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Mapping model units to visual neurons 
reveals population code for social behaviour

Benjamin R. Cowley1,2 ✉, Adam J. Calhoun1, Nivedita Rangarajan1, Elise Ireland1, 
Maxwell H. Turner3, Jonathan W. Pillow1 & Mala Murthy1 ✉

The rich variety of behaviours observed in animals arises through the interplay 
between sensory processing and motor control. To understand these sensorimotor 
transformations, it is useful to build models that predict not only neural responses  
to sensory input1–5 but also how each neuron causally contributes to behaviour6,7.  
Here we demonstrate a novel modelling approach to identify a one-to-one mapping 
between internal units in a deep neural network and real neurons by predicting the 
behavioural changes that arise from systematic perturbations of more than a dozen 
neuronal cell types. A key ingredient that we introduce is ‘knockout training’, which 
involves perturbing the network during training to match the perturbations of the 
real neurons during behavioural experiments. We apply this approach to model the 
sensorimotor transformations of Drosophila melanogaster males during a complex, 
visually guided social behaviour8–11. The visual projection neurons at the interface 
between the optic lobe and central brain form a set of discrete channels12, and prior 
work indicates that each channel encodes a specific visual feature to drive a particular 
behaviour13,14. Our model reaches a different conclusion: combinations of visual 
projection neurons, including those involved in non-social behaviours, drive  
male interactions with the female, forming a rich population code for behaviour. 
Overall, our framework consolidates behavioural effects elicited from various neural 
perturbations into a single, unified model, providing a map from stimulus to neuronal 
cell type to behaviour, and enabling future incorporation of wiring diagrams of the 
brain15 into the model.

To understand how the brain transforms sensory information into 
behavioural action, an emerging and popular approach is to first train 
a deep neural network (DNN) model on a behavioural task performed 
by an animal (for example, recognizing an object in an image) and then 
compare the neural activity of the animal to the internal activations of 
the DNN1–3,5,16,17. A shortcoming of this approach is that the DNN does not 
predict how an individual neuron causally contributes to behaviour, 
making it difficult to interpret the role of the neuron in the sensorimo-
tor transformation. Here we overcome this drawback by perturbing 
the internal units of a DNN model while predicting the behaviour of 
animals whose neurons have also been perturbed, a method that we 
call knockout training. This approach places a strong constraint on 
the model: each model unit must contribute to behaviour in a way that 
matches the causal contribution of the corresponding real neuron to 
behaviour. An added benefit is that the model infers neural activity from 
(perturbed) behaviour alone. This is especially useful when studying 
complex, natural behaviours, for which it can be challenging (or impos-
sible in some systems) to obtain simultaneous recordings of neural 
activity. Here we use this approach to investigate the sensorimotor 
transformations of Drosophila males during natural social behaviours, 
including pursuit of and singing to a female9.

 
A deep network model of vision to behaviour
The Drosophila visual system contains a bottleneck between the optic 
lobes and the central brain in the form of visual projection neurons, 
which comprise approximately 200 different cell types18,19. The primary 
cell types of this bottleneck (Fig. 1a) are the 57 lobula columnar (LC) and 
lobula plate (LPLC) neuron types identified so far (we use ‘LC types’ to 
refer both to LC and LPLC neuron types), making up about 3.5% of all 
neurons in the brain. The LC neuron types receive input from the lobula 
and lobula plate in the optic lobe and send axons to optic glomeruli in 
the central brain12,20. Neurons of a single LC type innervate only one 
optic glomerulus in the posterior lateral protocerebrum, posterior ven-
trolateral protocerebrum or anterior optic tubercle neuropils, and prior 
studies have uncovered mappings between specific LC types, visual 
features and specific behaviours11,21–28. For example, LPLC2 neurons 
respond to a looming object and synapse onto the giant fibre neuron 
to drive an escape take-off 25. LC11 neurons respond to small, moving 
spots and contribute to freezing behaviour27,28. For courtship, the LC10a 
neurons (and LC9 neurons, to a lesser extent) of a male participate 
in tracking the position of the female and driving turns towards the 
female11,22,23, but it is not yet known whether other LC types contribute 
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to male social behaviours. As recordings from LC neurons reveal that 
even simple stimuli can drive responses in multiple LC types29–31, we 
explored whether the representation of the female during courtship 
might be distributed across the LC population, and similarly whether 
multiple LC types might be required to drive behaviour.

We designed a novel DNN modelling approach for identifying the 
functional roles of LC neuron types using behavioural data from geneti-
cally altered flies. The DNN model has three components: (1) a front-end 
convolutional vision network that reflects processing in the optic lobe; 

(2) a bottleneck layer of LC units in which each model LC unit represents 
the summed activity of neurons of the same LC type (that is, the overall 
activity level of an optic glomerulus); and (3) a decision network with 
dense connections that maps LC responses to behaviour, reflecting 
downstream processing in the central brain and ventral nerve cord 
(Fig. 1a). We imposed the bottleneck layer to have the same number of 
units as LC neuron types we manipulated, and our goal was to identify 
a one-to-one mapping between model LC units and LC neuron types. 
We did not incorporate biological realism into the vision and decision 
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Fig. 1 | Identifying a one-to-one mapping between real neurons and internal 
units of a DNN with knockout training. a, We model the transformation from 
vision to behaviour in male flies with a DNN that comprises a bottleneck of 
model units to match the bottleneck of optic glomeruli in the visual system of 
the fly. We seek a one-to-one mapping in which one model unit corresponds to 
one optic glomerulus (innervated by a single LC neuron type) both in activity 
and in contribution to behaviour (for example, movement and song produced 
by wing vibration). b, We designed knockout training to fit this 1-to-1 network. 
After silencing an LC neuron type and recording the resulting behaviour, during 
training we ‘knocked out’ the model LC unit (that is, we set its activity value to  
0 (red crosses)) corresponding to the silenced LC type. c, We (bilaterally) 
genetically inactivated males for each of 23 LC neuron types and then recorded 
the interactions of each male with a female during natural courtship. d, Courtship 
behaviour noticeably changed between control and LC-silenced male flies. 
Example sessions are shown. e, Changes in the average male-to-female distance 
following silencing of each LC type in males (top) and changes in the proportion 

of song that was sine versus pulse (bottom). Each dot denotes one courtship 
session. Short lines denote means; horizontal dashed line denotes mean of 
control sessions. Asterisks denote significant deviation from control. P < 0.05, 
permutation test, false discovery rate-corrected for multiple comparisons; 
n > 12. f, The 1-to-1 network takes as input an image sequence of the 10 most 
recent time frames (approximately 300 ms) of the visual experience of the 
male. Each image is a reconstruction of what the male fly observed based on 
male and female joint positions of that time frame (for example, c). The 1-to-1 
network reliably predicts forward velocity (right, top), lateral velocity (right, 
bottom) and other behavioural variables (Extended Data Fig. 3) of the male fly. 
R2 values are from held-out frames across control sessions. g,h, The 1-to-1 
network also reliably predicts overall mean changes in behaviour across  
males with different silenced LC neuron types, such as forward velocity (g)  
and sine song (h). Correlation ρ values were significant (P < 0.002, permutation 
test; n = 23).
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networks, opting instead for highly expressive mappings to ensure 
accurate prediction; we focused on explaining LC function. We col-
lected training data to fit the model by blocking synaptic transmis-
sion32 in each of 23 different LC types in male flies12,33 and recorded 
the movements of the LC-silenced male and song production during 
natural courtship (Methods). We then devised a fitting procedure called 
knockout training, which involves training the model using the entire 
behavioural dataset of both perturbed and unperturbed sets of males. 
Critically, when training the model on data from a male with a particular 
LC type silenced (Fig. 1b), we set to 0 (that is, we knocked out) the activ-
ity of the corresponding model LC unit (correspondence was arbitrarily 
chosen at initialization; see Methods). The resulting model captures 
the behavioural repertoire of each genetically altered fly when the 
corresponding model LC unit is silenced, thereby aligning the model 
LC units to the real LC neurons. In simulations (Extended Data Fig. 2), 
knockout training correctly identified the activity and contribution 
to behaviour of each silenced neuron type (a one-to-one mapping) 
for neuron types that, when silenced, led to changes in behaviour. We 
refer to the resulting DNN model as the ‘1-to-1 network’.

Before fitting the model with courtship data (Fig. 1c), we quanti-
fied the extent to which (bilaterally) silencing each LC neuron type 
changes behaviour of the male fly (Extended Data Fig. 1). Consist-
ent with previous studies11,23, we found that silencing LC10a neurons 
resulted in failures to initiate chasing, as male-to-female distances 
remained large over time (Fig. 1d, middle,  1e, top); we found similar 
results with silencing LC922. We also found strong effects on both chas-
ing and singing when silencing other LC types. For example, silencing 
LC6 and LC26 neurons resulted in stronger and more persistent chasing, 
as male-to-female distances remained small over time (Fig. 1d, bot-
tom,  1e, top). We observed a large number of LC types (LC4, LC6, LC11, 
LPLC1, LPLC2 and LC10bc) that, after silencing, significantly increased 
the amount of sine song relative to pulse song (Fig. 1e, bottom)—sine 
song typically occurs near the female34. Across behavioural measures, 
we found that the silencing of any single LC type did not match the 
behavioural deficits of blind flies (Extended Data Fig. 1). This suggests 
that many LC types would need to be silenced together to uncover large 
effects on courtship. We therefore modelled the perturbed behavioural 
data with the 1-to-1 network, enabling us to silence any possible com-
bination of LC types in silico.

We performed knockout training to fit the parameters of the 1-to-1 
network. The model inputs were videos of the visual input of the male fly 
during natural courtship (Methods and Fig. 1f, left); the model outputs 
comprised the male movements (forward, lateral and angular veloc-
ity) and song production, which included sine song and two forms of 
pulse song (Pfast and Pslow35). The 1-to-1 network reliably predicted 
these behavioural variables in held-out data (Fig. 1f, right and Extended 
Data Fig. 3). Notably, the 1-to-1 network also predicted differences in 
behaviour observed across silenced LC types (Fig. 1g,h and Extended 
Data Fig. 4). We confirmed that knockout training outperformed other 
possible training procedures, such as dropout training36 and training 
without knockout (that is, an unconstrained network) (Extended Data 
Figs. 3 and 4), and that results were largely consistent for different 
random initializations of the 1-to-1 network (Extended Data Fig. 5). 
Thus, the 1-to-1 network reliably estimated the behaviour of the male 
from visual input alone, even for male flies with a silenced LC type.

Comparing real and model neural activity
One prediction from our simulations (Extended Data Fig. 2) is that the 
knockout training procedure, which leverages natural behavioural data 
only, should nonetheless learn the visual responses of real LC neurons. 
We recorded LC calcium dynamics in head-fixed, passively viewing 
male flies walking on an air-supported ball (Fig. 2a and Methods). We 
targeted 5 different LC neuron types (LC6, LC11, LC12, LC15 and LC17), 
chosen because silencing each one led to noticeable changes in courting 

behaviour (Fig. 1e and Extended Data Fig. 1). We first presented artificial 
stimuli (Fig. 2b,c and Methods) used to characterize LC responses in 
previous studies29–31. Despite the fact that the 1-to-1 network never had 
access to neural data, we found that its predicted responses largely 
matched their corresponding real LC responses for artificial stimuli 
(Fig. 2b,c, compare top and bottom, and Extended Data Fig. 7).

We then tested the predictions of the 1-to-1 network on more natural-
istic stimulus sequences (that is, a fictive female varying her position, 
size and rotation; Supplementary Video 1). We found that the recorded 
LC neurons responded to many of these naturalistic stimulus sequences 
(Fig. 2d, colour traces, and Extended Data Fig. 8) and found reliable 
matches between real LC responses and their corresponding model LC 
responses (Fig. 2d, black traces versus colour traces, and Extended Data 
Fig. 8), yielding an average noise-corrected R2 of approximately 0.35. 
This was a significant improvement over other networks with the same 
architecture but trained with dropout or without knockout procedures 
(Fig. 2e); training on behaviour was important for prediction, as these 
networks outperformed an untrained network (Fig. 2e, untrained). The 
prediction performance of the 1-to-1 network was consistent with our 
expectations—exact matches were unlikely owing to differences in 
behavioural state during courtship (on which the 1-to-1 network was 
trained) and during imaging11,31.

We further tested the predictions of the 1-to-1 network by assessing 
the extent to which the 1-to-1 network predicted response magnitudes 
across both natural and artificial stimuli and found reasonable matches 
(Fig. 2f and Extended Data Fig. 7). We also gave the 1-to-1 network par-
tial access to neural data by using real LC responses to fit a linear map-
ping between all model LC units and one real LC neuron type. We found 
that held-out prediction improved to a noise-corrected R2 of approxi-
mately 0.65 (Extended Data Fig. 8), suggesting that better alignments 
between the model LC units and real LC types exist, at least for neural 
prediction. The 1-to-1 network was the most consistent in its neural 
predictions (across ten different random initializations) compared 
with other training procedures (Extended Data Fig. 6), suggesting that 
knockout training converges to a similar solution despite a different 
initialization. There are yet additional ways to test the model: by silenc-
ing or activating combinations of LC types predicted by the model to 
act in concert or by recording from LC types under conditions more 
similar to natural courtship. Nevertheless, we interpret our tests of 
the model to suggest that the 1-to-1 network has learned a reasonable 
mapping between visual stimulus and an individual LC type as well as 
the contribution of an individual LC type to behaviour. The sections 
that follow examine the 1-to-1 network that led to the best prediction 
of both behaviour and neural responses (of the ten different initializa-
tions; Extended Data Figs. 3 and 8).

Visual feature encoding of the model LC units
We next tested how the population of 23 model LC units encodes the 
movements of the female. We found that the majority of model LC units 
in the 1-to-1 network responded to changes in female position, size and 
rotation (Fig. 3a). Moreover, almost no model LC unit directly encoded 
any single visual parameter (Fig. 3b, low R2 values for any one LC type, 
but high R2 for a linear mapping of all LC types).

Males pursue females at a range of distances and positions, and we 
can use the 1-to-1 network to uncover how the LC population encodes 
these contexts by examining 3D ‘tuning maps’ (Fig. 3c, Extended Data 
Fig. 9 and Methods). Some model LC units, such as LC31, were driven by 
the position of the female (in front of the male), independent of female 
size and rotation (Fig. 3d, top), whereas other model LC units, such as 
LPLC2, were driven by large female sizes, consistent with its known 
response to looming stimuli17,24,25,31. Model LC10a was driven by female 
position (in front of the male), consistent with prior work11,23, but we 
found this was only true for conditions in which he is close and directly 
behind her (Fig. 3d, bottom). Model LC9 and LC22 were similarly driven 
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by females in front of and facing away from the male, but at larger dis-
tances (Extended Data Fig. 9).

To quantify these interactions, we decomposed the response vari-
ance37 of each model LC unit into four components (Fig. 3e). Most 
model LC units encoded changes in female position (Fig. 3e, orange 
bars), roughly half encoded female size (Fig. 3e, blue bars), and female 
rotation was weakly encoded (Fig. 3e, green bars are small). However, 
almost all model LC units encoded some nonlinear interaction among 
the three visual parameters (Fig. 3e, black bars; on average around 25% 
of the response variance for each model LC unit).

We next considered non-naturalistic stimulus sequences, varying one 
visual parameter at a time (Fig. 3f, dashed lines, and Supplementary 
Video 2). For example, we varied the size of the female over time at dif-
ferent speeds, while keeping her position and rotation constant (Fig. 3f, 
top, dashed lines). For this stimulus, some model LC units perfectly 
encoded female size (Fig. 3f, top left, LC10a), some model LC units 
encoded a time-delayed version of size (Fig. 3f, top, middle, LC17), 
whereas other model LC units encoded the speed at which female size 
changed (Fig. 3f, top right, LC13). Similar relationships were present for 
other stimulus sequences and model LC units (Fig. 3f, bottom two rows); 
we note that the 1-to-1 network was predictive of real LC responses for 
similar types of stimulus sequences (Fig. 2d,e and Extended Data Fig. 8).

Compiling these results, we find that most model LC units encode 
some aspect of female size, position and rotation (Fig. 3g). Our results 
were consistent with previous studies, such as LC11 encoding the posi-
tion of a small moving spot27,28 (Fig. 3g, LC11 has highest R2 for ‘position’ 
in ‘vary female position’ than in other stimulus sequences) and LPLC2 
encoding loom24 (Fig. 3g, LPLC2 has highest R2 for ‘size’ in ‘vary female 
size’). Recently, LPLC2 has also been found to encode the speed of a 
moving spot38, consistent with the predictions of our model (Fig. 3g, 

LPLC2 has high R2 for ‘speed’ in ‘vary female position’). Model units 
LC4, LC6, LC15, LC16, LC17, LC18, LC21 and LC26 all encode female size 
(Fig. 3g, top), matching recent findings that these LC neurons respond 
to looming objects of various sizes29–31; our 1-to-1 network also uncovers 
that these LC types probably encode other visual features as well. Of 
note, results differed between varying a single female parameter versus 
combinations of parameters (compare with Fig. 3b,g); this highlights the 
importance of using more naturalistic stimuli to probe the visual system.

We conclude that the model LC units encode visual stimuli in a 
distributed way: each visual stimulus feature is encoded by multiple 
model LC units (Fig. 3g, rows each have multiple red squares), and 
each model LC unit encodes multiple visual stimulus features (Fig. 3g, 
columns each have multiple red squares). Consistent with this, the 
response-maximizing stimulus sequence for each model LC unit 
strongly drove responses of other model LC units, even when opti-
mized for these other responses to be suppressed (a ‘one hot activation’; 
Extended Data Fig. 11).

Linking model LC units to behaviour
Given that visual features appeared to be distributed across the LC 
population (Figs. 2 and 3), we tested the hypothesis that combinations 
of LC types drive the male’s singing and pursuit of the female. We sys-
tematically inactivated model LC units in different combinations (or 
alone)—experiments that are not easily performed in a real flies, even 
with excellent genetic tools—and then examined which model LC units 
were necessary and sufficient to guide behaviour (Fig. 4a).

We began by testing which model LC unit, when inactivated, main-
tained the best performance in predicting the behaviour of control 
flies. In a greedy and cumulative manner, we repeatedly inactivated 
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Fig. 2 | Model LC responses from the 1-to-1 network match real LC neural 
responses. a, We recorded LC responses using calcium imaging while a head- 
fixed male fly viewed dynamic stimulus (stim) sequences. We fed the same 
stimuli into the 1-to-1 network and tested whether the predicted responses 
(black trace) for a given model LC unit matched the real response of the 
corresponding LC neuron (orange trace, summed calcium dynamics within  
the region occupied by the glomerulus ‘imaged region’) by computing the 
noise-corrected R2 between the two (normalized) traces over time (Methods). 
The 1-to-1 network never had access to real LC responses during training, and 
only one pre-specified model LC unit was used to predict responses of each LC 
type. b, Real (top) and model (bottom) responses of LC11 to a moving spot with 
different speeds. a.u., arbitrary units. c, Real and model responses of LC15 to a 

spot with linearly increasing size. d, Real (colour traces) and model (black 
traces) LC responses to stimulus sequences of a fictive female changing in 
position and size (dashed traces). Shaded regions denote 90% bootstrapped 
confidence intervals of the mean; noise-corrected R2 values are indicated.  
e, Average noise-corrected R2 across all stimulus sequences and LC types for 
different networks (bars). Each dot denotes one LC type and stimulus pair.  
Dots with low R2 values primarily corresponded to weakly driving stimuli 
(Extended Data Fig. 8). The knockout network outperformed all other networks 
(*P < 0.05, paired, one-sided permutation test; n = 27). f, Real (colour traces, 
repeat-averaged responses) and model LC (black traces, unnormalized) 
responses across all presented artificial and natural stimuli. LC17 and LC15 are 
shown here; LC6, LC11 and LC12 responses are shown in Extended Data Fig. 7.
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the model LC unit that maintained the best performance while keeping 
all previously chosen LCs inactivated (Fig. 4b); eventually prediction 
performance had to decrease because of the bottleneck imposed by the 
model LC units. The inactivated model LC units that led to the largest 
drops in performance were the strongest contributors to each behav-
iour (Fig. 4b, rightmost dots). Separately inactivating each model LC 
unit resulted in little to no drop in prediction performance (Extended 
Data Fig. 12).

We performed this cumulative inactivation procedure for all six 
behavioural outputs (Fig. 4c and Extended Data Fig. 12), and found 
that most model LC units contributed to multiple behavioural outputs 
(Fig. 4c, multiple red squares per column) and that each behavioural 
output was driven by multiple LC units. The 1-to-1 network enabled us to 
characterize the behavioural role of many previously uncharacterized 
LC types. It uncovered a role for LC31 in all types of song production, 
for LC22 in male forward velocity and Pfast song production (the song 
type produced when males move quickly35), and for LC13 in turning and 
the production of sine song. We also found a new role for LC10a in the 
production of sine song, consistent with the role of P1a neurons, whose 

activity directly gates LC10a activity11, in enabling sine song produc-
tion34. All of these predictions can be tested in future experiments, 
guided by the 1-to-1 network.

As we did for examining visual stimulus encoding (Fig. 3f,g), we 
considered the behavioural responses to stimulus sequences in which 
only one parameter of female motion varied at a time. Using system-
atic inactivation, we again identified the model LC units that were 
both necessary and sufficient to produce the output of the model 
to these stimuli. For example, we found that when we varied female 
size only (Fig. 4d, top, dashed line), inactivating 10 different model 
LC units (Fig. 4d, middle, squares with red crosses, identified via 
cumulative inactivation; Methods) resulted in no change in forward 
velocity (Fig. 4d, middle, green trace overlays black trace). This sug-
gests that the other model LC units (Fig. 4d, middle, squares without 
a red cross) were sufficient to drive behaviour. We then inactivated 
these ‘sufficient’ model LC units (keeping all other model LC units 
activated) and found a large behavioural deficit (Fig. 4d, bottom, red 
trace does not overlay black trace), indicating that these inactivated 
model LC units were also necessary. That a large number of LC types 
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population of model LC units. a, Almost all model LC units responded to a 
fictive female changing in size, position and rotation. b, Cross-validated R2 
between each primary visual parameter and model LC responses for natural 
stimulus sequences. Columns are sorted based on female size (top). The end 
column of each row (all) is the cross-validated R2 between a linear combination 
(identified via ridge regression) between all model LC units and a single visual 
parameter. c, We characterized the tuning preferences of each model LC unit 
by systematically varying the three visual parameters and computing a heat 
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frames were repeats of the same image). d, Tuning heat maps for example 
model LC units (see Extended Data Fig. 9 for all LC types). e, We used variance 
decomposition (Methods) to decompose the response variance V[ y] of each 
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interactions between these visual parameters V[ yinteractions] (black). A large 
fraction of response variance for a given parameter indicates that a model  
LC unit more strongly changes its response y to variations in this parameter 
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all response variance can be attributed to variations of the parameters (that  
is, there is no repeat-to-repeat variability). f, Example model LC responses to 
dynamic stimulus sequences in which the fictive female solely varied either her 
size, position or rotation angle over time (dashed traces). Different model LC 
units appear either to directly encode a visual parameter (for example, LC10a 
encodes size) or encode features derived from the parameter, such as a delay 
(LC17, arrows) or speed at which female size changes (LC13). Responses for all 
model LC units are in Extended Data Fig. 10. g, R2 between model responses and 
visual parameter features for the stimulus sequences in f. Columns are in the 
same order as those in b.
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were required for behaviour remained true for other stimuli and 
behaviours (Fig. 4e).

Across all behavioural outputs, even for these simple stimulus 
sequences, we found that multiple LC units contributed to each behav-
iour (Fig. 4f, multiple red squares per row) and that most model LC units 
each contributed to multiple behaviours (Fig. 4f, multiple red squares 
per column). We also found consistencies between these results and 
prior work on specific LC types—for example, LC16, LC17, and LPLC1 
contribute to the angular velocity of the male in our model (Fig. 4f, ‘vary 
female size’), and, if optogenetically activated, also drive turns12,26. The 
results for these simple stimuli differed slightly from those for natural 
courtship stimuli (for example, white squares for LC12 in Fig. 4f and red 
squares for LC12 in Fig. 4c), suggesting that LC contributions change 
with context. Overall, our results support the notion that a majority of 
model LC units are required for the courtship behaviour of the male.

Distributed connections of the LC population
We aggregated results both from how the model LC neurons encode 
visual input (Fig. 3) and contribute to behaviour (Fig. 4) and outline 
these relationships with some thresholding (Fig. 5a and Methods). The 
picture is complicated: model LC units encode multiple visual features 
of the female (Fig. 5a, left connections) and contribute to multiple 
behavioural outputs (Fig. 5a, right connections). Even LC types involved 
in non-social behaviours (for example, escape), such as LC4, LC6, LPLC1 

and LPLC221,24,26,38–40, participate in encoding the movements of the 
female and driving the courtship actions of the male.

A key prediction of our 1-to-1 network is that LC neuron types share 
common inputs in the optic lobe (creating shared feature tuning across 
the LC population) and converge onto shared downstream targets to 
drive behaviour. To test this prediction, we analysed a recently released 
whole-brain connectome15,19,41 (FlyWire) with exhaustive cell typing in 
the optic lobe18 and central brain19, and in which 57 LC and LPLC neuron 
types have been identified so far. We computed the synaptic connectiv-
ity matrix for LC neuron types silenced in our experiments and their 
presynaptic cell types (Fig. 5b) as well as their postsynaptic cell types 
(Fig. 5c). We found that 60.2% of presynaptic neuron types projected to 
2 or more LC types and 45.7% projected to 3 or more LC types (Fig. 5b, 
cell type Li32 projected to 27 out of 28 LC types considered). Similarly, 
55.6% of downstream neurons of the same type received input from 2 
or more LC types and 32.5% received input from 3 or more LC types 
(Fig. 5c, descending neuron type DNp35 read out from 7 out of 28 LC 
types considered). Thus, the LC types do share inputs and converge 
onto shared targets. An additional observation is that many LC and LPLC 
types connect directly with other LC and LPLC types in the lobula and 
lobula plate (Fig. 5b,c, LC and LPLC columns). Such recurrence muddles 
the idea that each LC type is an independent feature detector, although 
these lateral connections may implement a divisive normalization 
mechanism42. An important caveat is that this connectome dataset is 
from a female fruit fly; once the connectome of a male is generated, 
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Fig. 4 | Combinations of model LC units are required for behaviour. a, We 
assess whether a group of model LC units are sufficient and necessary for 
behaviour if we inactivate all model LC units not in that group (middle, sufficient) 
or inactivate only that group of model LC units (right, necessary). b, We identify 
which model LC units contribute to forward velocity by cumulatively inactivating 
model LC units in a greedy manner (that is, inactivate the next model LC unit 
that, once inactivated, maintains the best prediction performance R2). The 
model LC units with the largest changes in performance (for example, LC13 and 
LC22) contribute the most. c, Results for cumulative inactivation for all six 
behavioural outputs; forward velocity (top) is the same as in b. Columns of each 
row are ordered based on the ordering of forward velocity (top). d, For a dynamic 

stimulus sequence of a fictive female only varying her size, we used our 
approach in a to identify the sufficient and necessary model LC units for the 
male forward velocity of the male (top). Red crosses denote inactivation; each 
square represents a model LC unit; colours match those in Fig. 3a. The active 
model LC units in the middle row are the same as those inactivated in the bottom 
row. e, Other example behavioural outputs and stimulus sequences to assess 
necessity and sufficiency. Same format as in d. For predicting Pslow song  
(right column), all but LC11 and LC25 were required, although not every LC type 
contributed as strongly. f, Results of cumulative inactivation for the dynamic 
stimulus sequences in d,e. Same format, colour legend and ordering of columns 
as in c.
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we can further test the predictions of the 1-to-1 network by examining 
putative information flow from the LCs to downstream circuits known 
to control chasing and singing.

Discussion
Here we develop knockout training, a novel solution to identify a 
one-to-one mapping between internal units in a DNN and real neurons 
in the brain of a fly. The model makes predictions about how neurons 
respond to sensory stimuli and drive behaviour. Although silencing 
each LC neuron type on its own may have a small to medium effect 
on behaviour (Fig. 1e and Extended Data Fig. 1), our 1-to-1 network 
infers how the LC types work together as a population to drive the 
courtship behaviour of the male. We show that the model extends 
beyond findings from direct recordings of LC neurons29,30, even in 

behaving flies11,31. The 1-to-1 network provides information on LC visual 
responses in freely behaving flies (not head-fixed, as is required for 
recordings) engaging in natural social interactions and can gener-
ate LC responses to any arbitrary visual stimulus. In fact, we demon-
strate that the 1-to-1 network predicts actual responses to stimuli that 
the model had not seen during training (for example, Fig. 2b,c). The 
model also makes testable predictions about which combinations 
of LC types are both necessary and sufficient for specific courtship 
behaviours (Fig. 4). A major new finding of our work is which and to 
what extent LC neuron types contribute to song production, an inte-
gral part of courtship guided by visual feedback9. Given that the same 
visual stimulus sequence can drive multiple LC types (Extended Data 
Fig. 7), this neuron-to-behaviour relationship is not readily inferred 
from LC recordings alone. The 1-to-1 network is the first large-scale 
hypothesis of how the LC types work together to encode stimuli and 

a

b

Visual stimulus

(FlyWire data)

Presynaptic neuron types Postsynaptic neuron types

Speed

|Rotation|

Rotation

Position

Size

Direction

c

Behaviour
Neural activity

P(sine song)

P(Pslow song)

P(Pfast song)

Lateral velocity

Forward velocity

Angular velocity

LC4

LC6

LC9

LC10a

LC10ad

LC10bc

LC10d

LC11

LC12

LC13

LC15

LC16

LC17

LC18

LC20

LC21
LC22

LC24

LC25
LC26

LC31

LPLC1

LPLC2

LC4

LC9

LC6
LPLC2
LPLC1

LC31c
LC31b
LC31a

LC26
LC25
LC24

LC22

LC21

LC18

LC17

LC16

LC15

LC13

LC12

LC11

LC10b

LC20b
LC20a

LC10f

LC10e
LC10d
LC10c

LC10a

LC4

LC9

LC6

LPLC2

LPLC1

LC31c
LC31b
LC31a
LC26

LC25

LC24
LC22

LC21

LC18

LC17
LC16
LC15

LC13

LC12

LC11

LC10b

LC20b
LC20a

LC10f
LC10e
LC10d
LC10c
LC10a

LC
PLP

MLLMDN
AOTULPLC CL

CBAVLP
PS

OALTLi Other
Y

TmY
Tm

T4PVLP

T2
mAL

Tlp

T5
T3

cL
cM Dm LLPC MT

Pm
SMP

Li
IB TmYSLP

SAD
Other

SMP
PVLP

PS
PLP

LT
LAL

DNCLCBAVLPAOTULC
LPLC

Y

WED

TmOALMcL

LC14a1 (22)
Li32 (27)

cL21 (10) LMa2 (24) MLt3 (10)
LT56 (13)

Y3 (24)TmY5a (22)
Tm16 (24) LLPt (16)

Li10 (15)
Tm5f (8)LMa2 (14)

LPLC4 (13) LC14a1 (15)
DNp35 (7)AOTU041 (7)

LLPt (8)LT51 (16)cL21 (6)AVLP538 (8) PVLP151 (8)

LAL028 (6)

Project
to LCs

Project
from LCs

Fig. 5 | The role of LC neurons in the sensorimotor transformation of the 
male fly during courtship. a, Summary of our findings. Each line denotes a 
relationship between a model LC unit and a visual feature (left, R2 > 0.30 in 
Fig. 3b,g) or a behavioural variable (right, a normalized change in performance 
greater than 30% in Fig. 4c,f). A lack of connection does not rule out a 
relationship, as relationships may exist in other contexts or subcontexts.  
Even at these conservative criteria (that is, cut-offs at 0.3), many model LC  
units encode more than one visual feature and contribute to more than one 
behavioural variable. These predictions come from one training run of the 1-to-
1 network; the uncertainty of each connection can be assessed by measuring 
differences in predictions across different training runs (Extended Data Figs. 5 
and 6). b, Synaptic connectivity matrix for presynaptic neuron types projecting 
to LC or LPLC neurons. Each row is for one LC or LPLC type that we silenced in 
our experiments. Each column is for a presynaptic partner neuron type; columns 
are grouped into classes of neuron types or brain areas based on the naming 
conventions in the FlyWire connectome dataset15 (see Methods for full names) 

and further sorted within class such that the neuron type with connections  
to the largest number of LC or LPLC types is the leftmost column. A tick line 
indicates at least five synaptic connections were identified between neurons  
of an LC or LPLC neuron type and neurons of a presynaptic neuron type. We 
include synaptic connections for LC10a–f, LC20a–b and LC33a–c for which we 
have finer granularity in FlyWire than that of our genetic lines. Presynaptic 
neuron types with connections to large numbers of LC or LPLC neuron types 
are labelled—for example, Li32 (27) indicates neuron type Li32 projects to 27 
out of 28 different LC neuron types considered here. Rows are sorted based  
on clustering LC types by their connections to presynaptic partners (Methods). 
c, Synaptic connectivity matrix for postsynaptic neuron types receiving input 
from LC or LPLC neurons. Same format as in b. We re-clustered LC types based 
on their connections to postsynaptic partners (rows differ from the ordering  
in b). Because this connectome dataset is from a female fruit fly, it may miss 
important sexually dimorphic, courtship-relevant connections to downstream 
areas of the male fruit fly.
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contribute to behaviour; we share our model and code (https://github.
com/murthylab/one2one-mapping) with the community to inspire 
future experiments and models.

A main conclusion of this study is that the complex courtship 
behaviour of the male relies on combinations of visual projections 
neurons—including those also involved in non-social behaviours. 
However, we do not yet know the extent to which other behaviours 
beyond those observed during courtship also rely on a population 
code. Knockout training on the LC types could easily be applied to 
other visuomotor behaviours (for example, escape responses or 
flight) to make direct comparisons. Given the extent of interconnec-
tivity between LC types and convergence of LC types onto common 
downstream cell types (Fig. 5b,c), we posit that population coding 
for behaviour, particularly in natural contexts, might be the norm. 
By contrast, for behaviours that rely on quick and robust processing, 
such as escape from a predator, the arrangement of LC types into 
optic glomeruli may facilitate the fast readout of specific channels24. 
One issue raised by the use of a multiplexed code is how the fly brain 
produces the correct behaviour at the correct time. For example, 
LPLC2 neurons synapse onto the giant fibre neuron to drive an escape 
take-off25, but our 1-to-1 network predicts that this same cell type 
encodes female size and contributes to the forward velocity of the 
male during courtship (Fig. 5a); recent work has also found LPLC2 
contributes to evasive flight turns38. Future experiments are needed 
to understand how the same LC cell type can contribute to different 
behaviours in different contexts.

Our modelling approach comes with limitations. For example, if 
silencing an LC type does not lead to a noticeable change in behav-
iour, the 1-to-1 network cannot infer the tuning of that LC type. In 
addition, many silenced LC types resulted in stronger—not weaker—
courtship (Fig. 1d,e), suggesting that these LC neurons may act par-
tially as distractors to prevent relentless pursuit of the female43,44. 
We also found some mismatches between real LC responses and the 
responses of the 1-to-1 network (Fig. 2); although this may be owing 
to differences in internal state between freely moving males during 
natural courtship (training data for the model) versus head-fixed 
males passively viewing stimuli (neural recordings), training on neural 
data and behavioural data together may help to improve both neural 
and behavioural prediction (Extended Data Fig. 8). An experimental 
limitation of using natural behaviour arises because the statistics of 
the visual experience cannot be matched between LC-silenced and 
control males (for example, an LC9-silenced male spends much less 
time near the female); future experiments can use virtual reality11 or 
robotic females44 to present identical stimulus sequences to control 
and silenced males.

Following recent studies using DNNs to predict responses of vis-
ual neurons1,3, we used DNNs in our 1-to-1 network that are highly 
expressive function approximators but lack biological realism. Our 
model-agnostic knockout training procedure can be used to train more 
biologically inspired models5,45 that incorporate constraints from the 
FlyWire connectome15,18 and emerging male brain wiring diagrams33 to 
include recurrent connections, lateral connections between LC types 
(Fig. 5b,c) and delays46. An intriguing future direction is to apply this 
framework to other bottlenecks within the Drosophila brain, such as 
the descending and ascending neurons that link the brain and nerve 
cord19, and in more complex systems for which we also have genetic 
control over cell types47,48. Our work shows that constraining models 
with causal perturbations of neurons during complex behaviour is an 
important ingredient in revealing the relationships between stimulus, 
neurons and behaviour.
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Methods

Flies
For all experiments, we used four- to seven-day-old virgin flies col-
lected from density-controlled bottles seeded with eight males and 
eight females. Fly bottles were kept at 25 °C and 60% relative humidity. 
Virgin flies were housed individually and kept in behavioural incuba-
tors under a 12 h:12 h light:dark cycling; individual males were paired 
with a pheromone insensitive and blind (PIBL) female to encourage 
longer courtship sessions—see Supplementary Table 1 for more info 
on genotype. UAS-TNT-C was obtained from the Bloomington Stock 
Center. All LC split-GAL4 lines and the spGAL4 control line33,49 were 
generously provided by M. Reiser, A. Nern and G. Rubin—see Supple-
mentary Table 2 for more information. We note that LC10 has seven 
different types (LC10a–g) whose genetic lines have not all been isolated; 
their names come from prior cell typing based on light microscopy12. 
LC10 genetic line names have not yet been mapped to these new types 
identified in the connectome.

Courtship experiments
Behavioural chambers were constructed as previously described9,50. 
Each recording chamber had a floor lined with white plastic mesh 
and equipped with 16 microphones (Extended Data Fig. 1). Video was 
recorded from above the chamber at a 60 Hz frame rate; features  
for behavioural tracking were extracted from the video and down-
sampled to 30 Hz for later analysis. Audio was recorded at 10 kHz. 
Flies were introduced gently into the chamber using an aspirator.  
Recordings were timed to be within 150 min of the behavioural  
incubator lights switching on to catch the morning activity peak. 
Recordings were stopped either after 30 min or after copulation, which-
ever came sooner. All flies were used; we did not use any criteria (for 
example, if males sang during the first 5 min of the experiment or not) 
to drop fly sessions from analyses. In total, behaviour was recorded 
and analysed from 459 pairs; the number of flies per condition were  
as follows:

Joint positions for the male and female for every frame were tracked 
with a DNN trained for multi-animal pose estimation called SLEAP51. We 
used the default values for the parameters and proofread the result-
ing tracks to correct for errors. We estimated the presence of sine, 
Pfast and Pslow song for every frame using a song segmenter on the 
audio signals recorded from the chamber’s microphones according 
to a previous study35.

From the tracked joint positions and song recordings, we extracted 
the following six behavioural variables of the male fly that represented 
his moment-to-moment behaviour. (1) ‘Forward velocity’ was the dif-
ference between the male’s current position and his position one frame 
in the past; this difference in position was projected onto his heading  
direction (that is, the vector from the male’s thorax to his head).  
(2) ‘Lateral velocity’ was the same difference in position as computed 
for forward velocity except this difference was projected onto the direc-
tion orthogonal to the male’s heading direction; rightward movements 

were taken as positive. (3) ‘Angular velocity’ was the angle between the 
male’s current heading direction and the male’s heading direction one 
frame in the past; rightward turns were taken as positive, and angles 
were reported in degrees (that is, a turn to a male’s right is 90°, a turn to 
his left is −90°). (4) ‘Probability of sine song’ was computed as a binary 
variable for each frame, where a value of 1 was reported if sine song was 
present during that frame, else 0 was reported. (5) ‘Probability of fast 
pulse (Pfast) song’ and (6) ‘probability of slow pulse (Pslow) song’ were 
computed in the same manner as that for the probability of sine song. 
These six behavioural output variables described the male’s movements 
(forward, lateral, and angular velocity) as well as his song production 
(probability of sine, Pfast and Pslow song).

Often a male fly spends periods of time without noticeable courtship 
of the female (for example, the ‘whatever’ state as defined in ref. 52).  
During these periods, the male probably does not rely much on the 
visual feedback of the female to guide his behaviour; this makes pre-
dicting his behaviour only from visual input difficult. In addition, these 
time periods can make up a large enough fraction of the training data 
to bias models to output ‘do nothing’ owing to the imbalanced train-
ing data. To mitigate these effects, we devised a set of loose criteria to 
identify ‘courtship frames’ in which the male is likely in a courtship state 
(for example, chasing or singing to the female); we then only train and 
test on these courtship frames.

We devised the following four criteria to determine if a frame is a 
courtship frame:
(1) The male and female distance (taken between the joint positions of 

their thoraxes) averaged over the time window is less than 5 mm.
(2) The proportion of frames in which the male produced song (Pfast, 

Pslow, or sine) during the time window is greater than 0.1.
(3) The angle of the female’s location from the male’s heading direction 

(with respect to the male’s head), averaged over the time window, 
is no more than 45 visual degrees.

(4) The male is traveling at least 4.5 mm/s towards the female, averaged 
over the time window.

The time window was 20 s long, centred on the candidate frame. Only 
one criterion needed to be met to classify a frame as a courtship frame. 
Given these criteria, roughly 70% of all frames in control sessions were 
considered as courtship frames. Although silencing an LC type likely 
alters the amount of courtship during a session, we ensured that enough 
courtship frames were present for training the model. LC9-silenced 
males had the lowest percentage of courtship frames over the entire 
session at 42% (consistent with its high male-to-female distance, Fig. 1e, 
top); the average across LC types was roughly 70% and similar to that 
of control sessions.

Visual input reconstruction
To best mimic how a male fly transforms his retina’s visual input into 
behaviour, we desired an image-computable model (that is, one that 
takes as input an image rather than abstract variables determined by 
the experimenter, such as female size or male-to-female distance). 
We approximately reconstructed the male’s visual input based on 
pose estimation of both the male and female fly during courtship, 
as described in the following process. For each frame, we created a 
64-pixel × 256-pixel greyscale image with a white background. Given the 
female rotation, size and location (see below), we placed an image patch 
of a greyscale fictive female (composed of ellipses that represented 
the head, eyes, thorax and tail of the female; no wings were included) 
occluding the white background. Because male flies perceive roughly 
160 visual degrees on either side53, we removed from the image the 
40 visual degrees directly behind the male, leading to images with 
64 × 228 pixels. Example input images are shown in Fig. 1f, where the 
reconstructed female flies were coloured and on grey background for 
illustrative purposes. Example videos of input image sequences are 
present in Supplementary Videos 1 and  2.

LC type LC4 LC6 LC9 LC10a LC10ad LC10bc LC10d LC11 LC12

number 
of pairs

17 19 18 13 15 16 16 14 14

LC type LC13 LC15 LC16 LC17 LC18 LC20 LC21 LC22 LC24

number 
of pairs

17 16 19 14 14 16 15 22 18

LC type LC25 LC26 LC31 LPLC1 LPLC2 control total

number  
of pairs

16 18 24 16 17 75 459
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We computed the female’s rotation, size and location in the following 

way. For female rotation, we computed the angle between the direc-
tion of the male head to female body and the direction of the female’s 
heading. A rotation angle of 0° indicates the female is facing away 
from the male, ±180° indicates the female is facing towards the male, 
and −90° or +90° indicates the female is facing to the left or right of 
the male, respectively. We pre-processed a set of 360 image patches 
(25 × 25 pixels) that depicted a rotated female for each of 360 visual 
degrees. Given the computed rotation angle, we accessed the image 
patch corresponding to that rotation angle. For female size, we treated 
the female fly as a sphere (whose diameter matched the average length 
of a female fly from head to wing tips, ~4 mm) and computed as size 
the visual angle between the two vectors of the male’s head position 
to the two outermost points on the sphere that maximize the visual 
angle (that is, the two furthest points along the horizontal centre line); 
this angle was normalized so that a size of 1 corresponded to 180 visual 
degrees. This size determined the width (and height, equal to the width) 
of the selected image patch to be placed into the 64 × 228-pixel image. 
Here, size indicates the size of the image patch, not the actual size of 
the fictive female (which may vary because a female facing away is 
smaller than a female facing to the left or right). For reference, for a 
fictive female with a size of 1.0 and facing away from the male in the 
centre of his visual field, her body subtends 65 visual degrees. For 
female position, we computed the visual angle between the male’s 
heading direction and the direction between the male’s head and the 
female’s body position. We normalized this angle such that a posi-
tion of 0 is directly in front of the male, a position of either −1 or 1 is 
directly behind the male fly, and a position of −0.5 or +0.5 is 90 visual 
degrees to the left or right, respectively. We then used this position to 
place the image patch (with its chosen rotation and size) at a certain 
pixel location along the horizontal centre line of the image. Because 
the male and female flies did not have room to fly in the experimental 
chamber, we assumed that only the female’s lateral position (and not 
vertical position) could change.

Description of 1-to-1 network
We designed our 1-to-1 network to predict the male fly’s behaviour 
(that is, movement and song production) only from his visual input. 
Although the male can use other sensory modalities such as olfaction 
or mechanosensation to detect the female, we chose to focus solely on 
visual inputs because: (1) the male relies primarily on his visual feedback 
for courtship chasing and singing9,44; and (2) we wanted the model to 
have a representation solely based on vision to match the representa-
tions of visual LC neurons.

The 1-to-1 network comprised three parts: a vision network, an LC 
bottleneck, and a decision network (Fig. 1a). Hyperparameters, such as 
the number of filters in each layer, the number of layers, and the types 
of layers were chosen based on prediction performance assessed on a 
validation set of the control sessions separate from the test set. Unless 
specified, each convolutional or dense layer was followed by a batch-
norm operation54 and a relu activation function. The 1-to-1 network took 
as input the images of the 10 most recent time frames (corresponding 
to ~300 ms)—longer input sequences did not lead to an improvement 
in predicting behaviour. Each greyscale image was 64 × 228 pixels (with 
values between 0 and 255) depicting a fictive female fly on a white back-
ground (see ‘Visual input reconstruction’). Before being fed into the 
network, the input was first re-centred by subtracting 255 from each 
pixel intensity to ensure the background pixels had values of 0. The 
model’s output was six behavioural variables of the male fly: forward 
velocity, lateral velocity, angular velocity, probability of sine song, 
probability of Pfast song, and probability of Pslow song (see ‘Court-
ship experiments’).

Vision network. The first layer of the vision network was spatial con-
volutions with 32 filters (kernel size 3 × 3) and a downsampling stride 

of 2. The second and third layers were identical to the first except with 
separable 2D convolutions55. The final layer was a two-stage linear 
mapping56 which first spatially pools its input of activity maps and 
then linearly combines the pooled outputs across channels into 16 
embedding variables; pooling the spatial inputs in this manner greatly 
reduced the number of parameters for this layer. Batchnorm and relus 
did not follow this two-stage layer. The vision network processed each 
of the 10 input images separately; in other words, the vision network’s 
weights were shared across time frames (that is, a 1D convolution in 
time). Allowing for 3D convolutions of the visual inputs (that is, 3D 
kernels for the two spatial dimensions and the third time dimension) 
did not improve prediction performance (Extended Data Fig. 3), likely 
because of the increase in the number of parameters. For simplicity, 
the vision network’s input was the entire image (that is, the entire visual 
field); we did not include two retinae. We found that incorporating two 
retinae into the model, while more biologically plausible, made it more 
difficult to interpret the tuning of each LC neuron type. For example, for 
a two-retinae model, it is difficult to determine if differences in tuning 
for two model units of the same LC type but in different retinae are true 
differences in real LC types or instead differences due to overfitting 
between the two retinal vision networks. The 1-to-1 network avoids this 
discrepancy through the simplifying assumption that each LC type has 
a similar response across both retinae.

LC bottleneck. The next component of the DNN model was the LC 
bottleneck, which received 10 16-dimensional embedding vectors 
corresponding to the past 10 time frames. These embedding vectors 
were passed through a dense layer with 64 filters followed by another 
dense layer with number of filters equal to the number of silenced LC 
types (23 in total). We call the 23-dimensional output of this layer the 
‘LC bottleneck’. Each model LC unit represents the summed activity of 
all neurons of the same LC type (that is, projecting to the same optic  
glomerulus), which makes it easy to compare to calcium imaging  
recordings of LC neurons which track the overall activity level of a single 
glomerulus. We found that adding additional unperturbed ‘slack’ model 
LC units to match the total number of LC types (for example, 45 model 
LC units instead of 23 units) did not improve prediction performance; 
in the extreme case, adding a large number slack variables encour-
ages the network to ignore the ‘unreliable’ knocked-out units in favor 
of predicting shared behaviour across silenced and control sessions 
(that is, similar to training without knockout). For two perturbations 
(LC10ad and LC10bc), the genetic lines silenced two LC neuron types 
together. For simplicity, we assigned each of these to its own model 
LC unit, which represented the summed activity of all neurons from 
both types (for example, LC10a and LC10d for LC10ad). Because the 
LC bottleneck reads from all 10 past time frames, each model LC unit 
integrates information over time (for example, for motion detection). 
Additionally, the model LC responses are guaranteed to be nonnegative 
because of the relu activation functions.

Decision network. The decision network took as input the activations 
of the 23 LC bottleneck units and comprised 3 dense layers, where 
each layer had 128 filters. The decision network predicted the move-
ment output variables (forward velocity, lateral velocity, and angular 
velocity) each with a linear mapping and the song production variables 
(probability of sine, Pfast and Pslow song) each with a linear mapping 
followed by a sigmoid activation function.

Knockout training
We sought a one-to-one mapping between the model’s 23 LC units in 
its bottleneck and the 23 LC neuron types in our silencing experiments 
(Fig. 1a). To identify this mapping, we devised knockout training. We 
first describe the high-level training procedure and then give details 
about the optimization. For a randomly initialized 1-to-1 network, we 
arbitrarily assigned model LC units to real LC types (that is, in numerical 



order). For each training sample, we knocked out (that is, set to 0 via 
a mask) the model LC unit that corresponded to the silenced LC type; 
no model units were silenced for control data (Fig. 1b). This is similar 
to dropout training36 except that hidden units were purposefully—not 
randomly—chosen. The intuition behind knockout training is that the 
remaining unperturbed model LC units must encode enough infor-
mation or ‘pick up the slack’ to predict the silenced behaviour; any  
extra information will not be encoded in the unperturbed units  
(as the back-propagated error would not contain this information). For 
example, let us assume that female size is encoded solely by LPLC1 and 
that this cell type contributes strongly to forward velocity. To predict 
the forward velocity of LPLC1-silenced males (which would not rely 
on female size), the other model LC units would need only to encode 
other features of the fictive female (for example, her position or rota-
tion). In fact, any other model LC unit encoding female size would hurt 
prediction because forward velocity of LPLC1-silenced males does not 
depend on it. Another view of knockout training is that we optimize 
the model to predict behaviour while also constraining the model on 
which internal representations it may use. These constraints are set 
by the perturbations (for example, genetic silencing) we use in our 
experiments.

The optimization details are as follows. The model was trained 
end-to-end using stochastic gradient descent with learning rate 10−3 
and momentum 0.7. Each training batch had 288 samples, where each 
sample was a sequence of 10 images and 6 output values. Each batch 
was balanced across LC types (24 in total including control), where 
each LC type had 12 samples. The batch was also balanced for types of 
song (sine song, pulse song, or no song), as different flies sang differ-
ent amounts of song. The model treated different flies for the same 
silenced LC type as the same to capture overall trends of an ‘average’ 
silenced fly. We z-scored the movement behavioural variables (forward, 
lateral, and angular velocity) based on the mean and standard devia-
tion of the control data in order to have similarly sized gradients from 
each output variable. The loss functions were mean squared error for 
forward, lateral, and angular velocity and binary cross-entropy for 
the probabilities of sine, Pfast, and Pslow song. The model instantia-
tion and optimization was coded in Keras (https://keras.io/) on top of 
Tensorflow57; we used the default random initialization parameters to 
initialize weights. We stopped training when prediction performance 
for forward velocity (evaluated on a validation set, see below) began 
to decrease (that is, early stopping).

Training and test data. After identifying courtship frames (see ‘Court-
ship experiments’), we split these frames into train, validation and test 
sets. To form a test set for a given LC type (or control), we randomly 
selected 3-s windows across all flies until we had 15 min of data (27,000 
frames). Selecting windows instead of randomly choosing time frames 
ensured that no frame in the visual input of the test data overlapped 
with any training frames. For control sessions, after selecting the test 
set, we also randomly sampled from the remaining frames to form a 
validation set (27,000 frames) in the same way as we did for the test 
set; the validation set was used for hyperparameter choices and early 
stopping. All remaining frames were used for training. To balance the 
number of frames for each LC type and control, we randomly sampled 
at most 600,000 frames (~5.5 h) across sessions for each LC type and 
control. This ensured no single LC type or control was over-represented 
in the training data (that is, a class imbalance). In total, our training set 
had ~11.6 million training samples. To account for the observation that 
flies tend to prefer to walk along the edge of the chamber in either a 
clockwise or counter-clockwise manner—biasing lateral and angular 
velocities to one direction—we augmented the training set by flipping 
the visual input from left to right and correspondingly changing the 
sign of the lateral and angular velocities; each training sample had a 
random 50% chance of being flipped. No validation or test data were 
augmented.

Dropout and no knockout training. For comparison to knockout (KO) 
training, we considered three networks with the same architecture as 
the 1-to-1 network but trained with other procedures (Extended Data 
Fig. 3). First is the untrained network for which no training is performed 
(that is, all parameters remain at their randomized initial values). Sec-
ond, we performed a version of dropout (DO) training36 by setting to 0 a 
randomly chosen model LC unit for each training sample independent 
of the sample’s silenced LC type; no model LC unit’s values are set to 0 
for samples from control sessions. This training procedure knocks out 
the exact same number of units as that of knockout training. No dropout 
is performed during inference. Third, we consider training a network 
without knocking out (noKO) any model LC units. We trained the DO 
and noKO networks with the exact same data as that for KO training  
(a combined dataset of courtship sessions from 23 different LC types and  
control), but the DO and noKO networks were not given any information 
about which LC type was silenced for a training sample. This makes the 
DO and noKO fair null hypotheses: The DO and noKO networks assume 
that no change in behaviour occurs between LC-silenced males and con-
trol males, whereas the KO network attempts to find these differences. 
The DO and noKO networks helped us to ground the prediction per-
formance of knockout training when predicting moment-to-moment 
behaviour (Extended Data Figs. 3 and 4) and real LC responses (Fig. 2e) 
as well as consistency in training (below).

Consistency across different training runs. Because DNNs are opt-
imized via stochastic gradient descent, the training procedure of a 
DNN is not deterministic; different random initializations and different 
orderings of the training data may lead to DNNs with different predic-
tion performances. To assess whether the 1-to-1 network is consistent 
across training runs, we trained 10 runs of the 1-to-1 network with dif-
ferent random initializations and different random orderings of train-
ing samples. For comparison, we also trained 10 networks either with 
dropout training or without knockout training (above) as well as 10 
untrained networks. For a fair comparison across training procedures 
(knockout, dropout, without knockout and untrained), each run had 
the same parameter initialization and ordering of training samples. 
We compared the 1-to-1 network to these three networks by assessing 
prediction performance of moment-to-moment behaviour (Extended 
Data Fig. 3), overall mean changes to behaviour across silenced LC types 
(Extended Data Fig. 4), consistency both in behavioural predictions 
(Extended Data Fig. 5) and neural predictions (Extended Data Fig. 6), 
prediction performance of real LC responses for a one-to-one mapping 
(Fig. 2e and Extended Data Fig. 8) and prediction performance of real 
LC responses for a fitted linear mapping (Extended Data Fig. 8). We 
opted to investigate the inner workings of a single 1-to-1 network in 
Figs. 3 and 4 both for simplicity and because some analyses can only be 
performed on a single network (for example, the cumulative ablation 
experiments in Fig. 4). Different runs of the 1-to-1 networks had some 
differences in their predictions (Extended Data Figs. 5 and 6), but the 
overall conclusion that the LC bottleneck in the 1-to-1 network revealed 
a combinatorial requirement for multiple LC types to drive the male’s 
courtship behaviours remained true over all runs. For our analyses in 
Figs. 3 and 4, we chose the 1-to-1 network that had the best prediction 
for both behaviour and neural responses (model 1 in Extended Data 
Fig. 3, and in Extended Data Fig. 8).

Two-photon calcium imaging
We recorded LC responses of a head-fixed male fly using a custom-built 
two-photon microscope with a 40× objective and a two-photon laser 
(Coherent) tuned to 920 nm for imaging of GCaMP6f. A 562 nm dichroic 
split the emission light into red and green channels, which were then 
passed through a red 545–604 nm and green 485–555 nm bandpass 
filter, respectively. We recorded the imaging data from the green chan-
nel with a single plane at 50 Hz. Before head fixation, the male’s cuticle 
above the brain was surgically removed, and the brain was perfused 

https://keras.io/
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with an extracellular saline composition. The male’s temperature was 
controlled at 30 °C by flowing saline through a Peltier device and meas-
ured via a water bath with a thermistor (BioscienceTools TC2-80-150). 
We targeted LC neuron types LC6, LC11, LC12, LC15 and LC17 (Fig. 2a) 
for their proximity to the surface (and thus better imaging signal), 
prior knowledge about their responses from previous studies29–31, and 
because they showed changes to male behaviour when silenced (Fig. 1e 
and Extended Data Fig. 1).

Each head-fixed male fly walked on an air-supported ball and viewed 
a translucent projection screen placed in the right visual hemifield 
(matching our recording location in the right hemisphere). The flat 
screen was slanted 40 visual degrees from the heading direction of the 
fly and perpendicular to the axis along the direction between the fly’s 
head and the centre of the screen (with a distance of 9 cm between the 2).  
An LED-projector (DLP Lightcrafter LC3000-G2-PRO) with a Semrock 
FF01-468/SP-25-STR filter projected stimulus sequences onto the back 
of the screen at a frame rate of 180 fps. A neutral density filter of opti-
cal density 1.3 was added to the output of the projector to reduce light 
intensity. The stimulus sequences (described below) comprised a mov-
ing spot and a fictive female that varied her size, position and rotation.

We recorded a number of sessions for each targeted LC type: LC6 
(5 flies), LC11 (5 flies), LC12 (6 flies), LC15 (4 flies) and LC17 (5 flies). We 
imaged each glomerulus at the broadest cross-section, typically at the 
midpoint, given that we positioned the head of the fly to be flat (tilted 
down 90°, with the eyes pointing down). We hand selected regions of 
interest (ROIs) that encompassed the shape of the glomerulus within 
the 2D cross-section. We computed ΔF/F0 for these targeted ROIs using 
a baseline ROI for F0 that had no discernible response and was far from 
targeted ROIs. For each LC and stimulus sequence, we concatenated 
repeats across flies. To remove effects due to adaptation across repeats 
and differences among flies, we de-trended responses by taking the 
z-score across time for each repeat; we then scaled and re-centred 
each repeat’s z-scored trace by the standard deviation and mean of 
the response trace averaged across all the original repeats (that is, 
the original and denoised repeat-averaged trace had the same overall 
mean and standard deviation over time). To test whether an LC was 
responsive to a stimulus sequence or not, we computed a metric akin 
to a signal-to-noise ratio for each combination of LC type and stimulus 
sequence in the following way. For a single run, we split the repeats 
into two separate groups (same number of repeats per group) and 
computed the repeat-averaged response for each group. We then com-
puted the R2 between the two repeat-averaged responses by computing 
the Pearson correlation over time and squaring it. We performed 50 
runs with random split groups of repeats to establish a distribution 
of R2 values. We compared this distribution to a null distribution of 
R2 values that retained the timecourses of the responses but none 
of the time-varying relationships among repeats. To compute this 
null distribution, we sampled 50 runs of split groups (same number 
of repeats as the actual split groups) from the set of repeats for all 
stimulus sequences; in addition, the responses for each repeat were 
randomly reversed in time or flipped in sign, breaking any possible 
co-variation across time among repeats. For each combination of LC 
type and stimulus, we computed the sensitivity58 d′ between the actual 
R2 distribution and the null R2 distribution. We designated a threshold 
d′ > 1 to indicate that an LC was responsive for a given stimulus sequence 
(that is, we had a reliable estimate of the repeat-averaged response). 
After this procedure, a total of 27 combinations of stimulus sequence 
and LC type out of a possible 45 combinations remained (Extended 
Data Fig. 8).

We considered two types of stimulus sequences: a moving spot and 
a moving fictive female. The moving spot (black on isoluminant grey 
background) had three different stimulus sequences (Fig. 2b,c). The 
first stimulus sequence was a black spot with fixed diameter of 20° that 
moved from the left to right with a velocity chosen from candidate 
velocities {1, 2, 5, 10, 20, 40, 80} ° s−1; each sequence lasted 2 s. The  

second stimulus sequence was a spot that loomed from a starting  
diameter of 80° to a final diameter of 180° according to the formula 
θ t r v t( ) = − 2tan (− / ⋅ 1/ )−1 , where r/v is the radius-to-speed ratio with 
units in ms and t is the time (in ms) until the object reaches its maximum 
diameter21 (that is, t = tfinal − tcurrent). A larger r/v corresponds with a slower 
object loom. We presented different loom speed ratios chosen from 
candidate r/v ∈ {10, 20, 40, 80} ms. Once a diameter of 180° was reached, 
the diameter remained constant. The third stimulus sequence was a 
spot that linearly increased its size from a starting diameter of 10° 
according to the formula θ = 10 + v ⋅ t, where v is the angular velocity 
(in ° s−1) and t is the time from stimulus onset (in seconds). The final 
diameter of the enlarging spot for each velocity (30°, 50°, 90° or 90°, 
respectively) was determined based on the chosen angular velocity 
v ∈ {10, 20, 40, 80} ° s−1. Once a diameter of 90° was reached, the diam-
eter remained constant.

The second type of stimulus sequence was a fictive female varying 
her size, position, and rotation. The fictive female was generated in 
the same manner as that for the input of the 1-to-1 network (see ‘Visual 
input reconstruction’). We took the angular size of the fictive female 
(65 visual degrees for a size of 1.0, where the female faces away from 
the male at the centre of the image) and used it to set the angular size 
of the fictive female on the projection screen. We considered three 
kinds of fictive female stimulus sequences with 9 different sequences 
in total (Supplementary Video 1 and Extended Data Fig. 8); we first 
describe them at a high level and then separately in more detail. The 
first kind consisted of sequences in which the female varied only one 
visual parameter (for example, size) while the other two parameters 
remained fixed (for example, position and rotation); we varied this 
parameter with three different speeds. Second, we generated sequences 
that optimized a model output variable (for example, maximizing or 
minimizing forward velocity). Third, we used a natural image sequence 
taken from a courtship session. Each stimulus sequence lasted for 10 s 
(300 frames).

Details of the fictive female sequences are as follows. For reference, a 
size of 1.0 is ~65 visual degrees, and a position of 0.5 is 90 visual degrees 
to the right from centre.
• Vary female position: the female varied only her lateral position (with 

a fixed size of 0.8 and a rotation angle of 0° facing away from the 
male) from left to right (75 frames) then right to left (75 frames). Posi-
tions were linearly sampled in equal intervals between the range of 
−0.1 and 0.5. This range of positions was biased to the right side of 
the visual field to account for the fact that the projection screen was 
oriented in the male’s right visual hemifield. After the initial pass of 
left to right and right to left (150 frames total), we repeated this same 
pass two more times with shorter periods (100 frames and 50 frames 
in total, respectively), interpolating positions in the same manner as 
the initial pass.

• Vary female size: the same generation procedure as for ‘vary female 
position’ except that instead of position, we varied female size from 
0.4 to 0.9 (sampled in equal intervals) with a fixed position of 0.25 
and a rotation angle of 0° facing away from the male.

• Vary female rotation: the same generation procedure as for ‘vary 
female position’ except that instead of position, we varied the female 
rotation angle from −180° to 180° (sampled in equal intervals) with a 
fixed position of 0.25 and a fixed size of 0.8.

• Optimize for forward velocity: we optimized a 10-s stimulus sequence 
in which female size, position, and rotation were chosen to maximize 
the 1-to-1 network’s output of forward velocity for 5 s and then mini-
mize forward velocity for 5 s. In a greedy manner, the next image in 
the sequence was chosen from candidate images to maximize the 
objective. We confirmed that this approach did yield large variations 
in the model’s output. To ensure smooth transitions, the candidate 
images were images ‘nearby’ in parameter space (that is, if the current 
size was 0.8, we would only consider candidate images with sizes in 
the range of 0.75 to 0.85). Images were not allowed to be the same in 



consecutive frames and had to have a female size greater than 0.3 
and a female position between −0.1 and 0.5.

• Optimize for lateral velocity: the same generation procedure as for 
‘Optimize for forward velocity’ except that we optimized for the model 
output of lateral velocity. In this case, maximizing or minimizing 
lateral velocity is akin to asking the model to output the action of 
moving to the right or left.

• Optimize for angular velocity: the same generation procedure as for 
‘Optimize for forward velocity’ except that we optimized for the model 
output of angular velocity. In this case, maximizing or minimizing 
angular velocity is akin to asking the model to output the action of 
turning to the right or left.

• Optimize for forward velocity with fixed position: the same generation 
procedure as for ‘Optimize for forward velocity’ except that we limited 
female position p to be within the tight range of 0.225 < p < 0.275. This 
ensured that most changes of the female stemmed from changes in 
either female size or rotation, not position.

• Optimize for lateral velocity with multiple transitions: the same gen-
eration procedure as for ‘Optimize for lateral velocity’ except that we 
had four optimization periods: maximize for 2.5 s, minimize for 2.5 s, 
maximize for 2.5 s and minimize for 2.5 s.

• Natural stimulus sequence: a 10-s stimulus sequence taken from a 
real courtship session. This sequence was chosen to ensure large 
variation in the visual parameters and that the female fly was mostly 
in the right visual field between positions −0.1 and 0.5.

For each recording session, we presented the stimuli in the following 
way. For the moving spot stimuli, each stimulus sequence was preceded 
by 400 ms of a blank, isoluminant grey screen. For the fictive female 
stimuli, a stimulus sequence of the same kind (for example, ‘Vary female 
size’) was presented in three consecutive repeats for a total of 30 s; 
this stimulus block was preceded by 400 ms of a blank, isoluminant 
grey screen. All stimulus sequences (both moving spot and the fictive 
female) were presented one time each in a random ordering. Another 
round (with the same ordering) was presented if time allowed; usually, 
we presented 3 to 4 stimulus rounds before an experiment concluded. 
This typically provided 9 or more repeats per stimulus sequence per fly.

Predicting real neural responses
To obtain the model predictions for the artificial moving spot stimuli 
(Fig. 2b,c), we generated a fictive female facing away from the male 
and whose size and position matched that of the moving spot. This was 
done to prevent any artifacts from presenting a stimulus (for example, 
a high-contrast moving spot) on which the model had not been trained, 
as the model only observed a fictive female. We matched the angular 
size of the fictive female to that of the presented stimulus by using the 
measured conversion factor of 65 visual degrees for a fictive female 
size of 1.0. For the stimulus of the moving spot with varying speed 
(Fig. 2b), the fictive female translated from left to right (that is, same 
as the stimuli presented to the male fly). Because the 1-to-1 network’s 
responses could remain constant and not return to 0 for different static 
stimuli (that is, no adaptation mechanism), we added a simple adapta-
tion mechanism to the model’s responses such that if responses were 
the same for consecutive frames, the second frame’s response would 
return to its initial baseline response with a decay rate of 0.1. To obtain 
model predictions for the fictive female stimuli (Fig. 2d,e), we input the 
same stimulus sequences presented to the fly except that we changed 
the greyscale background to white (to match the training images).

To evaluate the extent to which the 1-to-1 network predicted the 
repeat-averaged LC responses for each stimulus sequence of the mov-
ing fictive female, we sought an R2 prediction performance metric 
that accounted for the fact that our estimates of the repeat-averaged 
responses were noisy. Any metric not accounting for this repeat noise 
would undervalue the true prediction performance (that is, the predic-
tion performance between a model and a repeat-averaged response with 

an infinite number of repeats). To measure prediction performance, we 
chose a noise-corrected R2 metric recently proposed59 that precisely 
accounts for noise across repeats and corrects for bias in estimating 
the ground truth normalized R2. A noise-corrected R2 = 1 indicates 
that our model perfectly predicts the ground truth repeat-averaged 
responses up to the amount of noise across repeats. We note that our 
noise-corrected R2 metric accounts for differences in mean, standard 
deviation, and sign between model and real responses, as these dif-
ferences do not represent the information content of the responses.

We computed this noise-corrected R2 between the 1-to-1 network 
and real responses for each LC type and stimulus sequence (Fig. 2e) 
for which the LC was responsive (that is, d′ > 1, see ‘Two-photon cal-
cium imaging’). Importantly, the 1-to-1 network never had access to 
any neural data in its training; instead, for a given LC type, we directly 
took the response of the corresponding model LC unit as the 1-to-1 
network’s predicted response. This is a stronger criterion than typical 
evaluations of DNN models and neural activity, where a linear mapping 
from DNN features (~10,000 feature variables) to neural responses is 
fit1. To account for the smoothness of real responses due to the imaging 
of calcium dynamics, we causally smoothed the predicted responses 
with a linear filter. We fit the weights of the linear filter (filtering the 
10 past frames) along with the relu’s offset parameter (accounting 
for trivial mismatches due to differences in thresholding) to the real 
responses. This fitting only used responses of one model LC unit, keep-
ing in place the one-to-one mapping; we also relaxed this constraint 
by fitting a linear mapping using all model LC units (Extended Data 
Fig. 8). We performed the same smoothing procedure not only for the 
1-to-1 network but also for an untrained network, a network trained 
with dropout training, and a network trained without knockout (see 
‘Knockout training’ above). This procedure was only performed for 
predicted responses in Fig. 2d,e and Extended Data Fig. 8. For analysing 
response magnitudes (Fig. 2f and Extended Data Fig. 7), the responses 
came directly from model LC units (that is, no smoothing or fitting of 
the relu’s offset was performed).

Analysing model LC responses to visual input
To better understand how each model LC unit responds to the visual 
input, we passed natural stimulus sequences (taken from courtship 
sessions with control males) into the 1-to-1 network and computed 
the cross-validated R2 between model LC responses and each visual 
parameter (Fig. 3b). Because female position and rotation are circular 
variables, we converted each variable x to a 2D vector [cos(x),sin(x)] 
and took the maximum R2 across both variables for each model LC unit. 
We further investigated model LC tuning by systematically varying 
female size, position, and rotation to generate a large bank of stimulus 
sequences. We input these stimulus sequences into the 1-to-1 network 
and formed heat maps out of the model LC responses (Fig. 3c,d). For 
each input stimulus sequence, each of its 10 images was a repeat of the 
same image of a fictive female with a given size, lateral position, and 
rotation angle (that is, the fictive female remained frozen over time 
for each 10-frame input sequence). Across stimulus sequences, we 
varied female size (50 values linearly interpolated between 0.3 to 1.1),  
lateral position (50 values linearly interpolated between −1 to 1), and 
rotation angle (50 values linearly interpolated between −180 and 180 
visual degrees), resulting in 50 × 50 × 50 = 125,000 different stimulus 
sequences that enumerated all possible combinations. To understand 
the extent to which each visual parameter contributed to a model LC 
unit’s response, we decomposed the total response variance into dif-
ferent components37 (Fig. 3e). The first three components represent 
the variance of the marginal response to each of the 3 visual param-
eters (which we had independently varied). We computed these mar-
ginalized variances by: (1) taking the mean response for each value 
of a given visual parameter by averaging the other two parameters 
over all stimulus sequences; and (2) taking the variance of this mean 
response over values of the marginalized parameter (50 values in total).  
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Any remaining variance (subtracting the three marginalized variances 
from the total response variance) represents response variance arising 
from interactions among the three visual parameters (for example, the 
model LC response depends on female position but only if the female 
is large and faces away from the male, see Fig. 3d, ‘LC10a’). Because the 
1-to-1 network was deterministic, no response variance was attributed 
to noise across repeats (unlike trial-to-trial variability observed in the 
responses of real neurons).

Analysing the model LC responses to a large bank of static stimuli 
is helpful to understand LC tuning (Fig. 3c–e). However, we may miss 
important relationships between the features of the visual input and 
model LC responses without considering dynamics (for example, the 
speed at which female size changes). To account for these other tempo-
ral features, we devised three dynamic stimulus sequences that varied 
in time for roughly 10 s each (Fig. 3f and Supplementary Video 2); these 
stimuli were similar to a subset of stimuli we presented to real male 
flies (see ‘Two-photon calcium imaging’). For each stimulus sequence, 
we varied one visual parameter while the other two remained fixed at 
nominal values chosen based on natural sequence statistics.

The first 2.5 s of each stimulus were the following:
(1) vary female size: linearly increase from 0.5 to 0.9 with fixed posi-

tion = 0 and rotation = 0°
(2) vary female position: linearly increase from −0.25 to 0.25 with fixed 

size = 0.8 and rotation = 0°
(3) vary female rotation: linearly increase from −45° to 45° with fixed 

size = 0.8 and position = 0

The next 2.5 s were the same as the first 2.5 s except reversed in time 
(for example, if the female increased in size the first 2.5 s, then the 
female decreased in size at the same speed for the next 2.5 s). Thus, 
the first 5 s was one period in which the female increased and decreased 
one parameter. The stimulus sequence contained 4 repeats of this 
period with different lengths (that is, different speeds): 5, 3.33, 1.66, and 
0.66 s (corresponding to 150, 100, 50, and 10 time frames, respectively). 
We passed these stimulus sequences as input into the 1-to-1 network 
(that is, for each time frame, the 10 most recent images were passed 
into the model) and collected the model LC responses over time. We 
directly computed the squared correlation R2 between each model LC 
unit’s responses and the visual parameters (and features derived from 
the visual parameters, such as speed) for all three stimulus sequences 
(Fig. 3g). Velocity and speed were computed by taking the difference 
of the visual parameter between two consecutive time frames.

Analysing how model LCs contribute to behaviour
Because the 1-to-1 network identifies a one-to-one mapping, the model 
predicts not only the response of an LC neuron but also how that LC 
neuron causally relates to behaviour. We wondered to what extent 
each model LC unit causally contributed to each behavioural output 
variable. We designed an ablation approach (termed the cumulative 
inactivation procedure (CLIP)) to identify which model LCs contributed 
the most to each behavioural output. The first step in CLIP is to inac-
tivate each model LC unit individually by setting a model LC’s activity 
value for all time frames to a constant value (chosen to be the mean 
activity value across all frames). We found that setting the activity to 
0 (as we do during knockout training) obscures nuanced but impor-
tant relationships because a value of 0 may be far from the working 
regime of activity for a given stimulus, resulting in large deviations 
in predicted output. Instead, we focus on how variation in a model LC 
unit’s response contributes to variations in predicted behaviour. We 
test to what extent the 1-to-1 network with the inactivated model LC unit 
predicts the behavioural output of held-out test data from control flies 
(from the test set). We choose the model LC unit that, once inactivated, 
leads to the least drop in prediction performance (that is, the model 
LC unit that contributes the least to the behavioural output). We then 
iteratively repeat this step, keeping all previously inactivated model LC 

units still inactivated. In this way, we greedily ablate model LC units until 
only one model LC unit remains. After performing CLIP, we obtain an 
ordering of model LC units from weakest to strongest contributor of a 
particular behavioural output (Fig. 4b,c). We measure the contribution 
to behaviour as the normalized change in performance. For movement 
variables, normalized change in performance is the difference in R2 
between no silencing (‘none’) and silencing K model LC units, normal-
ized by the R2 of no silencing. For song variables, normalized change 
in performance is the same as for the movement variables except we 
use 1 − cross-entropy. We then use this ordering (and prediction perfor-
mance) to infer which model LC units contribute to which behavioural 
outputs. We performed CLIP to predict held-out behaviour from con-
trol flies (Fig. 4c). Because different behavioural outputs had differ-
ent prediction performances (Extended Data Fig. 3), we normalized 
each model LC unit’s change in performance by the maximum change 
in performance (that is, prediction performance for no inactivation 
minus that of inactivating all model LC units); for model LC units for 
which inactivation led to an increase in performance due to overfitting 
(Extended Data Fig. 12), we clipped their change in performance to 
be 1. We also performed CLIP to predict the model output to simple, 
dynamic stimulus sequences (Fig. 4d–f). Because we did not have real 
behavioural data for these dynamic stimulus sequences, we used the 
model output when no silencing occurred as ground truth behaviour.

Connectome analysis
To obtain the pre- and postsynaptic partners of LC and LPLC neuron 
types, we leveraged the recently released FlyWire connectome of an 
adult female Drosophila15,19, for which optic lobe intrinsic neurons were 
recently typed18. We downloaded the synaptic connection matrix at 
https://codex.flywire.ai/ of the public release version 630. We isolated 
the following 57 LC and LPLC types: LC4, LC6, LC9, LC10a-f, LC11, LC12, 
LC13, LC14a1, LC14a2, LC14b, LC15, LC16, LC17, LC18, LC19, LC20a-b, LC21, 
LC22, LC24, LC25, LC26, LC27, LC28a, LC29, LC31a-c, LC33a, LC34, LC35, 
LC36, LC37a, LC39, LC40, LC41, LC43, LC44, LC45, LC46, LCe01-LCe09, 
LPLC1, LPLC2, and LPLC4. We report individual cell types LC10a, LC10b, 
LC10c, and LC10d which have been identified in FlyWire, but we do not 
yet know how the driver lines LC10ad and LC10bc map onto these indi-
vidual types. We summed the number of synaptic connections across 
all neurons of the same type that were either inputs or outputs of one 
of the LC and LPLC neuron types. We denoted a connection (Fig. 5b, tick 
lines) if at least 5 synaptic connections existed between an LC or LPLC 
neuron type and another neuron type. We identified 538 presynaptic 
cell types and 956 postsynaptic cell types. We categorized partner cell 
types into classes based on the naming conventions in FlyWire’s con-
nectome dataset15 and sorted cell types within each class based on the 
number of connections to the LC types. To see if LC types with similar 
inputs project to similar outputs—in other words, identify groupings 
of LC types, we performed agglomerative clustering separately on the 
pre- and postsynaptic connections. Specifically, we summed up con-
nections across partner cell types within a class and used these summed 
connections as features for clustering (complete linkage with cosine 
similarity as affinity). LC types within a cluster are listed in numerical 
order. The following classes were used: LC, lobula columnar; LPLC, 
lobula plate-lobula columnar; AOTU, anterior optic tubercle; AVLP, 
anterior ventrolateral protocerebrum; CB, cross brain; CL, clamp; cL, 
centrifugal lobula; cM, centrifugal medulla; DN, descending neuron; 
Dm, distal medulla; Li, lobula intrinsic; LLPC, lobula-lobula plate colum-
nar; LM, lobula medulla; LT, lobula tangential; mAL, medial antenna 
lobes; ML, medial lobe; MT, medulla tangential; OA, octopaminergic; 
PLP, posterior lateral protocerebrum; Pm, proximal medulla; PS, poste-
rior slope; PVLP, posterior ventrolateral protocerebrum; SMP, superior 
medial protocerebrum; T2-T5, optic intrinsic; Tlp, translobula plate; 
Tm, transmedullary; TmY, transmedullary; Y, optic intrinsic; IB, inferior 
bridge; LAL, lateral accessory lobe; SAD, saddle; SLP, superior lateral 
protocerebrum; WED, wedge.

https://codex.flywire.ai/


Statistical analysis
Unless otherwise stated, all statistical hypothesis testing was con-
ducted with permutation tests, which do not assume any parametric 
form of the underlying probability distributions of the sample. All 
tests were two-sided and non-paired, unless otherwise noted. Each 
test was performed with 1,000 runs, where P < 0.001 indicates the 
highest significance achievable given the number of runs performed. 
When comparing changes in behaviour due to genetic silencing versus 
control flies (Fig. 1e), we accounted for multiple hypothesis testing by 
correcting the false discovery rate with the Benjamini–Hochberg pro-
cedure with α = 0.05. Paired permutation tests were performed when 
comparing prediction performance between models (Fig. 2e) for which 
paired samples were randomly permuted with one another. Error bars 
of the response traces in Fig. 2b–d were 90% bootstrapped confidence 
intervals of the means, computed by randomly sampling repeats with 
replacement. No statistical methods were used to predetermine sample 
sizes, but our sample sizes are similar to those of previous studies11,12,29,30. 
Experimenters were not blinded to the conditions of the experiments 
during data collection and analysis.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data are available at https://dandiarchive.org/dandiset/000951/.  
Source data are provided with this paper.

Code availability
The code for extracting fly body positions (SLEAP) is available at 
https://sleap.ai/. Song segmentation was performed with code found at 
https://github.com/murthylab/MurthyLab_FlySongSegmenter. Model 
weights, example stimuli and code are available at https://github.com/
murthylab/one2one-mapping. The FlyWire connectome is available at 
https://codex.flywire.ai/.
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Extended Data Fig. 1 | See next page for caption.



Extended Data Fig. 1 | Different changes in behavior when silencing 
different LC neuron types of the male’s visual system. The main finding is 
that no single LC type showed a substantial change relative to control compared 
to the change observed between blind and control flies—suggesting no single 
LC type is the sole contributor to courtship behaviors. a. Image of circular 
behavioral chamber used to estimate the positions of a male (blue) and female 
(red) fruit fly during courtship. Joint positions for each frame were identified 
with the behavioral tracking software SLEAP51. Audio waveforms of song were 
detected with 16 microphones tiling the chamber (white boxes). b. Density of 
female position relative to the male’s egocentric view, conditioned on which LC 
type was silenced in the male as well as control-spGAL (‘control’) and blind-
CSTul (‘blind’) males (multiple sessions per heatmap). Silencing any single  
LC neuron type did not extinguish courtship chasing (compare LC-silenced 
heatmaps to that of blind males); however, silencing some LC types did lead to a 
noticeable decrease in the amount of time females were positioned in front of 
the male versus control sessions (e.g., compare LC9, LC10a, LC10ad, and LC21 
to control). c. Male-female distance averaged across the entire session for  
each silenced LC type (reproduced from Fig. 1e, top panel). Each dot is for one 
session; lines denote means and dashed line denotes the mean for control 
sessions. Statistically significant changes from control flies are indicated by an 
asterisk (p < 0.05, permutation test, corrected for the false discovery rate of 
multiple hypothesis testing by the Benjamini-Hochberg procedure, n > 12 for n 
sessions per LC type). We note that the spread across sessions (i.e., scatter of 
dots) per LC type is large; one likely reason for this spread is that the females 
were PIBL (pheromone insensitive and blind)—PIBL females tend to show larger 
individual differences in copulation time than wildtype females9. We also 
considered changes to behavior between control and blind male flies in CSTul 
flies (right, data from refs. 9,52 recorded in an 8-microphone arena, asterisks 
denote p < 0.05, permutation test, n≥15); the change in male-female distance 
between control and blind flies (an average of +4.80 mm) was substantially 
larger than the largest change between an LC type and control (for LC10a, an 
average of +1.03 mm; for LC6, −2.15 mm). Differences between our control-
spGAL flies and control-CSTul flies are most likely due to the criteria for 
keeping a session (CSTul sessions were stopped and discarded if the male failed 
to begin courtship in the first 5 minutes; we did not have such restrictions for 
our control or LC-silenced sessions). Thus, only the relative changes between 
control-spGAL and LC-silenced sessions and the relative changes between 
control-CSTul and blind-CSTul should be compared. d. Proportion of sine  
song given song production. Same data as in Fig. 1e (bottom panel) except the 

LC types are ordered based on increasing proportions. Same format as in a.  
e. Mean changes in movement, including forward velocity (top panel), lateral 
velocity (middle panel), and angular velocity (bottom panel), averaged over  
the entire session. The absolute value was taken for lateral and angular velocity 
(i.e., speed), as we were interested in changes away from the male’s heading 
direction (e.g., a large turn to the right or left both indicated a large deviance). 
Same format as in a. f. Changes in the male’s song production, including the 
probability of sine, Pfast, and Pslow song. Same format as in a. Although we 
observed some significant changes in behavior (asterisks), overall we did not 
observe any LC types that, after silencing, resulted in changes to behavior on 
par with the changes observed between control and blind flies—opposite  
of what we were expecting if only one or two LC types were the dominant 
contributors to courtship. This suggests that multiple LC types need to be 
silenced together to obtain large deficits in behavior, consistent with our 
modeling results (Fig. 4). Previous studies have identified LC types LC10a and 
LC9 as contributing to courtship11,22,23, and our results are consistent: LC10a 
and LC9 show an increase in male-to-female distance (c, LC10a and LC9), as 
previously reported. A new implication for LC10a and LC9 is for song production: 
Both LC types tend towards a reduction in song production for all three song 
types (f, LC10a and LC9). The metrics we use here (e.g., taking the mean forward 
velocity across an entire session) are coarse summary statistics and do not 
represent all possible ways in which behavior may change due to silencing. In 
addition, variability across sessions per LC type was large, making it difficult to 
identify true changes. This motivated us to use the 1-to-1 network to model the 
LC-silenced and control behavior, as the 1-to-1 network can be used to directly 
identify the largest changes to the sensorimotor transformation due to LC 
silencing. In particular, we can use a metric—the coefficient of determination 
R2—that considers more possible changes than simply a change in mean offset. 
We use R2 when comparing changes to behavior for the 1-to-1 network (Fig. 4), 
but we cannot use R2 for the data here, as the visual inputs were not the same 
across silenced behavioral datasets. g. Our behavioral experiments comprised 
two sets of data collection that were 4 years apart, and we wondered if large 
deviations occurred for control-spGAL sessions between the two sets (both 
sets had the same genetic lines). We separated the control sessions into two 
groups (‘control 2017’ and ‘control 2021’, named for the year of collection)  
and found no significant difference between them across the movement and 
song statistics (n.s. denotes p > 0.05, permutation test) except for Pfast song 
(asterisk, p < 0.05, permutation test, n > 10). Thus, we felt confident in merging 
the two sets of data collection for further analysis.
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Extended Data Fig. 2 | See next page for caption.



Extended Data Fig. 2 | Testing the efficacy of knockout training with 
simulations. We tested the ability of knockout training to correctly identify 
the one-to-one mapping of silenced neuron types with two simulations. We 
compare a network trained with knockout (‘KO network’) to a network trained 
without knockout (‘noKO network’) for which no model units are inactivated 
(i.e., the noKO network has no knowledge that any silencing occurred).  
a. A simple simulation with 2 layer linear networks. The ground truth network 
(top) is a randomly-initialized, untrained 2 layer linear network with 48 input 
variables (xx ∈ 48R  where x ~ (0, 1)j N ), 8 hidden units (hi for i = 1, …, 8), and  
1 output unit ( y). We use the same network architecture for the KO network 
(bottom). We seek a one-to-one mapping between the ground truth hidden 
units hi and the model’s estimated hidden units hî. We generated training data 
by silencing each hidden unit of the ground truth network (i.e., setting hi = 0) 
and recording the resulting silenced output y as well as observing control data 
(for which no silencing occurred). For each case, we drew 1,000 input samples, 
which yielded 9, 000 training samples in total. We then trained the model 
either using knockout training (‘KO network’) or without it (‘noKO network’). 
We generated a test set in the same way as but independent of the training set; 
the test set also had 9, 000 test samples in total. b. We tested the KO network’s 
ability to correctly predict the silenced output y of the ground truth network. 
We collected the KO network’s predicted output y  ̂to 1, 000 test samples for 
each silenced hidden unit of the ground truth network by knocking out the 
corresponding hidden unit in the KO network. We then computed the R2 
(coefficient of determination) between y and y  ̂for each silenced unit as well as 
control (red dots). We evaluated the noKO network with the same test set but 
did not knockout any hidden units during training or evaluation (black dots). 
We found that the KO network better predicted silenced output than that of  
the noKO network for most of the hidden units (red dots above black dots) but 
performance was roughly equal for control data (‘control’ red and black dots 
overlap). The KO and noKO networks had similar prediction performance for 
some of the silenced hidden units (i = 5 and 6, arrows); these units contributed 
little to the output of the ground truth network and, when silenced, led to 
outputs similar to those observed during control sessions. c. We then tested 
the KO network’s ability to correctly predict the hidden unit activity hi for the 
ith hidden unit of the ground truth network (i.e., its “neural” responses). For  
the same test set as in b, we collected the KO network’s responses of its hidden 
units hî and computed the R2 (Pearson’s correlation squared) between hi and hî 
(red dots). We performed the same evaluation for the noKO network (black 
dots) and found that the KO network substantially better predicted the activity 
of the ground truth’s hidden units versus the noKO network’s predictions (red 
dots above black dots). We observed some hidden units with low prediction 
performance both for the KO and noKO networks (i = 5 and 6, arrows). As 
expected, knockout training cannot identify mappings for these hidden units 
that contribute little to the ground truth network’s output (b, i = 5 and 6). 
Taking b and c together, we conclude that knockout training successfully 
identified the one-to-one mapping. d. We wondered to what extent does 
knockout training recover the one-to-one mapping when not all ground truth 
hidden units are silenced. This setting is more similar to our modeling of the 
fruit fly visual system, where we cannot silence all possible LC types. To test 
this, we gave the ground truth network and the model network each 16 hidden 
units (instead of 8 units) but only silenced the first 8 hidden units of the ground 
truth network (i = 1, 2, …, 8). We generated the training and test sets in the same 
manner as in a, ignoring the extra last 8 hidden units (i = 9, 10, …, 16), and trained 
the network with knockout training. The KO network correctly predicted 
output y for the first 8 silenced units (i = 1, 2, …, 8) but not for output resulting 

from silencing one of the last 8 units on which the KO network was not trained 
(i = 9, 10, …, 16, red and black dots overlap). The noKO network had worse 
prediction than that of the KO network for hidden units that contributed to  
the output (i = 1, 2, …, 8, black dots below red dots for most hidden units); 
inactivated hidden units with similar performance between KO and noKO 
networks (red dots and black dots overlap, i = 5) are due to the same reasons as 
that in b (arrows). e. Same as c except for 16 hidden units. As expected, the KO 
network recovers the activity for most of the first 8 hidden units (i = 1, 2, …, 8, 
red dots above black dots) but fails to recover the activity of the last 8 hidden 
units (i = 9, 10, …, 16, red and black dots close to R2 = 0). We note that the KO and 
noKO networks have similar poor performance ̂R h h( , )i i

2  for hidden unit 5 for 
the same reasons as the hidden units i = 5 and 6 in c. Taking d and e together, we 
conclude that knockout training still works to identify a one-to-one mapping 
(predicting both output/behavior and response) for hidden units that have 
been silenced—even if the remaining units in the bottleneck are never silenced. 
This motivates us to train the 1-to-1 network on behavioral data from silencing 
23 LC types individually even though we do not have access to behavioral data 
from silencing the other remaining LC types in the bottleneck (57 LC types total 
in the bottleneck). f. Given that knockout training works in a simple simulation 
setting (a-e), we moved to testing knockout training for the 1-to-1 network used 
to model the fruit fly visual system (Fig. 1a). Although we could simulate data 
coming from a trained 1-to-1 network as ground truth, we were more interested 
in the case where there was a mismatch between the model and the real 
system—almost certainly the case using the 1-to-1 network to predict LC neuron 
types. Still, we sought some way to assess a ground truth change in behavior for 
the LC-silenced data and devised the following approach. For the ith LC type, 
we scale its forward velocity by αi, where αi decreases from 5 to 1 as index i 
increases incrementally. We then train a KO network on this scaled data in the 
same manner as that of the 1-to-1 network; we also train a noKO network that has 
no knowledge if its training sample comes from LC-silenced or control males. 
We only train the networks to predict forward velocity (no other behavioral 
outputs). g. We computed prediction performance R2 (coefficient of 
determination) between predicted and actual forward velocity on held-out 
frames for each LC-silenced behavior. The KO network had better prediction 
than that of the noKO network both for the most scaled and least scaled LC 
types (red dots above black dots for leftmost and rightmost dots). h. This 
change in performance between KO and noKO networks for the most and least 
scaled LC types in g can be explained by how the KO and noKO networks each 
predict the standard deviation of forward velocity. As expected from our 
scaling of the real data (f), the standard deviation of the simulated data linearly 
falls as we consider the later LC types (green dots, compare with black dots in 
f). We find that the standard deviations predicted by the KO network also 
linearly decrease (red dots) while those predicted by the noKO network remain 
relatively flat (black dots). Because the noKO network has no information 
about which LC type was silenced, the noKO network must predict roughly the 
same standard deviation for all LC types, choosing an intermediate standard 
deviation (around 2 s.d.). This also helps to explain why the KO and noKO 
networks differed in prediction more for the rightmost LC types (g, ‘LC26’ to 
‘control’) because the noKO network overestimated the standard deviation  
for these LC types (black dots above green dots for ‘LC26’ to ‘control’) leading 
to larger errors (and a negative coefficient of determination) versus 
underestimating the standard deviation which does not lead to as large drops 
in R2 (g, LC4 to LC10d). These simulations show that knockout training can 
reliably identify one-to-one mappings between model units and internal units 
given behavior resulting from silencing those internal units.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Predicting behavior frame-by-frame. Here we compare 
the extent to which the 1-to-1 network better predicts frame-by-frame behavior 
versus other network architectures and baseline models as well as other 
training procedures. a. We considered different network architectures for the 
1-to-1 network and compared their prediction performance to baseline models. 
We trained each model on control sessions only and tested on held-out test 
frames of control sessions. For baseline models, we considered a generalized 
linear model (GLM) that took as input the last 300 ms of movement history, 
including forward, lateral, and angular velocity (‘movement history GLM’);  
past song history, including Pfast, Pslow, and sine song (‘song history GLM’);  
as well as the male’s past visual history represented by female size, position, 
and rotation (‘visual history GLM’). The movement-history-GLM had good 
prediction of forward and lateral velocity (two leftmost plots), as expected, but 
failed at predicting angular velocity and song production. Its good prediction 
(R2 > 0.6 for forward velocity) stems from the fact that an animal’s forward 
velocity at time step t is likely similar to its forward velocity at time step t − 1 
based on the physics of movement. Likewise, the song history GLM best 
predicted song production (three rightmost plots), as songs often occur in 
bouts, but failed at predicting moment-to-moment movement (three leftmost 
plots). Also expected was the poor prediction performance of the visual-
history-GLM, whose inputs of the fictive female’s parameters likely must pass 
through a strong nonlinear transformation to accurately recover behavior (all 
orange bars are low). Next, we considered the DNN architecture of the 1-to-1 
network (Fig. 1a). We trained the 1-to-1 network on control data only (i.e., no 
knockout training was performed) for this analysis. The 1-to-1 network’s 
prediction performance was better than any GLM model for angular velocity 
and showed good performance for song production (red bars). The 1-to-1 
network did not outperform the movement-history-GLM on forward and lateral 
velocity; providing past movement history to the 1-to-1 network is an intriguing 
direction not investigated in this work. We confirmed that an untrained 
network with the same architecture as the 1-to-1 network (‘untrained DNN’, only 
its last readout layer was trained) had little prediction ability. Finally, we trained 
a more complicated version of the 1-to-1 network which had 3-d convolutions in 
both space (2-d) and time (1-d) in the vision network (‘time-convolutional DNN’ 
with 3 × 3 × 3 convolutional kernels). This greatly increased the number of 
parameters but ultimately did not improve prediction performance versus the 
1-to-1 network (pink versus red bars). We suspect that with more data, the time-
convolutional DNN will outperform the current architecture of the 1-to-1 
network, as motion processing occurs before the LC bottleneck46. b. As a test of 
the 1-to-1 network’s ability to uncover a one-to-one mapping between model LC 
units and real LC neurons, we tested the extent to which the 1-to-1 network 
accurately predicts behavior on held-out courtship frames for each silenced LC 
type. An important comparison is to measure the 1-to-1 network’s prediction 
performance relative to networks with the same architecture and training data 
but with different training procedures. Here, we illustrate three different 
training procedures. Knockout training (left, red) sets to 0 the model LC unit 
that corresponds to the LC neuron type silenced for that training frame (no 
model LC units’ values are set to 0 for frames from control sessions). We refer to 
the resulting trained network as the knockout (KO) network or, interchangeably, 
as the 1-to-1 network. Dropout training36 (middle, blue) sets to 0 a randomly-
chosen model LC unit for each training frame, independent of the frame’s 
silenced LC type (no model LC units’ values are set to 0 for frames from control 
sessions). In this case, the number of ‘dropped out’ units equals that of the 
‘knocked out’ units. We refer to the resulting trained network as the dropout 
(DO) network. Finally, we train a network without knocking out any of the model 
LC units and refer to it as the noKO network (right, black). The DO and noKO 

networks are appropriate controls (i.e., null hypotheses) for the KO network. 
The DO and noKO networks have no knowledge that any LC silencing has 
occurred; in other words, the DO and noKO networks assume all male flies, 
regardless of an LC type being silenced or not, have the same behavioral output 
to the same input stimulus. Thus, the DO and noKO networks cannot reliable 
detect changes in behavior for different silenced LC types unless the statistics 
of the visual input itself differs across silenced LC types. The latter may occur if, 
for example, silenced flies do not chase the female, the female will be visually 
smaller for most frames, leading DO and noKO networks to correctly predict a 
decrease in song production (as song is produced in close proximity to the 
female). c. We tested the KO, DO, and noKO network’s performance of predicting 
the male fly’s movement (left) and song production (right) for the next frame 
given the 10 past frames of visual input (a period of 300 ms) across many LC-
silenced and control flies (459 sessions in total). All test frames were held out 
from any training or validation sets and sampled randomly in 3 s time periods 
across sessions (27,000 test frames per each LC type and control, see Methods). 
We computed the coefficient of determination R2 for behavioral outputs of 
movement (forward, lateral, and angular velocity) and 1 - binary cross-entropy 
(where a value close to 1 indicates good prediction) for behavioral outputs of 
song production (probabilities of Pfast, Pslow, and sine song). We found that 
overall, the KO network better predicts forward velocity than the DO and noKO 
networks (top left, red dots above black and blue dots) as well as the probability 
of sine song (top right). Changes in prediction performance between KO and 
DO/noKO networks across LC types were relatively small, suggesting changes 
in behavior were subtle, consistent with overall mean changes in behavior 
(Extended Data Fig. 1). In addition, R2 may change little for large second-order 
changes in behavior, such as variance (Extended Data Fig. 2g, leftmost dots). 
We confirmed in Fig. 1g–h and Extended Data Fig. 4 that the KO network 
accurately predicted mean changes in behavior better than DO and noKO 
networks. We note that R2 values for movement (left column, R2 ≈ 0.5 for 
forward velocity, R2 ≈ 0.15 for lateral and angular velocity) were not close to 1 
because we predict rapid changes to movement variables frame-to-frame  
(with a frame rate of 30 Hz). Because the 1-to-1 network is deterministic (i.e., 
returning the same output for the same visual input), it fails to account for  
the fact that a male fly’s moment-to-moment decision is stochastic—in other 
words, the male responds differently to repeats of the same stimulus sequence. 
To take this stochasticity into account, one would need to present identical 
repeats of the same visual stimulus sequence and record the resulting behavior. 
This is not possible for our natural courtship experiments, where a male fly’s 
visual experience is determined by his behavior. However, this may be possible 
in future experiments using virtual reality, where the experimenter has greater 
control over a male fly’s visual input. d. Results in c were for a KO network with 
one random initialization. To see if this effect holds for different initializations, 
we trained 10 runs of the KO network, each with a different random initialization 
and random ordering of training samples. We found that for 8 of the 10 runs,  
KO networks outperformed DO networks (left); 5 of the 10 runs, KO networks 
outperformed noKO networks (right) in predicting forward velocity. For  
each run (i.e., ‘network run 1’), the same randomly initialized network and 
randomized order of training samples was used as a starting point for the KO, 
DO, and noKO network. Each connected pair of dots denotes one LC type with 
the color of the line connecting two dots denoting the LC type identity (same 
colors as in c). An asterisk denotes a significant difference in means (p < 0.05, 
paired, one-sided permutation test, n = 23). Network run 1 was chosen as the 
1-to-1 network in c as well as Figs. 1–4 due to its high prediction for both behavior 
and neural responses.
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Extended Data Fig. 4 | See next page for caption.



Extended Data Fig. 4 | Assessing model predictions of mean changes in 
behavior. Given the mean changes in behavior due to silencing (where the 
mean is taken over the entire session, Extended Data Fig. 1), we wondered to 
what extent the knockout (KO) network predicted these overall changes versus 
training a dropout (DO) network, for which a randomly-chosen model LC unit 
was inactivated during training, and a noKO network, for which no inactivation 
of any model LC unit was performed during training. a. For each LC neuron type, 
we computed the average behavior across all held-out courtship frames in the 
test set (‘real data’). We then computed the mean behavior as predicted by the 
KO network across the same frames (‘KO network’). Each dot denotes one LC 
type (color dots) or control session (black dot); colors are indicated at left. 
Dashed lines are the best linear fit; the correlation ρ is taken across all LC types 
excluding the control sessions. The KO network has large ρ’s across behavior 
outputs, indicating good prediction of overall changes. b. Same as in a except 
for the DO network; for evaluation, no model LC units were inactivated  
(i.e., dropout was used for regularization36). Correlations were smaller for the 
DO network than for the KO network (compare ρ’s between a and b). However, 
for the movement variables, correlations for the DO network were only slightly 
smaller than those of the KO network. Because the DO network had no access  
to which LC type was silenced, this suggests that the statistics of visual inputs 
differed across LC types. For example, imagine if the DO network accurately 
predicted the behavior of control male flies, including that the male does not 
sing when the female is far away. Then, if silencing LC10a resulted in the male 

not being interested in courting the female, the female would be far away in 
most frames, and the DO network would correctly predict a decrease in song 
production, even though the DO network has no knowledge LC10a was 
silenced. Thus, DO training is an appropriate control to ask whether the 
sensorimotor transformation has changed or if the male has altered his desire 
to pursue courtship. This also motivates future experiments with virtual reality 
where the male’s visual statistics can be matched between LC-silenced and 
control males. c. Same as in a and b except for the noKO network. Correlations 
were substantially smaller than for the KO and DO networks (compare ρ’s 
between a and c), indicating that the noKO network could not recover behavior 
from LC-silenced flies. d. We trained 10 networks each for KO, DO, and noKO 
training. Each of the 10 networks had different random initializations and 
different random orderings of training samples. For a fair comparison, the 
same initialized network and ordering was shared across KO, DO, and noKO 
training for each of the 10 runs. We then computed the ρ’s of overall mean 
behaviors for each network and real data. For each of the six behavioral outputs, 
we found that the KO network predicted the changes in behavior across LC 
types better than the predicted changes for the DO and noKO networks (red 
dots above blue and black dots). Each dot denotes one network, and each 
asterisk denotes that the mean of the KO network is significantly greater  
than the mean of either the DO or noKO network (p < 0.05, paired, one-tailed 
permutation test, n = 10). Network run 1 was chosen as the exemplar network  
in a-c (as well as in Figs. 1–4).
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Extended Data Fig. 5 | Consistency in behavioral predictions across 
networks with different random initializations. Deep neural networks with 
the same architecture and trained on the same data may converge to different 
internal representations depending on their parameter initializations and the 
ordering of training samples observed by stochastic gradient descent. We 
wondered to what extent the solution identified by knockout (KO) training 
changes for different random initializations and different orderings of training 
data. If KO training is consistent for the 1-to-1 network’s architecture, then we 
would expect to see that different training runs of a KO network should converge 
to similar predictions in behavior. See Extended Data Fig. 6 for a similar analysis 
of the 1-to-1 network’s consistency in neural predictions. a. To test this, we 
trained 10 KO networks, each with a different random initialization and different 
ordering of training samples. We then passed as input a dynamic stimulus 
sequence in which the fictive female varied her size over time (dashed trace in 
top left plot; female position and rotation remained fixed). Inactivating LC25 
(orange line, top left plot) resulted in an overall decrease in the probability of 
song relative to that of no inactivation (black line, top left plot); we can compute 
the overall change in behavior by taking the mean residual between the two 
(orange shade, top left plot). If two KO networks were consistent, we would 
expect that this KO network i should match its mean residual if we were to 
perform the same procedure for another KO network j; indeed, this is what we 
saw (compare top and bottom panels on the left). Inactivating LC6 resulted in 
an increase in probability of song for both KO networks (rightmost plots). We 
quantified the consistency between the two KO networks by computing the 
correlation across LC types of the time-averaged residuals (middle scatter 
plot); a correlation ρ close to 1 indicates that both KO networks consistently 
have the same predictions of behavior for different silenced LC types.  

b. Scatter plots for 5 pairings of the 10 KO networks (top row) of the time-
averaged residuals of probability of sine song for the stimulus in which the 
fictive female varies in size (same as in a). Each dot denotes one LC type, and 
colors correspond to LC names in Extended Data Fig. 4. Dashed lines denote 
best linear fit. We also assessed the consistency of DO networks (middle row) 
and noKO networks (bottom row), which were substantially lower than the ρ’s 
for the KO network. c. Correlations of time-averaged residuals for the three 
dynamic stimulus sequences and all six behavioral outputs. Each dot is the 
mean across all 45 pairs of networks; error bars denote 1 s.e.m. The KO networks 
had significantly larger mean pairwise correlations (asterisk denotes p < 0.05, 
paired permutation test, n = 45) than those for the DO and noKO networks  
(red dots above blue and black dots) for all stimulus sequences and behavioral 
outputs. We conclude that the KO networks are consistent in behavioral 
predictions. An important use of the ensemble of 10 KO networks is for 
estimating model uncertainty for a particular stimulus sequence. A single KO 
network can only give one prediction for a stimulus sequence (Fig. 4d,e); one 
may erroneously conclude that the model is equally certain about all stimulus 
sequences. Instead, the 1-to-1 network may be more uncertain for different 
stimulus sequences, especially those that are rarely observed during natural 
courtship. Thus, before experimentally testing the 1-to-1 network’s predictions, 
one may first check if the 1-to-1 network is confident in its prediction by assessing 
the extent to which different network runs agree on the same prediction. If 
there is large agreement (as seen here), the 1-to-1 network is confident in its 
predictions. On the other hand, a mismatch in its predictions and experimental 
data is more interesting than a stimulus sequence for which the 1-to-1 network is 
uncertain (and thus expected to not agree with experimental data).
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Consistency in LC response predictions across 
networks with different random initializations. We wondered to what 
extent knockout training converged to different solutions in predicting LC 
responses given different random initializations and different orderings of 
training data. See Extended Data Fig. 5 for consistency in behavioral predictions. 
a. We performed knockout training on 10 different runs—each run had a 
different random initialization and different random ordering of training data. 
We then fed into the KO networks as input three dynamic stimulus sequences in 
which the fictive female varied her size (left column), position (middle column), 
and rotation (right column) (same sequences as in Figs. 3f and 4d,e). For LC18 
(top row), model responses were consistent for female size and rotation but not 
position. Each trace is from one KO network run; the bold trace is for network 
run 1 (chosen as the 1-to-1 network in Figs. 1–4). Traces across all three stimulus 
sequences were z-scored and then flipped in sign to ensure the largest possible 
mean correlation ρ over time (as sign is not identifiable via knockout training). 
For LC17 (bottom row), model responses were consistent for female position 
but not size or rotation, suggesting consistency was stimulus dependent. This 
is in line with the idea that knockout training can only identify a one-to-one 
mapping for stimulus sequences that lead to noticeable changes in behavior 
from LC-silencing (Extended Data Fig. 2); KO networks disagree on stimulus 
sequences that lead to little to no change in behavior, as some change is needed 
in order to identify an LC type’s role in driving behavior. b-c. We assessed the 
consistency of the dropout (DO) networks for which a randomly-chosen model 

LC unit was inactivated (b) and noKO networks for which no inactivation was 
performed (c). Both DO and noKO networks had poor consistency for LC18 and 
LC17 across all stimulus sequences (largest ρ = 0.24). d. We computed the mean 
correlation (dots) across all 45 pairs of networks and found that the KO networks 
had significantly larger mean correlations than DO networks (blue asterisks, 
p < 0.05, paired, one-sided permutation test, n = 45) and noKO networks (black 
asterisks, p < 0.05, paired, one-sided permutation test, n = 45) for the three 
different stimulus sequences. e. We concatenated the responses for each 
network across all three stimulus sequences and re-computed the mean 
correlation (dots). Almost all of the LC types show a significant increase in 
mean correlation for KO network runs versus DO network runs (blue asterisks, 
p < 0.05, paired, one-sided permutation test, n = 45) and noKO network runs 
(black asterisks, p < 0.05, paired, one-sided permutation test, n = 45). Error bars 
in d and e denote 1 s.e.m. Taken together, these results indicate that knockout 
training identified consistent KO networks that reliably predict neural 
responses. That KO networks were more consistent than DO and noKO networks 
suggests that knockout training captured meaningful changes in behavior. 
Because KO networks may disagree more for different stimulus sequences  
(a notion of uncertainty), future experiments should take this uncertainty into 
account when testing the 1-to-1 network’s predictions. In fact, presenting 
stimulus sequences for which the KO networks disagree the most may be the 
most informative, as we can use the responses to these sequences to rule out 
some of the KO networks.
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Extended Data Fig. 7 | See next page for caption.



Extended Data Fig. 7 | Predicting real LC responses to artificial stimuli and 
predicting response magnitude. a. In addition to our own recordings, we 
further tested the 1-to-1 network’s neural predictions on a large number of LC 
neuron types whose responses were recorded in another study31. One caveat 
was that these responses were recorded from females, not males. We considered 
responses to artificial stimuli of laterally moving spots with different diameters 
and different movement directions as well as looming spots with different loom 
accelerations (top row). Traces denote responses averaged over repeats and 
flies, shaded regions denote 1 s.e.m. (some regions are small enough to be hidden 
by the mean traces). Data same as in Fig. 3a of ref. 31. b. Model LC responses 
from the 1-to-1 network. We fed as input the same stimuli but changed the spot 
to a fictive female facing forward (to better match these artificial stimuli to the 
fictive female stimuli on which the 1-to-1 network was trained). For visual 
comparison, we matched the mean and standard deviation (taken across all 
stimuli) of each LC type’s model responses to those of the real LC responses;  
we also flipped the sign of a model LC unit’s responses to ensure a positive 
correlation with the real LC type (flipping was only performed for LC6 and 
LC21). To account for adaptation effects, model LC unit’s responses decayed to 
their initial baseline after no change in the original responses occurred (see 
Methods). Overall, it appeared that almost all the real LC neurons and model  
LC units respond to these artificial stimuli. Some of the best qualitative 
matches were LC11—where the 1-to-1 network correctly identified the object 
size selectivity of LC11 neurons27—LC15, LC17, and LC21. A failure of the model 
was predicting LC12 responses; this was true of our LC recordings as well (c and 
Extended Data Fig. 8). This failure may be due to an unlucky random initialization, 
as networks trained with knockout over 10 training runs were not in strong 
agreement of LC12’s responses (Extended Data Fig. 6). Another explanation is 
that LC12 only weakly contributes to behavior for these simplified stimuli. If this 
were the case, then KO training would not be able to identify LC12’s contributions 
to behavior nor its neural activity. One piece of evidence that this might be the 
explanation is that solely inactivating LC12 for simple, dynamic stimulus 

sequences did not lead to any change in the model’s behavioral output (Fig. 4f). 
For natural stimulus sequences, LC12 does appear to play a role (Fig. 4c), 
motivating the use of more naturalistic stimuli when recording from LC types 
(Fig. 2). c. We continued to test the 1-to-1 network’s neural predictions by 
comparing the model’s response magnitudes for different types of stimuli. We 
wondered whether the relative magnitudes of model LC responses across all 
stimulus sequences qualitatively matched that of real LC responses. If so,  
it indicates that the model’s selectivity for certain stimuli matches real LC 
selectivity. This is different from our quantitative comparisons that normalized 
model LC responses for each stimulus separately (Fig. 2d,e and Extended Data 
Fig. 8). We note that a priori, we would not expect the 1-to-1 network to predict 
response magnitude, as downstream weights could re-scale any activity of the 
model LC units. However, as found when comparing the internal representations 
of deep neural networks to one another60, the relative magnitudes of internal 
units may be an important part of encoding informative representations. Same 
format as in Fig. 2f for the three remaining recorded LC types (LC6, LC11, and 
LC12). For LC6, the 1-to-1 network correctly predicts a larger response to loom 
than responses to a moving spot and a spot varying its size linearly (‘linear 
size’); however, it overestimates the responses to fictive female stimuli. For 
LC11, the model accurately identifies LC11’s object selectivity (‘moving spot’) 
and suppression to loom and linear size. Similar to LC6, the 1-to-1 network 
overestimates LC11’s response magnitudes to the fictive female stimuli. We 
again found that for LC12, the 1-to-1 network has overly large responses to the 
fictive female stimuli but does predict magnitudes for moving spot, loom, and 
linear size. The model LC12 responses to loom and linear size appear to be 
inverted (i.e., flipping model LC12 responses to loom and linear size would 
better match the real LC12 responses)—this is likely a consequence of the fact 
that the sign of an LC’s response is unidentifiable for the 1-to-1 network, as one 
could simply flip the sign of the model LC unit’s response and the readout 
weights of downstream units. Other possible reasons are mentioned in b.
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Extended Data Fig. 8 | See next page for caption.



Extended Data Fig. 8 | Real LC responses and predicted responses to 
stimulus sequences of a moving fictive female. a. We considered 9 different 
stimulus sequences in which a female varied her rotation, size, and position 
(three top traces for each stimulus sequence, see Methods for stimulus 
descriptions). We found that the 1-to-1 network’s predictions (black traces) 
largely predicted the responses of the real LC neurons (color traces), despite 
the facts that the 1-to-1 network was never given access to neural data and that 
we directly read out from a single model LC unit. The average of all reported 
noise-corrected R2s here is the same as that reported in Fig. 2e. We only 
considered stimulus sequences for which the real LC responses reliably varied 
across time for the stimulus sequence. To measure this, we computed the d ′ 
between splits of repeats (i.e., a signal-to-noise ratio across repeats) and 
considered any stimulus sequence with a d ′ < 1 as unreliable, removing it from 
our analyses (translucent traces; see Methods). For some LC types, we detected 
a reliable response to only one or a few stimuli (e.g., LC15 only responded to 
‘vary female position’ and ‘natural sequence’). We noticed that none of the LC 
neurons responded to stimulus sequences for which the fictive female’s 
parameters were chosen to optimize the 1-to-1 network’s output of lateral 
velocity (‘optimize lateral vel.’ and ‘optimize lateral vel. (fast)’, see Methods). 
This may be due to the fast changes in female position which were not present 
in other stimulus sequences. For each stimulus and LC type, we computed a 
noise-corrected R2 between the real and model predicted responses. This 
noise-corrected R2 overlooks any differences in mean, standard deviation, and 
sign of the response, which are unidentifiable by the KO network. For visual 
clarity, we centered, scaled, and flipped the sign of the 1-to-1 network 
predictions (black traces) to match the mean, standard deviation, and sign of 
the LC responses (color traces) for each stimulus. We accounted for the 
smoothness of calcium traces by applying a causal smoothing filter to the 
model LC responses as well as fitting the mean offset of the relu thresholding 
(see Methods). Interestingly, all LC types responded reliably to varying female 
position (‘vary female position’, color traces) despite the facts that the optic 
glomeruli have weak retinotopy12,61 and that the calcium trace is a sum of the 
activity of almost all neurons for the same LC type (presumably averaging away 
any spatial information). This suggests that either our targeted region for 
calcium imaging (Fig. 2a) was biased to read out from a subset of LC neurons 
with nearby receptive fields or that these LC neurons have some selectivity in 
female position (perhaps as direction selectivity). The latter may be more 
likely, as the male needs to better estimate female position than can be done 
simply by comparing coarse differences between the two optic lobes. 
Consistent with our findings, a previous study has identified another LC type—
LC10a—to respond to an object’s position11. That our 1-to-1 network also 
predicted positional selectivity in the LC types (black traces) supports the 
notion that some optic glomeruli may track female position despite weak 
retinotopy. More work is needed to understand how object position is encoded 
within a single optic glomerulus and how that information is read out61.  
b. Results in a were for a KO network with one random initialization. To see if 
this effect holds for different initializations, we trained 10 runs of the KO 
network, each with a different random initialization and random ordering of 
training samples. We compared the runs of the KO network to those of the 
dropout (DO) network, for which a randomly-chosen model LC unit was 
dropped out during training, as well as noKO networks for which no knockout 
occurred during training. These are the same networks used to predict 
moment-to-moment behavior (Extended Data Fig. 3d). Each bar denotes the 
mean R2, and each dot denotes one combination of LC type and stimulus  
(i.e., non-shaded traces in a). Black asterisks denote a significant increase in 
mean R2 (p < 0.05, paired, one-sided permutation test, n = 27), gray asterisks 
denote a trend (p < 0.15). We observed that random initialization played more 
of a role for neural prediction than for behavioral prediction (Extended Data 
Fig. 3d). This is not so surprising, as the networks were never trained to predict 
neural responses. Still, the KO networks tended to outperform the other types 
of networks (red bars larger than other bars); combining across all runs, the KO 
network performed significantly better (‘all runs’, p < 0.002 for comparisons 
between KO and other networks, paired, one-sided permutation test, n = 270). 
In addition, the untrained networks performed poorly (gray bars), indicating 
that training networks on behavior did improve neural predictions. c. For the 
results in a and b, we considered a one-to-one mapping in which we directly 
compared a model LC unit’s response with real LC responses; our 1-to-1 network 
never had access to neural data for training. Here, we wondered if we relaxed 

this assumption (i.e., train a linear mapping from all model LC units to real LC 
responses), to what extent would the model’s prediction of real LC responses 
improve. The basic setup was the following. We feed a stimulus sequence into 
the 1-to-1 network (fully trained with knockout training) and collect responses 
from all model LC units, denoted as RX ∈ K T×  for K model LC units (here, K = 23) 
and the T timepoints of the stimulus sequence. We then define a linear mapping 
β ∈ KR  to map the K model LC responses to the real LC response. We use real LC 
responses to train β. Specifically, for each of the 4 cross-validation folds,  
we train β on 75% of the real LC responses (randomly selected) using ridge 
regression. Training the linear mapping on responses to other stimuli led to 
worse performance, as expected, because the stimuli were largely different 
from each other—training on responses to a fictive female changing in position 
was not predictive of responses to a fictive female changing in size. We then 
predict the responses for the remaining held-out timepoints. We concatenate 
the predictions across the 4 folds and then compute the noise-corrected R2 in 
the same way as in Fig. 2d,e. Thus, the reported cross-validated noise-corrected 
R2s indicate the extent to which the 1-to-1 network, given neural data on which 
to train, can predict held-out real LC responses. Another view is that in this 
setting, the 1-to-1 network is a task-driven model trained on behavioral data with 
an internal representation (the model LC bottleneck) that reflects the activity 
of real LC neurons up to a linear transformation1. d. Prediction performance 
using the linear mapping for different networks and network runs (see Methods). 
For each network, we trained a new linear mapping between the model LC 
responses and the real LC responses. Overall, prediction performance greatly 
increased: The 1-to-1 network (or KO network) with the linear mapping had a 
noise-corrected R2 at ~ 65% (network run 1, averaged over all recorded LCs and 
fictive female stimulus sequences), an additive increase of ~ 30% over that of 
the 1-to-1 network with the one-to-one mapping comparison ( ~ 35%, Fig. 2e).  
We also found that, for the linear mapping, the performance of the 1-to-1 network 
was similar to those of the other networks trained with dropout (DO) or no 
knockout (noKO) (leftmost plot, red bar close to black and blue bars). This 
similarity in performance was not unexpected and indicates that all 3 networks 
(KO, DO, and noKO) have similar internal representations (up to a linear 
transformation) at the layer of their LC bottlenecks. However, the 1-to- 
1 network’s representation is better aligned to the LC types along its coordinate 
axes—where each model LC unit corresponds to one axis—than those of the 
other networks (Fig. 2e). Networks trained with behavioral data (KO, DO, and 
noKO) outperformed an untrained network (gray bar), indicating that training 
on behavior was helpful in identifying LC response properties. That the 
untrained network was somewhat predictive of LC responses (bar for 
‘untrained’ above 0) stems from an inductive bias in which the network’s 
convolutional filters, even with randomized weights, can detect large changes 
of the visual stimulus (e.g., a fictive female moving back and forth). That a linear 
combination of random features is often predictive in a regression setting is  
a well-studied phenomenon in machine learning62 and has been observed in 
predicting visual cortical responses63. This trend in similarity of performance 
held across all 10 network runs (same runs as in b) for the different training 
procedures: The KO network consistently better predicted real LC responses 
than the untrained network but less so when compared to the DO and noKO 
networks (red bars at similar heights to black and blue bars across network 
runs). This trend held when combining across all runs (‘all runs’). A black 
asterisk indicates a KO network with a mean prediction performance 
significantly above that of another network (p < 0.05, paired, one-sided 
permutation test); a gray asterisk indicates a trend (0.05 < p < 0.15). Each  
bar denotes the mean R2, and each dot denotes one LC type and stimulus 
combination (i.e., the non-shaded traces in a); n = 27 for statistical tests for  
each run and n = 270 for all runs. Network run 1 was the chosen 1-to-1 network 
for Figs. 1–4. The results here indicate that by simply training a network on 
courtship behavioral data (i.e., a task-driven approach), we have identified a 
highly-predictive image-computable model of LC neurons. To our knowledge, 
ours is the first image-computable model of the LC population proposed. An 
important point is that this encoding model (using a linear mapping) does not 
identify a one-to-one mapping between model LC units and LC types, as the 
model is unable to relate the encoded LC neurons to behavior—this is precisely 
the reason we built the 1-to-1 network. Training the 1-to-1 network both on 
behavior and neural responses is a worthwhile goal, but care is needed to 
ensure the neural responses are recorded during natural behavior to achieve  
as best a match as possible.
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Extended Data Fig. 9 | Model LC tuning heat maps. Each “pixel” in the 
heatmap corresponds to the response of the model LC unit to one input 
stimulus sequence in which a static fictive female fly has a given size, position, 
and rotation (i.e., all 10 images of the input sequence were the same, see 

Methods). We then systematically varied female size, position, and rotation 
across stimulus sequences (125,000 sequences in total). Same format as in 
Fig. 3c,d but for all model LC units.



Extended Data Fig. 10 | All model LC responses to simple, dynamic stimulus 
sequences in which only one visual parameter of the fictive female varied. 
Same dynamic stimulus sequences and format as in Fig. 3f; these responses 
were used to compute the R2s in Fig. 3g. We also show the 1-to-1 network’s 
behavioral output for each dynamic stimulus (top rows, black traces). Stimulus 
sequences include the following (see Methods for exact parameter values):  

a. Varying female size while the female stays in the middle facing away from the 
male. b. Varying female position while the female has a fixed, large size and 
faces away from the male. c. Varying female rotation while the female has a 
fixed, large size and stays in the middle. Each trace’s sign was flipped to have a 
positive correlation with the varying visual parameter of the corresponding 
stimulus sequence.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Maximizing visual inputs for each model LC unit.  
To better understand the differences in stimulus preference across the model 
LC units, we optimized the visual input history that maximized each model LC 
unit’s response while minimizing responses of all other model LC units (i.e.,  
a ‘one-hot’ maximizing stimulus). a. We considered a large number of candidate 
stimulus sequences taken from the training dataset of control sessions 
(500,000 stimulus sequences in total). We fed each stimulus sequence as  
input into the 1-to-1 network, extracting the responses of the model LC units. 
We chose the stimulus sequence that maximized a chosen model LC unit’s 
response while minimizing the responses for all other model LC units. We used 
the following objective function fi(x) for the ith chosen model LC unit, adopted 
from64: f xx( ) = ∑i

ri

j i rj

xx
xx

exp( ( ))

≠ exp( ( ))
 where x is the visual input sequence of 10 frames  

and ri is the response of the ith model LC unit. The objective function fi(x) is 
maximized for large responses of the ith model LC unit and responses as small 
as possible for all other units. Thus, we optimize stimulus sequences as “one-
hot maximizations”. b. Maximizing stimulus sequences for each model LC unit 
with the most recent frame as the top image. One hot maximization worked for 
a handful of model LC units (LC9, LC10a, LC11, LC12, LC15; top panel shows 
responses of all model LC units to that stimulus sequence); surprisingly,  
one-hot maximization failed to drive a single model LC unit for many of the 

other LC types (at least one black dot has similar value to color dot), indicating 
that these model LC units share stimulus preferences with other model LC 
units. Some stimulus sequences have smooth changes to the fictive female’s 
parameters, such as LC10a and the increase in female size. However, other 
maximizing stimulus sequences show large jumps of the fictive female  
(e.g., LC4, LC11, LC12, LC22, etc.); even though these stimulus sequences were 
chosen from natural courtship, they likely represent outliers that strongly 
drive responses. This is especially true of model LC11 that prefers a small female 
moving at a fast speed, consistent with LC11 being a small object detector27,28. 
These maximizing stimulus sequences represent predictions of the 1-to-1 
network that can be tested in future experiments to see if they truly elicit large 
responses from LC neurons, much like recent work has identified images to 
drive visual cortical neurons of macaque monkey64–67. Other objective functions, 
such as maximizing the response variation across time with a longer stimulus 
sequence, and other constraints, such as restricting how much a fictive female 
may change between consecutive frames or requiring the fictive female to not 
remain static, are easily possible with the 1-to-1 network. Our main finding here 
is that many of the one-hot maximizing stimuli failed to only activate the 
targeted LC type; this is further evidence that visual features are distributed 
across the LC population.
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Extended Data Fig. 12 | Inactivating model LC units for each of the 6 
behavioral output variables during natural courtship. We inactivated each 
model LC unit separately and re-computed the predicted performance R2 or 
1-c. e. (cross-entropy) on held-out behavioral data from control flies (red dots). 
We inactivated each model LC unit by setting its activity equal to its time- 
averaged response; we found this approach better able to tease apart LC 
contributions versus setting activity to 0 (i.e., what is done during knockout 
training), as the latter often leads to changes in mean behavior but does not 
alter the moment-by-moment sensorimotor transformation (see Methods). 
Inactivating any single model LC unit did not lead to a large drop in performance, 
consistent with our experimental findings (Extended Data Fig. 1). This indicates 
that only by inactivating multiple model LC units at the same time will we see a 
deficit in prediction; in other words, the behavior relies on reading out from 
combinations of LC types. To identify these combinations, we inactivated 
model LC units in a cumulative, greedy manner (black dots) and observed to 
what extent the responses for the remaining model LC units predict held-out 
behavioral data from control flies. Same format as in Fig. 4b. For each plot, 
model LC units on the left contribute the least to the given behavioral output; 
model LC units on the right contribute the most. We found that when 
inactivating some model LC units, performance actually increased (e.g., LC12 
for sine song, bottom right). This is because LC10bc and LC12 used excitation 
and inhibition to cancel out some of each other’s responses—ablating one 
decreases performance while ablating both increases performance as both 
excitatory and inhibitory effects are removed via ablation. The LC neurons 
themselves need not be either excitatory or inhibitory; readouts by downstream 
neurons may rely on positively or negatively weighting the LC responses. 

Performance also increased by removing a number of model LC units for sine 
song (bottom right, LC6); this is possibly due to overfitting by the 1-to-1 network. 
By removing “noisy” model LC units that are overfit to the training data, the rest 
of the model LC units better generalize. Interestingly, the strongest contributor 
of the model LC units, if inactivated alone, did not lead to a large decrease in 
performance. For example, LC22 was the strongest contributor for forward 
velocity but, when inactivated alone, resulted in little decrease to R2 (red dot 
above black dot). This is consistent with our finding that silencing LC22 led to 
little change in mean forward velocity (Extended Data Fig. 1). We note that 
inactivating any single model LC unit will likely lead to changes in forward 
velocity in specific contexts which the 1-to-1 network identifies (Extended Data 
Fig. 3); here, for simplicity we compute R2 across aggregated contexts for the 
entire courtship session of control males and potentially miss changes in 
specific contexts. That inactivating any single model LC unit leads to little drop 
in performance suggests that the model LC units work together as a population 
code to sculpt behavior: There is no sole contributor to any particular behavior, 
especially when combining across different behavioral contexts (e.g., chasing 
the female from far away, singing to a nearby female, etc.) as is done here. The 
red squares of the heatmaps in Fig. 4c (which condense the information plotted 
here) correspond to the differences between the performance value (R2 or 
1-c. e.) for each model LC unit and no inactivation (‘none’), divided by the 
maximum difference (in most cases, the difference between the value for the 
rightmost model LC and the value for ‘none’). To avoid the effects of overfitting, 
any positive differences (i.e., an increase in prediction performance) were 
clipped to 1.
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