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Abstract

Medical data often exhibits long-tail distributions with heavy class imbalance, which naturally 

leads to difficulty in classifying the minority classes (i.e., boundary regions or rare objects). 

Recent work has significantly improved semi-supervised medical image segmentation in long-

tailed scenarios by equipping them with unsupervised contrastive criteria. However, it remains 

unclear how well they will perform in the labeled portion of data where class distribution 

is also highly imbalanced. In this work, we present ACTION++, an improved contrastive 

learning framework with adaptive anatomical contrast for semi-supervised medical segmentation. 

Specifically, we propose an adaptive supervised contrastive loss, where we first compute the 

optimal locations of class centers uniformly distributed on the embedding space (i.e., off-line), 

and then perform online contrastive matching training by encouraging different class features 

to adaptively match these distinct and uniformly distributed class centers. Moreover, we argue 

that blindly adopting a constant temperature τ in the contrastive loss on long-tailed medical 

data is not optimal, and propose to use a dynamic τ via a simple cosine schedule to yield 

better separation between majority and minority classes. Empirically, we evaluate ACTION++ on 

ACDC and LA benchmarks and show that it achieves state-of-the-art across two semi-supervised 

settings. Theoretically, we analyze the performance of adaptive anatomical contrast and confirm its 

superiority in label efficiency.
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1 Introduction

With the recent development of semi-supervised learning (SSL) [3], rapid progress has been 

made in medical image segmentation, which typically learns rich anatomical representations 

from few labeled data and the vast amount of unlabeled data. Existing SSL approaches can 

be generally categorized into adversarial training [32,39,16,38], deep co-training [23,43], 

mean teacher schemes [27,42,14,13,15,7,41,34], multi-task learning [19,11,22,37,35], and 

contrastive learning [2,29,40,33,24,36].

Contrastive learning (CL) has become a remarkable approach to enhance semi-supervised 

medical image segmentation performance without significantly increasing the amount of 

parameters and annotation costs [2,29,36]. In real-world clinical scenarios, since the classes 

in medical images follow the Zipfian distribution [44], the medical datasets usually show a 

long-tailed, even heavy-tailed class distribution, i.e., some minority (tail) classes involving 

significantly fewer pixel-level training instances than other majority (head) classes, as 

illustrated in Figure 1. Such imbalanced scenarios are usually very challenging for CL 

methods to address, leading to noticeable performance drop [18].

To address long-tail medical segmentation, our motivations come from the following two 

perspectives in CL training schemes [2,36]: ➊ Training objective – the main focus of 

existing approaches is on designing proper unsupervised contrastive loss in learning high-

quality representations for long-tail medical segmentation. While extensively explored in 

the unlabeled portion of long-tail medical data, supervised CL has rarely been studied 

from empirical and theoretical perspectives, which will be one of the focuses in this work; 

➋ Temperature scheduler – the temperature parameter τ, which controls the strength of 

attraction and repulsion forces in the contrastive loss [5,4], has been shown to play a crucial 

role in learning useful representations. It is affirmed that a large τ emphasizes anatomically 

meaningful group-wise patterns by group-level discrimination, whereas a small τ ensures a 

higher degree of pixel-level (instance) discrimination [28,25]. On the other hand, as shown 

in [25], group-wise discrimination often results in reduced model’s instance discrimination 

capabilities, where the model will be biased to “easy” features instead of “hard” features. 

It is thus unfavorable for long-tailed medical segmentation to blindly treat τ as a constant 
hyperparameter, and a dynamic temperature parameter for CL is worth investigating.

In this paper, we introduce ACTION++, which further optimizes anatomically group-

level and pixel-level representations for better head and tail class separations, on both 

labeled and unlabeled medical data. Specifically, we devise two strategies to improve 

overall segmentation quality by focusing on the two aforementioned perspectives: (1) we 

propose supervised adaptive anatomical contrastive learning (SAACL) for long-tail medical 

segmentation. To prevent the feature space from being biased toward the dominant head 

class, we first pre-compute the optimal locations of class centers uniformly distributed on 

the embedding space (i.e., off-line), and then perform online contrastive matching training 

by encouraging different class features to adaptively match these distinct and uniformly 

distributed class centers; (2) we find that blindly adopting the constant temperature τ in 

the contrastive loss can negatively impact the segmentation performance. Inspired by an 

average distance maximization perspective, we leverage a dynamic τ via a simple cosine 
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schedule, resulting in significant improvements in the learned representations. Both of these 

enable the model to learn a balanced feature space that has similar separability for both 

the majority (head) and minority (tail) classes, leading to better generalization in long-tail 

medical data. We evaluated our ACTION++ on the public ACDC and LA datasets [1,31]. 

Extensive experimental results show that our ACTION++ outperforms prior methods by a 

significant margin and sets the new state-of-the-art across two semi-supervised settings. We 

also theoretically show the superiority of our method in label efficiency (Appendix A). Code 

is released at here.

2 Method

2.1 Overview

Problem Statement—Given a medical image dataset X, Y , our goal is to train a 

segmentation model F  that can provide accurate predictions that assign each pixel to their 

corresponding K-class segmentation labels.

Setup—Figure 2 illustrates an overview of ACTION++. By default, we build this work 

upon ACTION pipeline [36], the state-of-the-art CL framework for semi-supervised medical 

image segmentation. The backbone model adopts the student-teacher framework that shares 

the same architecture, and the parameters of the teacher are the exponential moving average 

of the student’s parameters. Hereinafter, we adopt their model as our backbone and briefly 

summarize its major components: (1) global contrastive distillation pre-training; (2) local 

contrastive distillation pre-training; and (3) anatomical contrast fine-tuning.

Global and Local Pre-training—[36] first creates two types of anatomical views 

as follows: (1) augmented views - x1 and x2 are augmented from the unlabeled input 

scan with two separate data augmentation operators; (2) mined views - n samples (i.e., 

x3) are randomly sampled from the unlabeled portion with additional augmentation. 

The pairs x1, x2  are then processed by student-teacher networks Fs, F t  that share 

the same architecture and weight, and similarly, x3 is encoded by F t. Their global 

latent features after the encoder E (i.e., h1, h2, h3 ) and local output features after 

decoder D (i.e., f1, f2, f3 ) are encoded by the two-layer nonlinear projectors, generating 

global and local embeddings vg and vl . v from Fs are separately encoded by the non-

linear predictor, producing w in both global and local manners1. Third, the relational 

similarities between augmented and mined views are processed by SoftMax function as 

follows: us = log
exp sim w1, v3 /τs

∑n = 1
N exp sim w1, vn

3 /τs
, ut = log

exp sim w2, v3 /τt

∑n = 1
N exp sim w2, vn

3 /τt
, where τs and τt are two 

temperature parameters. Finally, we minimize the unsupervised instance discrimination loss 

(i.e., Kullback-Leibler divergence Kℒ) as:

ℒinst = Kℒ us ∥ ut .

1For simplicity, we omit details of local instance discrimination in the following.
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(1)

We formally summarize the pretraining objective as the equal combination of the global and 

local ℒinst, and supervised segmentation loss ℒsup (i.e., equal combination of Dice loss and 

cross-entropy loss).

Anatomical Contrast Fine-tuning—The underlying motivation for the fine-tuning stage 

is that it reduces the vulnerability of the pre-trained model to long-tailed unlabeled data. To 

mitigate the problem, [36] proposed to fine-tune the model by anatomical contrast. First, the 

additional representation head φ is used to provide dense representations with the same size 

as the input scans. Then, [36] explore pulling queries rq ∈ ℛ to be similar to the positive 

keys rk
+ ∈ ℛ, and push apart the negative keys rk

− ∈ ℛ. The AnCo loss is defined as follows:

ℒanco = ∑
c ∈ C

∑
rq ℛq

c
− log exp rq ⋅ rk

c, + /τan

exp rq ⋅ rk
c, + /τan + ∑rk− ℛk

c exp rq ⋅ rk
−/τan

,

(2)

where C denotes a set of all available classes in the current mini-batch, and τan is 

a temperature hyperparameter. For class c, we select a query representation set ℛq
c, a 

negative key representation set ℛk
c whose labels are not in class c, and the positive 

key rk
c, +  which is the c-class mean representation. Given P is a set including all 

pixel coordinates with the same size as R, these queries and keys can be defined 

as: ℛq
c = ⋃ i, j ∈ A 1 y i, j = c r i, j , ℛk

c = ⋃ i, j ∈ A 1 y i, j ≠ c r i, j , rk
c, + = 1

ℛq
c ∑rq ∈ ℛqc rq. We formally 

summarize the fine-tuning objective as the equal combination of unsupervised ℒanco, 

unsupervised cross-entropy loss ℒunsup, and supervised segmentation loss ℒsup. For more 

details, we refer the reader to [36].

2.2 Supervised Adaptive Anatomical Contrastive Learning

The general efficacy of anatomical contrast on long-tail unlabeled data has previously 

been demonstrated by the authors of [36]. However, taking a closer look, we observe 

that the well-trained F  shows a downward trend in performance, which often fails to 

classify tail classes on labeled data, especially when the data shows long-tailed class 

distributions. This indicates that such well-trained F  is required to improve the segmentation 

capabilities in long-tailed labeled data. To this end, inspired by [17] tailored for the 

image classification tasks, we introduce supervised adaptive anatomical contrastive learning 

(SAACL), a training framework for generating well-separated and uniformly distributed 

latent feature representations for both the head and tail classes. It consists of three main 

steps, which we describe in the following.

Anatomical Center Pre-computation—We first pre-compute the anatomical class 

centers in latent representation space. The optimal class centers are chosen as K positions 

from the unit sphere Sd − 1 = v ∈ ℝd: ∥ v ∥2 = 1  in the d-dimensional space. To encourage 
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good separability and uniformity, we compute the class centers ψc c = 1
K  by minimizing the 

following uniformity loss ℒunif:

ℒunif ψc c = 1
K = ∑

c = 1

K
log ∑

c′ = 1

K
exp ψc ⋅ ψc′/τ .

(3)

In our implementation, we use gradient descent to search for the optimal class centers 

constrained to the unit sphere Sd − 1, which are denoted by ψc
⋆

c = 1
K . Furthermore, the latent 

dimension d is a hyper-parameter, which we set such that d ≫ K to ensure the solution 

found by gradient descent indeed maximizes the minimum distance between any two class 

centers [6]. It is also known that any analytical minimizers of Eqn. 3 form a perfectly regular 

K-vertex inscribed simplex of the sphere Sd − 1 [6]. We emphasize that this first step of 

pre-computation of class centers is completely off-line as it does not require any training 

data.

Adaptive Allocation—As the second step, we explore adaptively allocating these centers 

among classes. This is a combinatorial optimization problem and an exhaustive search 

of all choices would be computationally prohibited. Therefore, we draw intuition from 

the empirical mean in the K-means algorithm and adopt an adaptive allocation scheme 

to iteratively search for the optimal allocation during training. Specifically, consider a 

batch ℬ = ℬ1, ⋯, ℬK  where ℬc denotes a set of samples in a batch with class label c, 

for c = 1, ⋯, K. Define ϕ‾ c ℬ = ∑i ∈ ℬc ϕi/∥ ∑i ∈ ℬc ϕi ∥2 be the empirical mean of class c in 

current batch, where ϕi is the feature embedding of sample i. We compute assignment π by 

minimizing the distance between pre-computed class centers and the empirical means:

π⋆ = arg min
π c = 1

K
∥ ψπ c

⋆ − ϕ‾c ∥2 .

(4)

In implementation, the empirical mean is updated using moving average. That is, for 

iteration t, we first compute the empirical mean ϕ‾ c ℬ  for batch ℬ as described above, 

and then update by ϕ‾ c 1 − η ϕ‾ c + ηϕ‾ c ℬ .

Adaptive Anatomical Contrast—Finally, the allocated class centers are well-separated 

and should maintain the semantic relation between classes. To utilize these optimal class 

centers, we want to induce the feature representation of samples from each class to cluster 

around the corresponding pre-computed class center. To this end, we adopt a supervised 

contrastive loss for the label portion of the data. Specifically, given a batch of pixel-feature-

label tuples ωi, ϕi, yi i = 1
n  where ωi is the i-th pixel in the batch, ϕi is the feature of the pixel 

and yi is its label, we define supervised adaptive anatomical contrastive loss for pixel i as:
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ℒaaco = −1
n ∑

i = 1

n
∑
ϕi

+
log exp ϕi ⋅ ϕi

+/τsa
∑ϕj exp ϕi ⋅ ϕj/τsa

+ λalog exp ϕi ⋅ νi/τsa
∑ϕj exp ϕi ⋅ ϕj/τsa

,

(5)

where νi = ψπ⋆ yi
⋆  is the pre-computed center of class yi. The first term in Eqn. 5 is supervised 

contrastive loss, where the summation over ϕi
+ refers to the uniformly sampled positive 

examples from pixels in batch with label equal to yi. The summation over ϕj refers to all 

features in the batch excluding ϕi. The second term is contrastive loss with the positive 

example being the pre-computed optimal class center.

2.3 Anatomical-aware Temperature Scheduler (ATS)

Training with a varying τ induces a more isotropic representation space, wherein the model 

learns both group-wise and instance-specific features [12]. To this end, we are inspired to 

use an anatomical-aware temperature scheduler in both the supervised and the unsupervised 

contrastive losses, where the temperature parameter τ evolves within the range τ−, τ+  for 

τ+ > τ−. Specifically, for iteration t = 1, ⋯, T  with T  being the total number of iterations, we 

set τt as:

τt = τ− + 0.5 1 + cos 2πt/T τ+ − τ− .

(6)

3 Experiments

Experimental Setup

We evaluate ACTION++ on two benchmark datasets: the LA dataset [31] and the ACDC 

dataset [1]. The LA dataset consists of 100 gadolinium-enhanced MRI scans, with the fixed 

split [29] using 80 and 20 scans for training and validation. The ACDC dataset consists of 

200 cardiac cine MRI scans from 100 patients including three segmentation classes, i.e., 

left ventricle (LV), myocardium (Myo), and right ventricle (RV), with the fixed split2 using 

70, 10, and 20 patients’ scans for training, validation, and testing. For all our experiments, 

we follow the identical setting in [42,19,30,29], and perform evaluations under two label 

settings (i.e., 5% and 10%) for both datasets.

Implementation Details

We use an SGD optimizer for all experiments with a learning rate of 1e-2, a momentum 

of 0.9, and a weight decay of 0.0001. Following [42,19,30,29] on both datasets, all inputs 

were normalized as zero mean and unit variance. The data augmentations are rotation and 

flip operations. Our work is built on ACTION [36], thus we follow the identical model 

setting except for temperature parameters because they are of direct interest to us. For the 

2 https://github.com/HiLab-git/SSL4MIS/tree/master/data/ACDC 
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sake of completeness, we refer the reader to [36] for more details. We set λa, d as 0.2, 128, 

and regarding all τ, we use τ+ = 1.0 and τ− = 0.1 if not stated otherwise. On ACDC, we 

use the U-Net model [26] as the backbone with a 2D patch size of 256 × 256 and batch 

size of 8. For pre-training, the networks are trained for 10K iterations; for fine-tuning, 20K 

iterations. On LA, we use the V-Net [21] as the backbone. For training, we randomly crop 

112 × 112 × 80 patches and the batch size is 2. For pre-training, the networks are trained for 

5K iterations. For fine-tuning, the networks are for 15K iterations. For testing, we adopt a 

sliding window strategy with a fixed stride (18 × 18 × 4). All experiments are conducted in 

the same environments with fixed random seeds (Hardware: Single NVIDIA GeForce RTX 

3090 GPU; Software: PyTorch 1.10.2+cu113, and Python 3.8.11).

Main Results

We compare our ACTION++ with current state-of-the-art SSL methods, including UAMT 

[42], SASSNet [16], DTC [19], URPC [20], MC-Net [30], SS-Net [29], and ACTION 

[36], and the supervised counterparts (UNet [26]/VNet [21]) trained with Full/Limited 

supervisions – using their released code. To evaluate 3D segmentation ability, we use Dice 

coefficient (DSC) and Average Surface Distance (ASD). Table 2 and Table 1 display the 

results on the public ACDC and LA datasets for the two labeled settings, respectively. 

We next discuss our main findings as follows. (1) LA: As shown in Table 1, our method 

generally presents better performance than the prior SSL methods under all settings. Fig. 

4 (Appendix) also shows that our model consistently outperforms all other competitors, 

especially in the boundary region; (2) ACDC: As Table 2 shows, ACTION++ achieves the 

best segmentation performance in terms of Dice and ASD, consistently outperforming the 

previous SSL methods across two labeled settings. In Fig. 3 (Appendix), we can observe 

that ACTION++ can yield the segmentation boundaries accurately, even for very challenging 

regions (i.e., RV and Myo). This suggests that ACTION++ is inherently better at long-tailed 

learning, in addition to being a better segmentation model in general.

Ablation Study

We first perform ablation studies on LA with 10% label ratio to evaluate the importance 

of different components. Table 3 shows the effectiveness of supervised adaptive anatomical 

contrastive learning (SAACL). Table 4 (Appendix) indicates that using anatomical-aware 

temperature scheduler (ATS) and SAACL yield better performance in both pre-training and 

fine-tuning stages. We then theoretically show the superiority of our method in Appendix A.

Finally, we conduct experiments to study the effects of cosine boundaries, cosine period, 

different methods of varying τ, and λa in Table 5, Table 6 (Appendix), respectively. 

Empirically, we find that using our settings (i.e., τ− = 0.1, τ+ = 1.0, T / # iterations = 1.0, 

cosine scheduler, λa = 0.2) attains optimal performance.

4 Conclusion

In this paper, we proposed ACTION++, an improved contrastive learning framework 

with adaptive anatomical contrast for semi-supervised medical segmentation. Our work is 

inspired by two intriguing observations that, besides the unlabeled data, the class imbalance 
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issue exists in the labeled portion of medical data and the effectiveness of temperature 

schedules for contrastive learning on long-tailed medical data. Extensive experiments and 

ablations demonstrated that our model consistently achieved superior performance compared 

to the prior semi-supervised medical image segmentation methods under different label 

ratios. Our theoretical analysis also revealed the robustness of our method in label efficiency. 

In future, we will validate CT/MRI datasets with more foreground labels and try t-SNE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Examples of two benchmarks (i.e., ACDC and LA) with imbalanced class distribution. From 

left to right: input image, ground-truth segmentation map, class distribution chart, training 

data feature distribution for multiple classes.
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Fig. 2. 
Overview of ACTION++: (1) global and local pre-training with proposed anatomical-aware 

temperature scheduler, (2) our proposed adaptive anatomical contrast fine-tuning, which first 

pre-computes the optimal locations of class centers uniformly distributed on the embedding 

space (i.e., off-line), and then performs online contrastive matching training by encouraging 

different class features to adaptively match these distinct and uniformly distributed class 

centers with respect to anatomical features.
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Table 1.

Quantitative comparison (DSC[%]/ASD[voxel]) for LA under two unlabeled settings (5% or 10%). All 

experiments are conducted as [42,16,19,20,30,29,36] in the identical setting for fair comparisons. The best 

results are indicated in bold. VNet-F (fully-supervided) and VNet-L (semi-supervided) are considered as the 

upper bound and the lower bound for the performance comparison.

4 Labeled (5%) 8 Labeled (10%)

Method DSC[%]↑ ASD[voxel]↓ DSC[%]↑ ASD[voxel]↓

VNet-F [21] 91.5 1.51 91.5 1.51

VNet-L 52.6 9.87 82.7 3.26

UAMT [42] 82.3 3.82 87.8 2.12

SASSNet [16] 81.6 3.58 87.5 2.59

DTC [19] 81.3 2.70 87.5 2.36

URPC [20] 82.5 3.65 86.9 2.28

MC-Net [30] 83.6 2.70 87.6 1.82

SS-Net [29] 86.3 2.31 88.6 1.90

ACTION [36] 86.6 2.24 88.7 2.10

• ACTION++ (ours) 87.8 2.09 89.9 1.74
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Table 2.

Quantitative comparison (DSC[%]/ASD[voxel]) for ACDC under two unlabeled settings (5% or 10%). All 

experiments are conducted as [42,16,19,20,30,29,36] in the identical setting for fair comparisons. The best 

results are indicated in bold.

3 Labeled (5%) 7 Labeled (10%)

Method Average RV Myo LV Average RV Myo LV

UNet-F [26] 91.5/0.996 90.5/0.606 88.8/0.941 94.4/1.44 91.5/0.996 90.5/0.606 88.8/0.941 94.4/1.44

UNet-L 51.7/13.1 36.9/30.1 54.9/4.27 63.4/5.11 79.5/2.73 65.9/0.892 82.9/2.70 89.6/4.60

UAMT [42] 48.3/9.14 37.6/18.9 50.1/4.27 57.3/4.17 81.8/4.04 79.9/2.73 80.1/3.32 85.4/6.07

SASSNet [16] 57.8/6.36 47.9/11.7 59.7/4.51 65.8/2.87 84.7/1.83 81.8/0.769 82.9/1.73 89.4/2.99

URPC [20] 58.9/8.14 50.1/12.6 60.8/4.10 65.8/7.71 83.1/1.68 77.0/0.742 82.2/0.505 90.1/3.79

DTC [19] 56.9/7.59 35.1/9.17 62.9/6.01 72.7/7.59 84.3/4.04 83.8/3.72 83.5/4.63 85.6/3.77

MC-Net [30] 62.8/2.59 52.7/5.14 62.6/0.807 73.1/1.81 86.5/1.89 85.1/0.745 84.0/2.12 90.3/2.81

SS-Net [29] 65.8/2.28 57.5/3.91 65.7/2.02 74.2/0.896 86.8/1.40 85.4/1.19 84.3/1.44 90.6/1.57

ACTION [36] 87.5/1.12 85.4/0.915 85.8/0.784 91.2/1.66 89.7/0.736 89.8/0.589 86.7/0.813 92.7/0.804

• ACTION++ (ours) 88.5/0.723 86.9/0.662 86.8/0.689 91.9/0.818 90.4/0.592 90.5/0.448 87.5/0.628 93.1/0.700
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Table 3.

Ablation studies of Supervised Adaptive Anatomical Contrast (SAACL).

Method DSC[%]↑ ASD[voxel]↓

KCL [9] 88.4 2.19

CB-KCL [10] 86.9 2.47

SAACL (Ours) 89.9 1.74

SAACL (random assign) 88.0 2.79

SAACL (adaptive allocation) 89.9 1.74
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Table 4.

Effect of cosine boundaries in with the largest difference between τ− and τ+.

τ−╲τ+
0.2 0.3 0.4 0.5 1.0

0.07 84.1 85.0 86.9 87.9 89.7

0.1 84.5 85.9 87.1 88.3 89.9

0.2 84.2 84.4 85.8 87.1 87.6

Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 May 29.


	Abstract
	Introduction
	Method
	Overview
	Problem Statement
	Setup
	Global and Local Pre-training
	Anatomical Contrast Fine-tuning

	Supervised Adaptive Anatomical Contrastive Learning
	Anatomical Center Pre-computation
	Adaptive Allocation
	Adaptive Anatomical Contrast

	Anatomical-aware Temperature Scheduler ATS

	Experiments
	Experimental Setup
	Implementation Details
	Main Results
	Ablation Study

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Table 1.
	Table 2.
	Table 3.
	Table 4.

