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Dear Sirs,

A major cause of mesial temporal lobe seizures and epilepsy, 
memory disturbance and psychiatric symptoms is autoim-
mune limbic encephalitis (ALE), mediated by adaptive and 
concomitant innate autoimmune inflammatory processes. 
Standard clinical workup comprises magnetic resonance 
imaging (MRI), electroencephalography (EEG), CSF analy-
sis, and neuropsychological assessment [1].

ALE with autoantibodies (AABs), against leucine-rich, 
glioma inactivated (LGI1) and contactin-associated protein-
like 2 (CASPR2) belong to the most frequent subtypes of 
ALE. In these ALE entities, MRI and EEG often display 
unspecific and very subtle changes, routine CSF analysis 
is often unremarkable [2, 3], and no specific pattern of 
cognitive dysfunction exists [4]. Even AAB testing using 

cell-based assays may yield false-positive and -negative 
results [5]. Hence, novel biomarkers directly addressing 
the parenchymal immune response are urgently warranted 
to enhance diagnostic accuracy together with AAB testing.

[18F]DPA-714 is a second-generation PET-tracer target-
ing the 18 kDa translocator-protein (TSPO), overexpressed 
on the mitochondrial membrane of activated microglia and 
other innate immune cells [6, 7]. Previous studies provided 
data on increased TSPO expression, suggesting ongoing 
inflammation, in mesial temporal seizure foci and in con-
tralateral mesial temporal lobe [8] with similar inflammatory 
changes found in brain tissue specimen of ALE [9].

Here, we aimed at corroborating the potential of TSPO-
PET-MRI as a novel diagnostic imaging marker for the 
assessment of innate immunity in human ALE with AABs 
against LGI1 and CASPR2 given the fact that antigen-bound 
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AABs have been shown to yield a microglia response in 
the brain parenchyma [10]. A focus of this work was on 
the immunohistochemical crossvalidation of the TSPO-PET 
signal on the cellular level.

Two ALE patients underwent combined  [18F]DPA-714-
PET-MRI as compassionate use. Patients underwent routine 
clinical evaluation in the University Hospital of Münster, 
Germany. Diagnosis of ALE was based on current consen-
sus criteria [1, 4]. Retrospective analysis was approved by 
local ethics committee (Ethikkommission der Ärztekam-
mer Westfalen-Lippe; reference number 2013–350-f-S and 
2021–144-f-S, and from the Medical University of Vienna, 
EK 1206/2013) and was performed in accordance with the 
principles of the 1964 Declaration of Helsinki and its later 
amendments. All patients gave written informed consent.

Neuropsychological assessments were performed 
after recovery from seizures. Verbal memory scores were 
extracted for left temporal lobe cognitive function and visual 
memory scores for right temporal lobe, as described previ-
ously [4].

Standard 10–20 surface electrode systems with additional 
anterior temporal electrodes for short-term- and basal tem-
poral electrodes for long-term-EEG were used. The EEG 
records were rated regarding interictal epileptic discharges/
slowing or ictal events confined to anterior temporal elec-
trodes in an unilateral or bilateral fashion as previously 
described [4].

Cell counts, protein and immunoglobulin levels as well 
as the presence of IgG AAB against intracellular and neural 
surface membrane antigens in serum and CSF were ana-
lyzed as previously described [4]. Viral, fungal and bac-
terial pathogens, and rheumatological-vasculitic disorders 
were ruled out.

[18F]DPA-714 was prepared automatically in a GE 
TRACERlab MX module as described in detail previously 
[7].

Hybrid Imaging was performed on a 3  T PET-MRI 
(mMR; Siemens Healthcare). Dynamic PET was acquired in 
list mode after injection of 237/258 MBq  [18F]DPA-714 for 
60 min after injection. MRI included non-contrast enhanced 
sequences: isotropic (1 mm) 3D structural T1-weighted, 
axial T2-weighted-sequences and axial/coronar FLAIR.

3D T1-weighted MR images were processed with Free-
surfer (http:// surfer. nmr. mgh. harva rd. edu/), as previously 
described [11]. Relative volume of hippocampus and amyg-
dala to intracerebral volume were used for further analysis.

After coregistration with segmented T1-weighted MR 
images, regional standardized uptake value ratio (SUVR) 
of the  [18F]DPA-714 PET were extracted, using the cerebel-
lar grey matter as reference region [11].

Patients’ blood samples were analyzed for single nucleo-
tide polymorphism c.439A > G (rs6971, p.Thr147Ala), 

known to affect the binding affinity of TSPO-PET-tracers, 
as described previously [7].

Sections from control (Autopsy brain from male, 71 years 
without neurological disease) and two different ALE patients 
with identical AAB (LGI1, CASPR2) were stained for TSPO 
as previously described using anti-TSPO (Abcam, ab109497, 
1:1.000) antibodies [11].

Multiplex immunofluorescent labeling was performed 
with antibodies against TSPO (Abcam, ab109497, 1:10.000), 
neurons (NeuN; Merck MAB377, 1:2500), oligodendro-
cytes [12] (TPPP/p25 (1:5000, kind gift from Romana 
Höftberger), astrocytes (GFAP, Thermo Scient. #MS-
1376, 1:1000), and microglia/macrophages (Iba-1, Wako 
#019–19741, 1:10.000) by utilizing the Akoya Fluorescent 
Multiplex kit according to the manufacturer’s protocol [11].

Two patients with AABs against surface membrane 
neural antigens underwent  [18F]DPA-714-PET-MRI. Both 
patients were high affinity binders without TSPO polymor-
phism. Both patients received high-dose corticosteroid ther-
apy (patient #1: 500 mg/d for 5 days; patient #2: 1000 mg/d 
for 3 days) followed by tapering and immunoabsorption 
therapy (5 cycles). Afterwards patients received an induc-
tion therapy with 1000 mg Rituximab. Patient #1 received 
additional maintenance therapy with 1000 mg Rituximab 
6  months and 1  year after initial diagnosis. Patient #2 
received an additional dose of 1000 mg Rituximab 2 weeks 
after the first cycle, followed by 4 more cycles of Rituximab 
during the following 2 years.

A 71-year-old patient with seropositive ALE (patient #1) 
was hospitalized following the occurrence of memory defi-
cits and impulsiveness. LGI1 AABs were detected in serum 
(titer 1:100) but not in CSF. CSF routine analysis results 
were as follows: cell count 0/µl; glucose: 68.4 mg/dl, oligo-
clonal bands: type 5; IgG Index: <0.7.

[18F]DPA-714-PET-MRI (Fig.  1) before initiation of 
immunotherapy showed asymmetrically elevated tracer 
uptake with punctum maximum in the left amygdala 
(SUVR; left: 1.431; right: 1.364) and hippocampus (SUVR; 
left: 1.287; right: 1.227) compared to the contralateral hemi-
sphere (Fig. 1). Uptake was above cerebellar gray matter, 
used as reference region for the calculation of SUVR. Asym-
metrical uptake correlated with FLAIR signal alterations 
with temporomesial edema in the left hemisphere. Consist-
ently EEG revealed anterior temporal sharp-slow-waves and 
slowing on the left hemisphere. No significant mesial tempo-
ral cognitive dissociation with asymmetrical mesial temporal 
dysfunction was found (z-score left: – 2.28; right: – 2.32).

Relative T1 volume of amygdala (left: 0.120; right: 0.101) 
and hippocampus (left: 0.257; right: 0.252) did not show 
relevant lateralization. One year after TSPO-PET patient #1 
reported a subjectively complete recovery with normaliza-
tion of the volume/signal increase of the left temporomesial 

http://surfer.nmr.mgh.harvard.edu/
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Fig. 1  FLAIR-MRI, [18F]
DPA-714 PET and fused images 
(upper left) of patient #1 with 
anti-LGI1 autoimmune limbic 
encephalitis. Quantification 
of the SUVR and relative T1 
volumes of amygdala and hip-
pocampus of patient #1 (upper 
right). Multiplex staining, in 
brain tissue samples of an inde-
pendent patient with anti-LGI1 
autoimmune limbic encephalitis 
obtained from epilepsy surgery 
for seizure control, for TSPO 
together with GFAP (A), TPPP/
p25 (B), Iba-1 (C) and NeuN 
(D) in the hippocampus. Strong 
TSPO mitochondrial reactivity 
is only seen in the Iba-1+ micro-
glial cells.  GFAP+ astrocytes 
and TPPP/p25+ oligodendro-
cytes show much weaker TSPO 
reactivity. No double labeling 
for TSPO is seen in  NeuN+ 
neurons. The insets in A-D 
show higher magnifications of 
the single cells indicated by the 
arrowheads
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region in T2/FLAIR-MRI and non-detectable serum AAB 
against LGI1.

A 65-year-old patient with seropositive ALE (patient 
#2) and AABs against CASPR2 in serum (titer 1:3200) and 
CSF (titer 1:320) was hospitalized following recurrent tem-
poral lobe seizures and associated memory deficits. CSF 
routine analysis results were as follows: cell count 6/µl; 
glucose: 61.3 mg/dl, oligoclonal bands: type 1; IgG Index: 
<0.7.

In  [18F]DPA-714-PET-MRI (Fig. 2) before initiation of 
immunotherapy quantitative uptake values were above cer-
ebellar reference region for amygdala (SUVR; left: 1.222; 
right: 1.222) and hippocampus (SUVR; left: 1.155; right: 
1.114), however, not asymmetrical as in patient #1. FLAIR 
images revealed nearly symmetrical signal alterations in 
mesial temporal lobes of both hemispheres. Consistently in 
EEG, abnormalities occurred in both hemispheres with ante-
rior temporal slowing. Neuropsychological testing showed 
cognitive dissociation with dominant dysfunction in visual 
memory in comparison to verbal memory, indicating right 
mesial temporal impairment (z-score left: -0.27; right: -2.12) 
in contrast to symmetrical alterations in  [18F]DPA-714-PET, 
FLAIR and EEG.

Relative T1 volume of amygdala (left: 0.130; right: 
0.144) and hippocampus (left: 0.258; right: 0.268) again 
did not show relevant lateralization.

Two years after TSPO-PET, patient #2 had a normaliza-
tion of previously observed EEG changes and of the volume/
signal increase of the temporomesial region in T2/FLAIR-
MRI. CASPR2 AABs remained positive.

In control brain, moderate expression of TSPO was 
equally detected in oligodendrocytes, astrocytes and micro-
glial cells. Neuronal cell bodies were negative (Fig. 3). In 
both anti-LGI1 (Fig. 1C) and anti-CASPR2 (Fig. 2C) ALE 
brain (staining for TSPO was stronger in activated glial 
cells although neurons remained negative (Figs. 1D and 
2D). Multiplex immunofluorescence imaging showed 
that in anti-LGI1  ALE brain (Fig.  1) especially the 
Iba-1 + microglial cells showed strong expression of TSPO. 
Here, GFAP + astrocytes and TPPP/p25 + oligodendro-
cytes showed weaker expression of TSPO. NeuN + neurons 
showed absence of TSPO reactivity. A comparable TSPO 
reactivity was seen in the anti-CASPR2 ALE case (Fig. 2) 
with strong TSPO expression in microglial cells, less intense 
reactivity in astrocytes and oligodendrocytes and absence of 
TSPO expression in neurons.

Our data from two ALE patients with AABs against sur-
face membrane neural antigens are in line with previously 
published results showing elevated temporomesial  [18F]
DPA-714 uptake in patients with temporal lobe epilepsy 
in a bilateral symmetric or asymmetric fashion suggesting 
ongoing inflammation inside and outside of current seizure 
foci [8]. Our findings are further consistent with the notion 

that ALE is a bilateral albeit often asymmetric disease [1]. 
In accordance with findings in seronegative and seroposi-
tive ALE with AABs against intracellular neural antigens, 
the  [18F]DPA-714 signal correlated with FLAIR-MRI and 
EEG alterations but not with neuropsychological assess-
ments and T1-volumetry [11]. In this study, clear evidence 
argued for FLAIR signal increase and EEG abnormalities 
being down-stream effects of an antibody-mediated neural 
effector mechanism [13, 14]. Consistently, it has recently 
been demonstrated that antigen-bound parenchymal AABs 
via Fc receptor signaling also elicit such a parenchymal 
microglia response [10]. Although AABs in anti-LGI1 and 
anti-CASPR2 ALE are often not detectable in CSF [2, 3], 
they can be retrieved as monoclonal AABs from intrathecal 
antibody secreting B-cell populations and exert functional 
effects consistent with their pathogenic parenchymal effect 
[15].

Indeed, imaging TSPO expression in infiltrating and 
parenchymal immune cells allows for the detection of 
Iba-1 + phagocytes as the main source not only in ALE, 
but also in the myeloid tumor microenvironment [6], and 
cerebral vasculitis [7]. GFAP + astrocytes contribute to the 
TSPO-PET signal to a lower amount [6, 7]. Moreover, in 
the previous studies, the  [18F]DPA-714-PET signal exceeded 
the MRI abnormalities [7]. Thus,  [18F]DPA-714-PET-MRI 
might allow for the imaging of key pathological processes 
in inflammatory CNS diseases. Larger studies have to define 
the role of  [18F]DPA-714-PET compared to standard MRI 
in the clinical setting. It is important to address not only 
imaging at initial diagnosis, but also for response assess-
ment during/after immunotherapy. Questions arising on the 
specificity of the signal over the time of the disease should 
be addressed in dedicated preclinical models, in comparison 
to changes in FLAIR/T2 signal alterations.

Limitations of our study include method inherent disad-
vantages of  [18F]DPA-714-PET-MRI discussed in previous 
publications [6, 7]. First to mention is limited availability of 
PET-MR systems and tracers as  [18F]DPA-714 [8, 11]. Small 
patient number and matched PET-MRI and histopathologi-
cal specimen from different patients are a further limitation. 
A major limitation of  [18F]DPA-714 is reliable quantifica-
tion and specificity of tracer binding. Gold standard for the 
assessment of specific binding to the target is kinetic mod-
eling out of dynamic PET-datasets. In a previous analysis, 
we were able to show that binding potentials calculated by 
kinetic modeling showed a very high correlation to SUVR 
with cerebellar grey matter as reference region used in this 
study [11]. Comparison to healthy controls would further 
strengthen our results. However, preclinical evaluation of 
 [18F]DPA-714-PET-MRI in an experimental setup with his-
topathological correlation underlined specificity of the PET 
signal in human ALE [11]. Potential spillover from the cho-
roid plexus is another disadvantage of  [18F]DPA-714-PET, 
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Fig. 2  FLAIR-MRI, [18F]
DPA-714 PET and fused images 
(upper left) of patient #2 with 
anti-CASPR2 autoimmune 
limbic encephalitis. Quantifica-
tion of the SUVR and relative 
T1 volumes of amygdala and 
hippocampus of patient #2 
(upper right). Multiplex stain-
ing, in brain tissue samples of 
an independent patient with 
anti-CASPR2 autoimmune lim-
bic encephalitis, obtained from 
epilepsy surgery for seizure 
control, for TSPO together with 
TPPP/p25 (A), GFAP (B), Iba-1 
(C) and quadruple staining for 
TSPO, TPPP/p25, GFAP and 
Iba-1 (D). In addition, here, 
strong TSPO mitochondrial 
reactivity is only seen in Iba-1+ 
microglial cells.  GFAP+ astro-
cytes and TPPP/p25+ oligoden-
drocytes show much weaker 
TSPO reactivity. The arrowhead 
(enlarged in the inset) here 
points at a large neuron that is 
negative for TSPO. The insets 
in A-D show higher magni-
fications of the single cells 
indicated by the arrowheads
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but can be limited when using automatic brain segmentation 
as in this study [8, 11]. Neuropsychological assessment is 
hampered by the fact that nonverbal memory performance 
is associated with both temporal lobes [4]. Future studies 
should include 3D FLAIR allowing for reliable volumetry 
in a larger patient cohort.

To conclude, we provide preliminary data on the poten-
tial  [18F]DPA-714-PET-MRI as a direct imaging maker of 
neuroinflammation in ALE with antibodies against surface 
membrane neural antigens. Larger studies are needed to 
define the abilities of  [18F]DPA-714-PET-MRI for clinical 
and treatment monitoring purposes in comparison to stand-
ard of care.
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Fig. 3  TSPO staining was performed in A control brain (71 year with 
no neurological disease), B anti-LGI1  autoimmune limbic  encepha-
litis brain and C anti-CASPR2  autoimmune limbic  encephalitis 
brain. Whereas in control brain, a moderate expression of TSPO in 

all glial cells is seen, in anti-LGI1 and anti-CASPR2 autoimmune 
limbic  encephalitis brain,  activated glial cells show an increased 
reactivity for TSPO. Neurons in control as well as LGI1 and CASPR 
encephalitis brain are negative for TSPO
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