networks.

❶ Superior Performance Across Datasets.—We demonstrate that ARCO achieves 

superior performance across all datasets and label ratios. In specific, our experiments 

consider three 2D benchmarks (i.e., ACDC [81], LiTS [82], MMWHS [83]), two 3D 

benchmarks (i.e., LA [84], in-house MP-MRI), and different label ratios (i.e., 1%, 5%, 

10%). As shown in Table 1, Table 5 (Appendix G), Table 6 (Appendix H), and Table 9 

(Appendix I and J), we observe that our methods consistently outperform all the compared 

SSL-based methods by a considerable margin across all datasets and label ratios, which 

validates the superior performance of our proposed methods in both segmentation accuracy 

and label efficiency. For example, compared to the second-best MONA, our ARCO-SG under 

{1%, 5%, 10%} label ratios achieves {2.9%↑, 1.8%↑, 1.7%↑}, {3.3%↑, 1.8%↑, 1.8%↑}, 

{4.1%↑, 2.0%↑, 1.8%↑}, {0.3%↑, 0.3%↑, 0.5%↑}, {2.2%↑, 0.8%↑, 0.4%↑} in average 

Dice across ACDC, LiTS, and MMWHS, MP-MRI, and LA, respectively. Our ARCO-SAG 

achieves {84.9%, 87.1%, 88.5%}, {64.1%, 67.3%, 69.4%}, {86.1%, 88.6%, 89.3%}, 

{91.5%, 92.5%, 92.6%}, {73.2%, 86.9%, 89.1%} in averaged Dice across ACDC, LiTS, 

MMWHS, MP-MRI, and LA. These results indicate that our methods can generalize to 

different clinical scenarios and label ratios.

5Codes are available on here.
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❷ Across Label Ratios and Robustified Methods.—To further validate the label 

efficiency property of our ARCO, we evaluate our ARCO-SG and ARCO-SAG with limited 

labeled training data available (e.g., 1% and 5%). As demonstrated in Table 1, Table 5 

(Appendix G), Table 6 (Appendix H), and Table 9 (Appendix I and J), our models under 

5% label ratios surpass all the compared SSL methods by a significant performance margin. 

For example, compared to MONA, we observe our methods to push the best segmentation 

accuracy higher by 0.3%~2.0% in Dice on ACDC, LiTS, and MMWHS, MP-MRI, and 

LA, respectively. For example, the best segmentation accuracy on MMWHS rises from 

87.3% to 89.3%. This suggests that our SSL-based approaches – without compromising 

the best achievable segmentation results – robustly improve performance using very limited 

labels, and further lead to a much-improved trade-off between SSL schemes and supervised 

learning schemes by avoiding a large amount of labeled data.

Similar to our results under 5% label ratio, our ARCO-SG and ARCO-SAG trained with 1% 

label ratio demonstrate sufficient performance boost compared to MONA by an especially 

significant margin, with up to 0.3%~4.1% relative improvement in Dice. Taking the 

extremely limited label ratio (i.e., 1%) as an indicator: (1) on 3D LA, ARCO-SG achieves 

2.2% higher average Dice, and 6.64 lower average ASD than the second best MONA; (2) 

on LiTS, ARCO-SG achieves 3.3% higher average Dice, and 4.7 lower average ASD than 

the second best MONA; and (3) considering the more challenging clinical scenarios (i.e., 7 

anatomical classes), ARCO-SG achieves 5.1% higher average Dice, and 2.26 lower average 

ASD than the second-best MONA on MMWHS. It highlights the superior performance of 

ARCO is not only from improved label efficiency but also credits to the superior model 

robustness.

❸ Qualitative Results.—We provide qualitative illustrations of ACDC, LiTS, 

MMWHS, LA, MP-MRI in Figure 4, Figure 6 (Appendix G), Figure 7 (Appendix H), 

Figure 8 (Appendix I), and Figure 9 (Appendix J), respectively. As shown in Figure 4, we 

observe that ARCO appears a significant advantage, where the edges and the boundaries 

of different anatomical regions are clearly more pronounced, such as RV and Myo regions. 

More interestingly, we found that in Figure 6, though all methods may confuse ambiguous 

tail-class samples such as small lesions, ARCO-SG and ARCO-SAG still produces consistently 

sharp and accurate object boundaries compared to the current approaches. We also observe 

similar results for ARCO on MMWHS in Figure 7 (Appendix H), where our approaches can 

regularize the segmentation results to be smooth and shape-consistent. Our findings suggest 

that ARCO improves model robustness mainly through distinguishing the minority tail-class 

samples.

4.2 Ablation Studies

In this subsection, we conduct various ablations to better understand our design choices. For 

all the ablation experiments the models are trained on ACDC with 1% labeled ratio.

Importance of Loss Components.—We analyse several critical components of our 

method in the final performance and conduct comprehensive ablation studies on the ACDC 

dataset with a 1% label ratio to validate their necessity. First, at the heart of our method 

You et al. Page 10

Adv Neural Inf Process Syst. Author manuscript; available in PMC 2024 May 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



is the combination of three losses: ℒcontrast for tailness, and ℒnn for diversity (See Section 3 

for more details). We deactivate each component and then evaluate the resulting models, 

as shown in Table 2. As is shown, global contrastive loss ℒcontrast and nearest neighbor 

loss ℒnn can boost performance by a large margin. Moreover, incorporating our methods 

(i.e., SG and SAG) consistently achieve superior model robustness gains compared to naïve 

sampling (i.e., NS), both of which suggests the importance of these components. Second, 

we compare the impact of different loss function (e.g., unsupervised loss/ℒunsup, global 

instance discrimination loss/ℒinst
global, and local instance discrimination loss/ℒinst

local . As shown in 

Table 3, using each loss function consistently achieves significant performance gains, which 

demonstrates positive contribution of each component to performance gains.

Importance of Augmentation Components.—We further investigate the impact of 

data augmentation on the ACDC dataset with a 1% label ratio. As is shown in Table 4 

(in Appendix), employing each data augmentation strategy consistently results in notable 

performance improvements, underscoring the efficacy of these data augmentations. Of 

note, ARCO-SAG/ARCO-SG using all three augmentations and ARCO-SAG/ARCO-SG using 

no augmentation are considered as the upper bound and the lower bound for the performance 

comparison. These results show that each augmentation strategy systematically boosts 

performance by a large margin, which suggests improved robustness.

Stability Analyses.—In Figure 5, we show the stability analysis results on ARCO 

over different sampling methods. As we can see, our SG and SAG sampling facilitates 

convergence during the training. More importantly, SG sampling has stable performance 

with small standard derivations, which aligns with our hypothesis that our proposed 

sampling method can be viewed as the form of variance regularization. Moreover, loss 

landscape visualization of different loss functions (Figure 3) reveals similar conclusions.

Extra Study.—More investigations about (1) generalization across label ratios and 

frameworks in Appendix L; (2) final checkpoint loss landscapes in Appendix M; (3) ablation 

on different training settings are in Appendix N.

5 Conclusion and Discussion of Broader Impact

In this paper, we propose ARCO, a new semi-supervised contrastive learning framework 

for improved model robustness and label efficiency in medical image segmentation. 

Specifically, we propose two practical solutions via stratified group theory that correct 

for the variance introduced by the common sampling practice, and achieve significant 

performance benefits. Our theoretical findings indicate Stratified Group and Stratified-

Antithetic Group Sampling provide practical means for improving variance reduction. It 

presents a curated and easily adaptable training toolkit for training deep networks that 

generalize well beyond training data in those long-tail clinical scenarios. Moreover, our 

sampling techniques can provide pragmatic solutions for enhancing variance reduction, 

thereby fostering their application in a wide array of real-world applications and sectors. 

These include but are not limited to 3D rendering, augmented reality, virtual reality, 

trajectory prediction, and autonomous driving. We hope this study could be a stepping 
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stone towards by quantifying the limitation of current self-supervision objectives for 

accomplishing such challenging safety-critical tasks.

Broader Impact.

Defending machine learning models against inevitable variance will have the great potential 

to build more reliable and trustworthy clinical AI. Our findings show that the stratified 

group theory can provide practical means for improving variance reduction, leading to 

realistic deployments in a large variety of real-world clinical applications. Besides, we 

should address the challenges of fairness or privacy in the medical image analysis domain as 

our future research direction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Pipeline overview.
Our semi-supervised segmentation model F  takes a 2D/3D medical image x as input and 

outputs the segmentation map and the representation map. We leverage a simplification 

of MONA pipeline [17] which is composed of two stages: (1) relational semi-supervised 

pre-training: on labeled data, the student network is trained by the ground-truth labels with 

the supervised loss ℒsup; while on unlabeled data, the student network takes the augmened 

and mined embeddings from the EMA teacher for instance discrimination ℒinst in the global 

and local manner, (2) anatomical contrastive reconstruction fine-tuning: on labeled data, the 

student network is trained by the ground-truth labels with the supervised loss ℒsup; while on 

unlabeled data, the student network takes the representation maps and pseudo labels from 

the EMA teacher to give more importance to tail class ℒcontrast, exploit the inter-instance 

relationship ℒnn, and compute unsupervised loss ℒunsup. See Appendix M for details of the 

visualization loss landscapes.
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Figure 2: 
Overview of three sampling methods. (1) Naïve Sampling, (2) Stratified Group Sampling, 

and (3) Stratified-Antithetic Group Sampling.
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Figure 3: 
Loss landscape visualization of pixel-wise contrastive loss ℒcontrast with ARCO-SG. Loss 

plots are generated with same original images randomly chosen from ACDC [81], LiTS 

[82], MMWHS [83], LA [84], and MP-MRI, respectively. z-axis denotes the loss value 

at each pixel. For each example of the five benchmarks, the left subplot indicates that 

similar anatomical features are grouped together in the original medical images, as shown by 

different anatomical regions in different colors.
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Figure 4: 
Visual results on ACDC with 1%, 5%, 10% label ratios. ARCO consistently produce more 

accurate predictions on anatomical regions and boundaries compared to all other SSL 

methods.
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Figure 5: 
Visualization of training trajectories given by ℒcontrast vs. epochs on ACDC under 10% 

label ratio. The proposed ARCO is compared in terms of different sampling methods: Naïve 

Sampling (NS), Stratified Group (SG) Sampling, and Stratified-Antithetic Group (SAG) 

Sampling. The solid line and shaded area of each sampling method denote the mean and 

variance of test accuracies over 3 independent trials. Clearly, we observe SG sampling 

consistently outperforms the other sampling methods in convergence speed and training 

stability. SAG slightly outperforms NS.
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Table 1:

Quantitative comparisons (DSC[%] ↑ / ASD[voxel] ↓) across the three labeled ratio settings (1%, 5%, 10%) on 

the ACDC benchmark. All experiments are conducted as [30, 90, 91, 92, 93, 8, 94, 9, 57, 95, 62, 50, 59, 96, 

53, 16, 17] in the identical setting for fair comparisons. Best and second-best results are coloured blue and red, 

respectively. UNet-F (fully-supervided) and UNet-L (semi-supervided) are considered as the upper bound and 

the lower bound for the performance comparison. Note that, Right Ventricle → RV, Myocardium → Myo, 

Left Ventricle → LV. We adopt the identical data augmentation (i.e., random rotation, random cropping, and 

horizontal flipping) for fair comparisons.

Method

ACDC

Average

1 Labeled (1%)

Average

3 Labeled (5%)

Average

7 Labeled (10%)

RV Myo LV RV Myo LV RV Myo LV

UNet-F 
[30]

91.5/0.996 90.5/0.606 88.8/0.941 94.4/1.44 91.5/0.996 90.5/0.606 88.8/0.941 94.4/1.44 91.5/0.996 90.5/0.606 88.8/0.941 94.4/1.44

UNet-L 40.3/22.7 29.0/25.4 43.6/15.3 48.2/27.5 51.7/13.1 36.9/30.1 54.9/4.27 63.4/5.11 79.5/2.73 65.9/0.892 82.9/2.70 89.6/4.60

EM [90] 43.1/18.1 38.7/23.1 42.0/12.0 48.7/19.4 59.8/5.64 44.2/11.1 63.2/3.23 71.9/2.57 75.7/2.73 68.0/0.892 76.5/2.70 82.7/4.60

CCT [91] 48.6/19.2 38.7/28.0 49.2/14.8 57.9/17.0 59.1/10.1 44.6/19.8 63.2/6.04 69.4/4.32 75.9/3.60 67.2/2.90 77.5/3.32 82.9/4.59

DAN [92] 48.9/17.5 45.4/19.7 41.0/8.88 60.4/23.8 56.4/15.1 47.1/21.7 58.1/11.6 63.9/11.9 76.5/3.01 75.7/2.61 73.3/3.11 80.5/3.31

URPC [57] 43.0/21.1 38.6/22.8 41.7/14.4 48.6/26.0 58.9/8.14 50.1/12.6 60.8/4.10 65.8/7.71 83.1/1.68 77.0/0.742 82.2/0.505 90.1/3.79

DTC [9] 51.7/17.5 39.3/23.3 54.6/9.12 61.3/20.2 56.9/7.59 35.1/9.17 62.9/6.01 72.7/7.59 84.3/4.04 83.8/3.72 83.5/4.63 85.6/3.77

DCT [93] 49.7/16.4 42.4/20.4 48.8/10.6 57.9/18.2 58.5/10.8 41.2/21.4 63.9/5.01 70.5/6.05 78.1/2.64 70.7/1.75 77.7/2.90 85.8/3.26

ICT [95] 42.1/21.0 36.5/18.5 43.4/11.1 46.3/33.5 59.0/6.59 48.8/11.4 61.4/4.59 66.6/3.83 80.6/1.64 75.1/0.898 80.2/1.53 86.6/2.48

MT [59] 42.9/15.1 32.5/21.9 46.2/8.99 50.1/14.7 58.3/11.2 39.0/21.5 58.7/7.47 77.3/4.72 80.1/2.33 75.2/1.22 79.2/2.32 86.0/3.45

UAMT [8] 36.9/15.2 32.5/21.9 46.2/8.99 50.1/14.7 48.3/9.14 37.6/18.9 50.1/4.27 57.3/4.17 81.8/4.04 79.9/2.73 80.1/3.32 85.4/6.07

SASSNet 
[94]

42.6/24.8 29.8/34.7 45.4/13.3 52.5/26.6 57.8/6.36 47.9/11.7 59.7/4.51 65.8/2.87 84.7/1.83 81.8/0.769 82.9/1.73 89.4/2.99

CPS [62] 51.5/15.3 41.1/17.7 52.0/7.27 61.4/21.0 61.0/2.92 43.8/2.95 64.5/2.84 74.8/2.95 78.8/3.41 74.0/1.95 78.1/3.11 84.5/5.18

GCL [50] 59.7/14.3 49.5/25.3 60.9/6.28 68.8/11.5 70.6/2.24 56.5/1.99 70.7/1.67 84.8/3.05 87.0/0.751 86.9/0.584 81.8/0.820 92.5/0.849

MC-Net 
[96]

53.4/17.17 43.0/25.3 51.2/7.41 60.8/15.11 62.8/2.59 52.7/5.14 62.6/0.807 73.1/1.81 86.5/1.89 85.1/0.745 84.0/2.12 90.3/2.81

SS-Net 
[53]

63.4/2.94 64.7/3.32 57.0/1.81 68.4/3.70 65.8/2.28 57.5/3.91 65.7/2.02 74.2/0.896 86.8/1.40 85.4/1.19 84.3/1.44 90.6/1.57

ACTION 
[16]

81.0/3.45 76.9/3.09 78.4/2.07 87.5/5.17 86.6/1.20 85.2/0.734 84.7/0.909 89.8/1.97 87.2/1.47 86.1/0.976 85.7/1.11 89.7/2.33

MONA [17] 82.6/1.43 80.2/1.57 79.9/1.10 87.8/1.43 86.9/1.07 84.7/1.01 85.4/0.731 90.6/1.48 87.7/1.33 86.9/0.687 85.7/1.70 90.5/2.14

●ARCO-
SAG (ours)

84.9/1.47 81.7/1.98 81.9/0.903 90.9/1.52 87.1/0.848 85.6/0.414 85.1/0.930 90.6/1.20 88.5/1.40 87.1/0.635 86.2/1.04 92.2/2.53

○ARCO-
SG (ours)

85.5/0.947 81.8/1.19 83.8/0.801 90.9/0.853 88.7/0.841 88.2/0.618 85.9/0.673 91.9/1.23 89.4/0.776 90.2/0.701 86.5/0.787 91.6/0.839
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Table 2:

Ablation on component aspect: (1) tailness/ℒcontrast; (2) diversity/ℒnn.

Method DSC[%] ↑ ASD[voxel] ↓

Vanilla 49.3 7.11

●ARCO-SAG (ours) 84.9 1.47

 w/o tailness-SAG 60.9 4.11

 w/o diversity 78.6 1.68

○ARCO-SG (ours) 85.5 0.947

 w/o tailness-SG 60.9 4.11

 w/o diversity 79.3 1.26

ARCO-NS 82.6 1.43

 w/o tailness-NS 60.9 4.11

 w/o diversity 75.2 2.07
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Table 3:

Ablation on loss function: (1) unsupervised loss/ℒunsup; (2) global instance discrimination loss/ℒinst
global; and (3) 

local instance discrimination loss/ℒinst
local.

Method DSC[%]↑ ASD[voxel]↓

●ARCO-SAG (ours) 84.9 1.47

 w/o ℒunsup 81.2 1.87

 w/o ℒinst
global 84.0 2.64

 w/o ℒinst
local 83.3 2.63

○ARCO-SG (ours) 85.5 0.947

 w/o ℒunsup 81.9 1.04

 w/o ℒinst
global 84.1 2.10

 w/o ℒinst
local 83.8 2.11
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