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Abstract
The purpose of this review was to survey the recent applications of the diffusive gradients in thin films (DGT) technique in 
the assessment of mobility and bioavailability of nutrients and potentially toxic elements (PTEs) in agricultural soil. Many 
studies compared the capabilities of the DGT technique with those of classical soil chemical extractants used in single or 
sequential procedures to predict nutrients and PTE bioavailability to crops. In most of the published works, the DGT tech-
nique was reported to be superior to the conventional chemical extraction and fractionation methods in obtaining significant 
correlations with the metals and metalloids accumulated in crops. In the domain of nutrient bioavailability assessment, 
DGT-based studies focused mainly on phosphorous and selenium labile fraction measurement, but potassium, manganese, 
and nitrogen were also studied using the DGT tool. Different DGT configurations are reported, using binding and diffusive 
layers specific for certain analytes (Hg, P, and Se) or gels with wider applicability, such as Chelex-based binding gels for 
metal cations and ferrihydrite-based hydrogels for oxyanions. Overall, the literature demonstrates that the DGT technique 
is relevant for the evaluation of metal and nutrient bioavailability to crops, due to its capacity to mimic the plant root uptake 
process, which justifies future improvement efforts.
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Introduction

With the growing of the world’s population, the demand for 
food is continuously increasing; thus, the agricultural sec-
tor goes to intensive farming. This entails the continuous 
cultivation of crops on soil using a substantial application 
of fertilizers and pesticides (Chen et al. 2023). Besides the 
benefits, this may have a negative effect on the environment, 
due to both the release of the nutrients added in excess and 
to the soil contamination with potentially toxic elements 
(PTEs) (Kuziemska et al. 2023). In addition, the develop-
ment of industrial activities resulted in the release of PTEs in 
all environmental compartments, including the agricultural 
soil (Park et al. 2023). PTEs may have extremely harmful 

effects on the ecosystem, affecting the plant growth and 
being transferred to the food chain, causing human health 
risks (Dippong et al. 2022; Zulkernain et al. 2023; Jiang 
et al. 2023). There are many PTE species that were found 
in the soil in increased concentrations (Roba et al. 2016; 
Petrean et al. 2023). Some of the PTEs, like Fe, Zn, Co, Cu, 
Cr, B, and Mn, are also known as micronutrients for crops, 
small amounts of these elements being required for plant 
development. At low concentrations, these PTEs can help 
some cellular functions in plants, as well as pigment biosyn-
thesis, enzyme activities, photosynthesis, sugar metabolism, 
respiration, nitrogen fixation, and other functions, but even 
these elements become toxic at increased concentrations, 
affecting plant growth (Rashid et al. 2023). Other PTEs 
such as Cd, Pb, As, Hg, and Sb are non-essential and highly 
toxic even at low concentrations and affect biota, and finally 
human health (Briffa et al. 2020; Senila et al. 2022; Thalas-
sinos et al. 2023).

Consequently, the prediction of the nutrient and PTE 
transfer from soil to the crops has become an increasing con-
cern worldwide (Ning et al. 2021; Gao et al. 2022a, b; Zhou 
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et al. 2023). The key process in the prediction of nutrient 
and PTE transfer through the food chain is the assessment of 
their availability in soil for improving the fertilization effi-
cacy, while reducing the soil contamination (Wenzel et al. 
2022), but also for preventing the food web contamination 
through the transfer to crops above the safe limits. Thus, 
assessing the bioavailability of PTEs and nutrients in agri-
cultural soils has critical implications for food security and 
for a sustainable agriculture.

Many studies on nutrients and PTEs in soil were based on 
the measurement of their total concentration, even though 
their available concentrations would have been more inform-
ative. Moreover, in general, the studies on nutrient and PTE 
availability in soil were carried out by using sequential or 
single-chemical extraction procedures, but these offer only 
records of diverse fractions of elements in the soil (Senila 
2014; Gao et al. 2022a, b). The diffusive gradients in thin 
film (DGT) technique was well documented as being a supe-
rior tool for the evaluation of metal and nutrient bioavail-
ability to biota due to its capacity to mimic the uptake of 
elements by the plant roots (Tandy et al. 2011; Zhang and 
Davison 2015; Marrugo-Madrid et al. 2021). When deployed 
into the soil, the DGT device introduces a sink for free ions 
in the soil solution, generating a diffusive flux of those ions 
into the DGT probe. As the free ions are gradually uptaken 
by the DGT device, their concentration in the adjacent soil 
solution decreases causing a disequilibrium among the free 
ions in the soil solution, their complexes, and their forms 
fixed onto soil solid phases. In response to the removal of the 
free ions, labile complexes dissociate, and their forms bound 
to the soil solid phase can also desorb depending on their 
availability, being thus resupplied to the soil solution. This 
uptake mechanism is similar to the plant root uptake into 
their rhizosphere (Davison and Zhang 2012; Letho 2016). 
Generally, DGT measurements are mostly independent of 
the soil characteristics, which could make DGT a good prac-
tice for advancing soil quality standards (Tian et al. 2018).

Since several previous review papers (Zhang and Davi-
son 2015; Santner et al. 2015; Marrugo-Madrid et al. 2021; 
Wei et al. 2022; Guan et al. 2022) and the book Diffusive 
gradients in thin-films for environmental measurements 
(Davison 2016) presented the concept and theory of DGT, 
it was the aim of this review to provide an update of the 
existing DGT knowledge for scientists and practitioners, 
related to the application of this technique to the agricul-
tural field, for assessing the nutrient and PTE bioavailability 
in soil. Although the principles of DGT technique were not 
significantly changed since it was first reported until today, 
this review aims to provide new trends and findings from 
its application, or new binding gels developed for various 
analytes. Since the DGT was found to be generally superior 
to other techniques in predicting element transfer to crops, 
this review brings together the newest advancements of the 

DGT uses on agricultural soil emphasizing the necessity and 
importance of ensuring food security. The literature pub-
lished in the last 5 years was mainly analyzed to observe the 
trend, but several previously published reference works for 
the DGT development were also considered.

Methodology to collect data

The search keyword “DGT agricultural soil” was used for 
the Web of Science Core Collection database, and n = 276 
documents were found, of which 274 articles (including 3 
proceeding papers and 2 review articles) and 2 book chap-
ters. The 143 articles published between 2019 and 2023 were 
selected and were examined to involve agricultural soil and/
or crops. Those dealing with the use of the DGT technique 
for assessing the bioavailability of metals and nutrients from 
agricultural soil were included in this literature review.

DGT applicability for element availability 
in soil, DGT procedure, and deployment 
in soil

Theory of DGT measurement for nutrients/PTEs 
in soil

An overview of the applicability of DGT in agricultural soil 
is presented in Fig. 1. The DGT technique was created in 
1994 by Hao Zhang and William Davison for the determi-
nation of trace metals in water (Davison and Zhang 1994). 
The functioning principle of the DGT technique was widely 
presented by Davison and Zhang (2016). Here, we are briefly 
presenting the procedure used for estimating the fractions 
from soils which are bioavailable to crops.

The DGT technique is founded on Fick’s first law of diffu-
sion, which relates the diffusive flux of analyte to the gradi-
ent of the concentration. This flux is controlled by a diffusive 
layer with a known thickness (Δg) which is placed between 
the analyzed soil solution and a resin gel that accumulates 
the analytes (Zhang and Davison 1995). The analyte concen-
tration in the analyzed soil solution can be calculated using 
Eq. (1) (Zhang and Davison 1995):

where M is the mass of metal bound by the resin gel, Δg is 
the diffusive layer thickness (sum of the diffusive gel and 
filter paper thickness), t is the time for deployment (in sec-
onds), D is the diffusion coefficient through the diffusion 
layer, and A is the exposed area to the soil solution.

(1)CDGT =
M × Δg

D × A × t
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The mass of analyte accumulated on the resin gel may be 
eluted from the gel using an appropriate volume of eluents 
(Ve). The measured concentration of the analyte in the eluent 
(Ce), the elution factor (fe), and the volume of the resin gel 
(Vg) are used to calculate M using Eq. (2):

DGT procedure and deployment in soil

The procedure of using DGT devices into the soil for pas-
sive sampling of labile fractions of analytes is based on their 
deployment saturated with water or at the maximum water 
holding capacity (MWHC). Other authors used water until 
80% of soil MWHC (Babalola and Zhang 2021). The col-
lected soil samples air dried and sieved ≤ 2 mm are mixed 
with deionized water to MWHC to form a slurry (www.
dgtresearch.com). The quantity of soil used is not a very 
important aspect for typical DGT placement times (24 h). 
However, a depth of soil adjacent to the DGT sampling 
device needs to be of at least 1 cm for a deployment period 
of 24 h considering the depletion of analyte in that area. 
Typical quantities of soil used per DGT device are of about 
20–200 g (Jolley et al. 2016). The soil-water mixture is left 
for 24 h to equilibrate, while being covered in order to pre-
vent evaporation. It is recommended to perform the DGT 
deployments under controlled temperature conditions, since 
this is an important parameter that influences the diffusion 
coefficients. Deployment periods may vary, but usually they 
are of about 24 h, which is enough to provide a quantifica-
tion of the elements (Jolley et al. 2016). A scheme showing 

(2)M = Ce

(

Vg + Ve

)

fe

the main steps of DGT procedure for the assessment of 
DGT-labile fraction of elements in soil is presented in Fig. 2.

The analytes retained in the resin gels are usually 
extracted (using different eluents depending on the analyte 
types), then analyzed by appropriate techniques, among the 
most widely used: atomic absorption spectrometry with 
flame of graphite furnace atomization (FAAS or GFAAS), 
inductively coupled plasma optical emission spectrom-
etry (ICP-OES), anodic stripping voltammetry (ASV), 
inductively coupled plasma mass spectrometry (ICP-MS), 
and hyphenated techniques based on inductively coupled 
plasma mass spectrometry and liquid chromatography for 
speciation (LC-ICP-MS). Another possibility is to analyze 
the gel directly, without a dilution step, using laser ablation 
ICP-MS (LA-ICP-MS), proton-induced X-ray emissions 
(PIXE), X-ray fluorescence spectroscopy (XRF) (Wei et al. 
2022), or thermal desorption atomic absorption spectrom-
etry (TDAAS)—for Hg analysis (Senila et al. 2023). Also, 
imaging tools using a DGT gel combined with planar optode 
(PO) can be used on root systems for high-resolution imag-
ing of solute distribution in porewaters (Santner et al. 2015; 
Smolders et al. 2020).

Aspects regarding the DGT use in prediction 
of nutrient/PTE bioavailability

The bioavailability of a certain chemical substance in soil 
refers to its freely available fraction, not sorbed or seques-
tered on soil particles, which is mobile or easily mobilizable, 
and at which the biota is most exposed (Guan 2019). Mean-
while, bioavailability processes were defined by the National 
Research Council Committee on Bioavailability of Contami-
nants in Soils and Sediments as “the individual physical, 
chemical, and biological interactions that determine the 

Fig. 1  Overview of the DGT applicability in agricultural soil
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exposure of plants and animals to chemicals associated with 
soils and sediments” (NRC 2003).

A DGT device deployed the soil slurry represents a sink 
for analyte labile species in the soil solution. Labile species 
primarily include the free ion and simple inorganic com-
plexes which dissociate fast enough and have diffusion coef-
ficient values close to that of free ions (Davison and Zhang 
2012). Most trace elements, except for Hg, have inorganic 
complexes that are fully labile within the period of DGT 
deployment (Letho 2016). Some organic complexes whose 
sizes are in the colloidal range can also pass through the 
diffusive gels, but under usual deployment period (hours to 
days), only limited quantities of colloids pass through the 
diffusive gels because of their much lower diffusion coef-
ficients (Gao et al. 2019).

When DGT device is deployed in the soil slurry, there 
may be a considerable depletion of the analyte concentra-
tion in the soil solution from the soil adjacent the interface 
between soil and DGT. To compensate the DGT-induced 
depletion, elements that are in readily available fraction in 
the solid phase are re-supplied from the soil solid phase to 
the solution, contributing to DGT-measured concentration 
(Degryse et al. 2009; Guan 2019). Consequently, DGT-labile 
concentration (CDGT) of an element integrates soil proper-
ties into only one key parameter (Guan 2019). This aspect 
is highly important and represents a major advantage of the 
DGT measurement over the “classical” chemical extraction 
methods, which do not account the soil properties.

The ratio R of CDGT to the measured concentration of a 
specific element in soil solution (csoln) is a parameter which 
displays the soil’s capability to supply solute to the soil solu-
tion after the depletion at the DGT-soil interface:

For a usual deployment in of DGT devices in soil slurry 
of 24 h, and a frequently used diffusion layer thickness 
(0.093 cm), there are three types of solute supply to the 
DGT (Zhang et al. 1998): (i) sustained case (R > 0.8), which 
means a continuous and rapid supply of solute from the soil 
particles to sustain the flux into the DGT; (ii) partially sus-
tained case (0.2 ≤ R ≤ 0.8), or intermediate case, when 
supply of solute forming the soil solid phase exists, but is 
insufficient to sustain the maximum flux into to DGT; (iii) 
diffusive case, or unstained case (R < 0.2), when the supply 
for solid phase is extremely low or is no resupply of solutes 
(Letho 2016).

For the partially sustained case, in which there is a dif-
fusional supply from both the soil solution and release 
from the solid phase, the interfacial concentration can be 
associated with the effective concentration of labile spe-
cies, CE, a concept developed by Zhang et al. (2001). CE 
signifies the supply of analyte to any sink, DGT or a crop, 
that originates from diffusion from two above-mentioned 
sources. Because only the diffusion concentration is 

(3)R =
CDGT

csoln

Fig. 2  The main steps of DGT procedure for the assessment of DGT-labile fraction of elements in soil
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considered, which is a similar process to those occurred 
in the rhizosphere of plants, CE can be linked to the uptake 
of the plant (Marrugo-Madrid et al. 2021). CE can be cal-
culated as the ratio between CDGT and Rdiff, in which Rdiff 
represents the ratio of the time-averaged concentration at 
the DGT interface to the concentration in the soil solution 
for diffusion case only.

Rdiff can be computed using the numerical model 
2D-DIFS (two-dimensional DGT induced fluxes in sedi-
ments) adapted by Sochaczewski et al. (2007) from the 
1D-DIFS software developed by Harper et al. (2000). The 
DIFS program enables the calculation of the ratio of DGT 
concentration to total solution concentration, which also 
depends on the adsorption/desorption kinetics of elements 
within the soil. The distribution of the labile element frac-
tion between the soil solid and the pore water concentra-
tion is measured by the distribution coefficient, Kdl  (cm3 
 g−1), while for the response time to depletion the param-
eter Tc (s) is employed (Guan et al. 2017). To calculate 
Rdiff only for the diffusive case, a very large value for Tc 
or a value for Kdl close to zero should be used. Thus, the 
DIFS program can be used to simulate Rdiff, Kdl, and Tc 
(Sochaczewski et al. 2007).

It should be noted that, from the first investigation on 
DGT as a surrogate for estimating plant uptake of sev-
eral elements (Cd, Co, Cu, Ni, Pb, and Zn) carried out 
by Davison et al. (1999) to many other studies reported 
until present, in general, DGT provided element concentra-
tions better correlated with those accumulated by plants. 
However, DGT does not always provide the best nutrient/
metal bioavailability prediction. This is explained by the 
fact that bioavailability depends not only on the specia-
tion in soil but also on the receptor (plant characteristics), 
which DGT cannot account for. For example, plant roots 
limit toxic metal uptake at toxic concentrations. Thus, 
the supply from the soil is not totally accumulated, and 
DGT measurements can overrate metal bioavailability. 
Also, plant exudates may modify elements’ solubility and 
mobility in the rhizosphere area (Guan et al. 2022). Thus, 
as much as possible, the analyzed soil substrate should be 
carefully chosen in the rhizosphere zone. It should also 
be considered that the concentration of metals/nutrients 
in the shoots depends on their own translocation factor 
(Guan et al. 2022). Other reasons for differences between 
DGT-predicted bioavailability and accumulation by plants 
include the higher moisture content in soil during the DGT 
deployment compared to that during plant growth, which 
determines higher diffusion fluxes, differences between the 
period of DGT deployment (usually 24 h) and period of 

(4)CE =
CDGT

Rdiff

plant growth (weeks), differences between DGT device 
and roots geometries (that have smaller radius), and pres-
ence of root hairs (Degryse et  al. 2009; Degryse and 
Smolders 2016).

DGT has the potential to be deployed in situ, although 
this direction has not yet been extensively used until now 
due to potential issues related to the deficiency of parameter 
control, mainly regarding the soil moisture. Several reports 
on particular cases of DGT application to wet soils, such as 
rice fields, were published (Wang et al. 2021; Chen et al. 
2022; Wang et al. 2022a).

DGT applications to nutrient labile fractions 
in soil

DGT applications to nutrients in agricultural soils deal with 
studies on phosphorous and selenium bioavailability, but 
nutrients such as potassium, manganese, and nitrogen forms 
were also considered in such studies. A total of 26 papers 
published in recent years have been identified and are dis-
cussed in this review. The main trends that can be observed 
related to the applications of the DGT technique for nutrients 
in these papers are the evaluation of bioavailability changes 
after the application of different amendments to soil and 
the use of DGT for the prediction of the uptake in different 
crops. The main findings from these researches are detailed 
below. The effects on P availability were tested after the 
addition of biochar (Chen et al. 2022; Yang and Lu 2022), or 
other organic and inorganic fertilizers containing P (Nobile 
et al. 2018; Kang et al. 2021; Wenzel et al. 2022; Zhang et al. 
2023). In all cases, the DGT was reported as a useful tool in 
assessing the impact of amendments on P availability.

Chen et al. (2022) studied the fluxes of P in the rice rhizo-
sphere using DGT, high-resolution dialysis (HR-Peeper), 
and zymography techniques. DGT measurements indicated 
that long-term biochar addition to the soil significantly 
diminished the diffusion and resupply capacity of P from 
the soil solid phase to the soil solution, thus lessening the 
risk of P release into the environment (Chen et al. 2022). 
Yang and Lu (2022) used a combination of chemical extrac-
tion and DGT technique to assess the phosphate availabil-
ity of in straw/biochar-amended soils, and it was found that 
biochar augmented P availability and soil pH more than 
straw returning. Kang et al. (2021) conducted pot and field 
tests in drip-irrigated calcareous soil and used DGT next to 
other P analyses to assess changes in its availability in soil. 
With the aid of the DGT technique, the authors clarified 
that repetitively releasing P through the fertigation method 
is suggested as an efficient P application approach in drip-
irrigated field. P in soil was also evaluated by the DGT tech-
nique and classic extractions in order to control the effects 
of soil type and fertilizer amendment on the P availability 
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and to assess the ratios of inorganic P vs. organic P in soil 
(Nobile et al. 2018).

The DGT technique was used to quantify the availabil-
ity of P in several types of sewage sludge-based fertilizers 
containing P fertilizers (Vogel et al. 2017). Combinations 
of fertilizer and soil were incubated for several weeks and 
DGT devices were immersed at different moments. It was 
found that plant-available P was obtained after 2 weeks of 
incubation. In a previous study, Vogel et al. (2021) combined 
DGT and 13P NMR to determine P species in soil. This com-
bination allowed the authors to identify organic P species 
in solutions. DGT measurements were used to assess the 
wheat grain yield in long-term fertility experiments (Wen-
zel et al. 2022). DGT was reported to be superior to the 
classical quantity and intensity tests, due to its ability to 
mimic, like plant roots, P diffusion, and resupply from the 
soil solid fraction. A 5-year fertilization trial was employed 
to assess the influence on soil P fractionation (Zhang et al. 
2023). The P resupply was simulated using DGT and DGT-
induced fluxes in soils (DIFS), throughout the maize season, 
under five conditions of fertilization: no fertilizer, chemical 
fertilizer, chemical fertilizer joint with bone meal fertilizer, 
crop straw, and bioorganic fertilizer. With the aid of DGT 
and DIFS investigation tools, it was observed that organic 
fertilization, particularly NPKC and NPKM treatments, pro-
vided superior enrichment effects on the P supply pool and 
P resupply for improved plant P uptake.

In other papers, the DGT technique was used to assess 
P mobility in soils and its bioavailability to various agri-
cultural crops. In general, P uptake by crops or P in soil 
solution was better correlated with P measured by DGT. P 
mobility in 75 topsoil samples from a plastic-covered green-
house vegetable production form China was assessed, and 
it was found that DGT is a precise predictor of P mobil-
ity in soils, since DGT results for P provided a very strong 
correlation (r2 = 0.97) with P in soil solution, superior to 
that obtained by conventional soil extractable P test meth-
ods (sodium bicarbonate extractable—Olsen P, ammonium 
oxalate extractable P, MehlichIII P) (Kalkhajeh et al. 2018). 
Large-scale experiments were conducted to compare the 
soil tests for available P in agricultural soil from five coun-
tries across Europe (Nawara et al. 2017). P availability was 
evaluated with five tests: ammonium oxalate, ammonium 
lactate, Olsen P,  CaCl2, and DGT, in 11 different soil types, 
cultivated with different crops. All five tests were positively 
correlated to the P accumulated by different crops. However, 
no test was considerably superior than the others, while the 
oxalate extraction had the weakest correlation. In a later 
study, Nawara et al. (2018) used the same methods to assess 
the P bioavailability in agricultural soil, but in depleting 
P speciation in pot experiments. A strong positive correla-
tion (r2 = 0.73) was obtained for the P measured by DGT 
and plant uptake. Tuntrachanida et al. (2022) explored the 

fractionation and solubility of P in tropical agricultural soils, 
by combining the DGT technique to measure P fluxes in soil 
with spectroscopic measurements. With these techniques, 
the authors were able to find the association between P and 
different minerals in soil. The DGT concentration of P in 
the soil solution was extremely variable, with the maximum 
and the lowermost values detected in acidic and coarse soils, 
and in alkaline- and fine-textured soils, respectively. The 
DGT technique and calcium acetate lactate have been used 
to predict crops (winter wheat and spring barley) response 
in long-term P fertilization experiments. DGT was found 
to be superior in predicting P transfer to the two crops (r2 
= 0.42 for barley, r2 = 0.32 for wheat grain yield, and r2 = 
0.36 for wheat grains) (Hill et al. 2021). The DGT technique 
has been used to assess the bioavailability of P and other 
nutrient elements in flooded soils cultivated with rice crop. 
Wang et al. (2019a) studied, by means of DGT technique 
combined with high-resolution dialysis, the Fe and P interac-
tions in flooded soils with rice crop. Using this combination 
of techniques, the authors observed a depletion of P and 
Fe(II) in porewaters around the rice root area. DGT was also 
used to evaluate P availability in agricultural soils of Scan-
dinavia (Denmark, Sweden, Norway, and Finland) used in 
pot experiments for growing spring barley. In this case, DGT 
was also compared with three frequently used soil extraction 
methods: sodium-bicarbonate (Olsen P), ammonium lac-
tate (PAL), and ammonium acetate (PAAC) (Mundus et al. 
2017). Crops in pot experiments responded to fertilization 
and accumulated P, but there was a weak or no correlation 
with extractable P in soil, even with the DGT technique. 
Since in field conditions, extractable P measured in soils 30 
days after establishment predicted P concentrations in leaves 
of unfertilized plants (r2 = 0.83), the authors emphasized the 
significance of pot size relative to the produced biomass in 
order to avoid the P depletion in areas surrounding the roots.

The DGT technique has also been developed to simulta-
neously determine the bioavailability of cationic nutrients 
(e.g., K) and P in agricultural soils by employing new types 
of retention gels. A resin gel has been created by combining 
amberlite and ferrihydrite for the simultaneous determina-
tions of two important nutrients in soil, K and P (Zhang et al. 
2013). It was showed that the developed gel has the capacity 
to quantify plant-available P and K in soils. In another study 
(Zhang et al. 2014), the DGT with the same binding phase 
was investigated to assess the influence of competing cations 
in solution on K uptake. The diffusion coefficient for K was 
lowered by the presence of competing cations. It was also 
reported that this mixed gel had the capability to quantify Ca 
and Mg. In a later study, this type of binding gel was used 
to estimate the necessities for K as fertilizer for wheat in a 
glasshouse trial (Zhang et al. 2017).

Selenium is an essential micronutrient, of which both 
deficiency and excess may have negative effect on biota. 
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Thus, the studies of Se bioavailability using DGT in soil 
rise a high interest for researchers, reflected by eight 
recent papers dealing with Se bioavailability. DGT with 
ferrihydrite binding gel were mainly used for Se accu-
mulation, and the results generally well predicted the Se 
uptake by crops such as Brassica juncea from fertilized 
soils, with correlation coefficients between 0.89 and 0.99 
(Dinh et al. 2021), pak choi from soils amended with sel-
enite and selenate, with correlation coefficients of 0.364 
and 0.957 for shoots, and 0.909 and 0.876 for roots (Peng 
et al. 2019), purple cabbage, broccoli, wheat, and mustard 
from selenite or selenate-amended soils in pot experiments 
(Peng et al. 2017). Se bioavailability and accumulation in 
pak choi were evaluated by comparing the DGT technique 
with the chemical extraction methods (Peng et al. 2020). 
It was reported that the plant uptake of Se(IV) was bet-
ter predicted by the DGT technique (r = 0.933 for shoots 
and r = 0.943 for roots) than by the chemical extraction 
methods, while the Se(VI) uptake was also well predicted 
by DGT (r = 0.885 for shoots and r = 0.841 for roots), but 
was better predicted by the  KH2PO4–K2HPO4 extraction 
(r = 0.913 for shoots and r = 0.853 for roots). Wang et al. 
(2019b) reported on the use of the DGT technique and 
classical chemical extractions to evaluate the uptake of 
Se by the maize from naturally enriched soils. The authors 
found that the DGT can consistently predict the uptake 
of Se by maize (r = 0.933). Zhang et al. (2020) assessed 
Se bioavailability to Brassica juncea in soils, by using 
DGT and chemical extraction methods. The correlation 
coefficients between the Se transfer rates to Brassica jun-
cea and the bioavailable Se content in soil, measured by 
different techniques, followed the trend DGT > KCl > 
water > EDTA>  KH2PO4 >  NaHCO3 extractions. Sequen-
tial chemical extractions and DGT were used to assess Se 
fractionation in pot experiments. It was found that the Se 
concentrations were generally resulting from soluble and 
exchangeable Se fractions (Lyu et al. 2021). However, in 
another study on soil amended with S and P, the Se content 
in soil measured by DGT was not significantly correlated 
with the Se content of pak choi. This may be explained by 
the fact that DGT cannot reflect the competitive relation-
ship between P, S, and Se at the plant root uptake sites 
(Jiang et al. 2022).

Kodithuwakku et al. (2023) developed a DGT device 
for the determination of  NO3–N and  NH4–N in soil solu-
tions. The used resin gel was either based on A520E (anion 
exchange resin) or on PrCH (cation exchange resin), while 
an agarose-type gel was used as diffusive layer, covered with 
a polyethersulfone filter membrane. The developed DGTs 
were able to measure low concentrations of  NO3–N and 
 NH4–N in soils. The concentrations assessed by DGT and 
by extraction in 2M KCl were significantly correlated for 
 NO3–N (r2 = 0.53).

Table 1 presents selected works observing the use of DGT 
to assess nutrient mobility in soil and relations with differ-
ent crops, presenting the analytes, used DGT tools, main 
experimental conditions, and main findings.

DGT applications for heavy metal labile 
fractions in soil

PTEs group includes heavy metals and several metalloids 
and are considered the main soil contaminants (Bai et al. 
2023). Thus, they have received substantial consideration in 
recent studies. A total of 57 recent publications dealing with 
DGT in soil focused on heavy metals such as Cd, Pb, Zn, 
Cu, Cr, etc., while among the toxic metalloids, As was the 
most studied. In the studies involving metallic cations, the 
Chelex-type resin gel was predominantly used, while in the 
metalloids case, the ferrihydrite-type binding gel was mostly 
used. A particular attention was paid to Hg determination, 
due to its special characteristics and high toxicity. Numerous 
studies focused only on this element, probably because the 
DGT with Chelex binding gel, which is used for a majority 
of metallic cations, but is not suitable for the Hg determina-
tion. Consequently, specialized DGT tools for Hg and its 
species were developed and used.

Environmental studies using the DGT for assessing 
the PTE availability in soil and their transfer rate 
to crops

DGT has proven to be a beneficial technique for many stud-
ies dealing with the availability of PTEs in soil and their 
transfer to crops, within the 28 papers published in recent 
years on this topic. PTE measurement by DGT tends to be 
well correlated with crop uptake. Table 2 displays selected 
works observing the use of DGT to evaluate heavy metal 
mobility in soil and their transfer to different crops (maize, 
wheat, tomato, bean, rice, barley, turnips, eggplants, spin-
ach, potatoes, onion, corn, peppermint, lettuce, garlic, pars-
ley, carrot, pak choi). A tendency that can be observed in 
these studies is that the DGT is not yet used alone to assess 
metal bioavailability in soils; other “classical” chemical 
extractions are used for comparison purposes, demonstrat-
ing that DGT still needs to be validated. Another common 
finding is that in some papers, the DIFS software was used 
to calculate the element’s effective concentrations. However, 
other authors preferred to use the CDGT directly for correla-
tions with crop uptake. While some studies deal with the 
multi-element determination of PTEs, other studies studied 
only a specific contaminant, such as Cd, As, or Zn.

Bai et al. (2023) correlated directly CDGT of PTEs (Cr, As, 
Cu, Zn, Cd, and Pb) from rhizosphere soil with the accumu-
lation by maize and wheat. For comparison, the rhizosphere 
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soil samples were analyzed for their PTE total content and 
extractible forms in soil solution and EDTA and DGT-labile 
fractions. Among the methods used in soil analysis, DGT 
was reported to provide, in general, more accurate results in 
simultaneously predicting PTE transfer to crops, especially 
for grains. Also, DGT bioavailability prediction was less 
impacted by soil pH than other extractions.

Galhardi et al. (2020) used sequential extraction (BCR), 
single extraction, and CDGT to assess the fractionation of 
As, Pb, Cd, Ni, Cu, Cr, Mn, Zn, Ba, U, REEs (La to Lu). 
The authors used DGT with Chelex resin gel to assess all 
available fractions of PTEs and REEs. They reported that 
chemical extractions and DGT correlated better with the 
metal bioavailability to corn, as compared to the total metal 
contents in soil. CDGT of PTE (Cd, Pb, Cu, Zn, Co, Cr, Mn, 
Ni, and Fe) and PTE concentration in soil solution were 
measured (Senila et al. 2024). A similar trend of soil resup-
ply capacity (estimated by the R-ratio between the CDGT and 
the concentration in the soil solution) was observed with 
the bioaccumulation factors in Russula virescens mushroom. 
CDGT was also measured for Fe, Mn, Cd, and As labile frac-
tions in flooded paddy soils (Wang et al. 2022b) or to study 
the effect of soil redox modifications on the activities of 
Cd and Cu in soil (Wang et al. 2023a). A new type of resin 
gel combined with layered double hydroxide nanoparticles 
changed with diethylenetriaminepentaacetic acid was cre-
ated for the use of DGT tools to measure eight anions and 
cations in waters and soils (Wang et al. 2023b). A hyperac-
cumulator plant of Cd and Zn, Sedum plumbizincicola, was 
grown in a pot experiment (Zhou et al. 2019). Soil total Zn 
and water soluble,  CaCl2-extractable, and CDGT Zn concen-
trations were measured and used to predict the shoot Zn con-
centration. Dissimilar to many other studies, in this study, 
 CaCl2 extraction produced the strongest correlations with 
plant uptake than CDGT, results that were explained by two 
main reasons: Zn uptake by S. plumbizincicola was not lim-
ited to diffusion, while the behavior of hyperaccumulating 
species to increase metals solubility by the release of organic 
acids, which increase metal uptake. DIFS model was used to 
assess CE for As, Cr, Cu, Pb, and V in urban soil (Xu et al. 
2019a). Cd bioavailability in soil was extensively studied 
both by CDGT as well as by estimating its CE using DIFS. 
Thus, DGT and DIFS were employed to evaluate the Cd bio-
available fraction and to predict its transfer to maize and its 
mobility in agricultural soils (Chen et al. 2021). Bioavailable 
Cd measured by DGT was significantly correlated with Cd 
accumulated in maize grains (r2 = 0.92).

CDGT also was found to predict well Cd transfer to crops. 
Thus, CDGT in agricultural soils was reported to be positively 
correlated (r2 = 0.95) with Cd uptake by pak choi in a green-
house experiment (Dai et al. 2017), by cocoa bean (r2 = 0.5) 
(Gramlich et al. 2018), and turnips and eggplants grown in 
greenhouse vegetable production systems (r2 values from Ta

bl
e 
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0.53 to 0.70) (Tian et al. 2018). CDGT Cd was used to predict 
Cd uptake by the hyperaccumulator plant S. plumbizinci-
cola in different agricultural soil categories. Using CDGT and 
piecewise equations, Cd uptake could be predicted at differ-
ent intervals of soil properties (Wu et al. 2018). In a study 
on Cd uptake from agricultural soil to spinach leaves, potato 
tubers, onion bulbs, and wheat grain grown across New Zea-
land (Yi et al. 2020), the extraction in Ca(NO3)2 predicted 
more than 76% of the variability in the Cd concentrations in 
onion bulbs and spinach leaves, whereas CDGT and porewater 
Cd concentration better estimated the Cd transfer to potatoes 
and wheat grains.

CDGT in rhizosphere soil of several crops (rice, corn, pea-
nut, and sweet potato) also showed good correlation with 
its accumulation in those crops (r2 in the range 0.64–0.90) 
(Guo et al. 2023). In a study on paddy soil, CDGT of Cd was 
correlated with Cd concentration in the rice grains, straws, 
or roots. CDGT showed a significant correlation with Cd in 
crop parts (r = 0.733 for grains, r = 0.833 for straw, and r 
= 0.680 for roots) (Li et al. 2018). In another study, a sig-
nificant correlation (r = 0.818) was obtained between CDGT 
Cd in paddy soil and Cd in rice grains (Xiao et al. 2020). 
Soil chemical extraction and soil-plant transfer modeling 
methodologies were used to predict the Cd bioavailability to 
rice in a large-scale experiment on samples collected from 
278 sites in the Guangxi province, China (Wen et al. 2020). 
CDGT Cd well estimated Cd in rice grains (r2 = 0.73), better 
than Cd in soil solution (r2 = 0.43).

Almendros et al. (2020) used the CDGT and low-molec-
ular-weight organic acids (LMWOAs),  CaCl2, DTPA-TEA, 
water, and  NH4Ac chemical extractants to predict the Zn 
transfer to crops (tomato) from soils amended with ZnO 
nanoparticles in a greenhouse experiment. The Pearson cor-
relation coefficients (r) between log-transformed values of 
Zn concentrations in crop and CDGT ranged between 0.787 
and 0.915. Later, the same group of research reported CDGT 
for Zn well correlated with Zn accumulated by beetroot and 
green pea, with Pearson correlation coefficients between log-
transformed values of the Zn concentrations in crops and 
CDGT in the range 0.78–0.96 (Almendros et al. 2022).

Another element in soil extensively studied by DGT was 
As. Ren et al. (2022) studied the absorption/desorption of As 
in farmland soils, together with soil P. Cerium oxide–based 
DGTs were used for the simultaneous determination of As 
and P in four different categories of agricultural soils in 
order to investigate As and P migration behaviors. It was 
reported that both P and As can attain the equilibrium of 
resupply in 0.7–18 min under DGT depletion. The lability 
of As and Sb in agricultural conditions in anthropogenic 
contaminated soils was assessed using various approaches: 
CDGT, soil solution extraction, and sequential extraction 
and accumulation by radish As and Sb contents in radish 
were significantly correlated (r2 = 0.97–0.99) with their Ta
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accumulation in crop tissues (Ngo et al. 2016; Ngo et al. 
2020). DGT combined with the high-resolution dialysis 
(HR-Peeper) technique was employed to obtain the distri-
butions of soluble Fe(II), soluble reactive P, and labile P and 
Fe in the root area of rice (Wang et al. 2019a). DGT with 
2.0-mm vertical resolution and hydrochemical monitoring 
were used to investigate the effects of flooding and flora on 
the Fe-redox and hydrochemical change in the soil porewa-
ter (Wu et al. 2021). It was found that the release of Fe(II) 
from the wetland rhizosphere due to flooding could have an 
effect on the release of Fe-associated metals from the ripar-
ian marshland to the surface water.

Studies using DGT as tool for the evaluation 
of the PTE mobility changes in soil remediation 
processes

The DGT technique has been used to assess the PTE mobil-
ity variations in soil remediation processes in 24 recent 
papers examined in this review. Among the studied topics, 
the effects on PTE mobility in soils were tested after the 
addition of organic amendments (Grüter et al. 2019; Luo 
et al. 2021; Mohseni et al. 2021; Sun et al. 2022; Zhao et al. 
2022), biochar (Bidar et al. 2019; Babalola and Zhang 2021; 
Gao et al. 2022a, b), and inorganic amendments and sludge 
(Neu et al. 2018; Xu et al. 2019b; Manzano et al. 2019; 
Zhang et al. 2019; Mohseni et al. 2021; Senila et al. 2022; 
Zhang et al. 2022a; Zhang et al. 2022b). Other authors used 
DGT to assess the effect of soil moisture in PTE mobility (Li 
et al. 2015; Wang et al. 2020; Zhao et al. 2021; Wang et al. 
2022b) or to evaluate the effect of hyperaccumulator plants 
in PTE mobilization in rhizosphere (Senila et al. 2013; Li 
et al. 2016; Zheng et al. 2019). Also, the effect of aging 
periods on PTE mobility in soil was evaluated by DGT (Ma 
et al. 2022).

Organic amendments, as determined by DGT and other 
chemical extraction of uptake by crops, generally decreased 
the PTE mobility in soils. Thus, long-term fertilization 
with organic matter was found to reduce the Cd transfer in 
wheat. However, the Zn transfer was not reduced (Grüter 
et al. 2019). Luo et al. (2021) reported that five of the soil 
amendments used in their research reduced the transfer of 
Cd to rice, and that the DGT estimated with precision the 
Cd bioavailable to rice. In another study, the Zn contami-
nated soil was treated with sorghum, poultry manure, and 
clover residues (Mohseni et al. 2021). Generally, due to 
an increasing dissolved organic carbon and a decreasing 
soil pH, the bioavailability increased in the amended soil. 
However, sorghum residues reduced the phytotoxicity risk 
of Zn. Sun et al. (2022) studied the stabilization of Zn in 
agricultural soil after the application of organic fertilizer 
and zeolite. The authors used the DGT, DTPA extraction, 
and accumulation in Chinese cabbage biomass to assess the 

reduction of Zn mobility in soil after the treatments. Zhao 
et al. (2022) employed the DGT to monitor the Cd mobility 
in soils interacted with controlled-release fertilizers coated 
with microplastics.

Biochar, a biomaterial produced during the pyrolysis of 
biomass, was also applied as soil amendment in which the 
DGT was employed to assess the PTE mobility changes. 
Thus, Babalola and Zhang (2021) used DGT to evaluate the 
available concentrations of Pb, Cu, and Cd in soils treated 
with biochar and Delonix regia pod biomass. Biochar modi-
fied with magnetite nanoparticles was reported to reduce 
Cd bioavailability to rice (Gao et al. 2022a, b). The DGT 
study indicates that biochar modified with magnetite nan-
oparticles may decrease the replenish capacity of soils to 
soil pore waters and thus limit the crop uptake. Bidar et al. 
(2019) studied the immobilization of Cd, Cu, Pb, and Zn in 
contaminated brownfield and agricultural soils treated with 
wood biochar and iron grit.

Other studies were focused on the effects of inorganic 
amendments and sludge application on soil in PTE mobility. 
DGT was compared with other two analytical approaches 
to measure the possible changes in the availability of Cu, 
Zn, and As in polluted soils, after a co-application of paper 
sludge alkaline waste and iron sulfate (Manzano et al. 2019). 
The DGT was found to be a good alternative to assess metal 
mobility, with less technical requirements. Using DGT 
to measure Cd, Pb, and Zn bioavailability in soil treated 
with sludge, Mohseni et al. (2021) estimated that the sew-
age sludge treatment rises the resupply of these elements 
to soil solution and the effective concentration of Cd, Pb, 
and Zn. Senila et al. (2022) examined the influence of natu-
ral zeolite amendment to contaminated soil on heavy metal 
(Cd, Cr, Cu, Pb, and Zn) availability over a 3-month period 
of incubation. A decrease of Cd and Pb mobility in the 
soil solid phase from the samples treated with zeolite was 
observed. The immobilization of metals (Cd, Pb, Zn) and 
As in agricultural soils contaminated with drinking water 
treatment residues was tested in pot experiments (Neu et al. 
2018) and assessed by DGT. Xu et al. (2019b) studied the 
effect of phosphate application to the agricultural soil on the 
availability of Pb. Using DGT, in situ solution extraction, 
and EDTA extraction methods, a mobilization effect of the 
amendment application on Pb in soil was observed. Zhang 
et al. (2019) reported the use of a sequential extraction pro-
cedure coupled with the DGT technique to assess the influ-
ence of the ferrihydrite dissolution/transformation process 
on the availability of As in soils. In another research, As 
was extracted from polluted paddy soils with ferrihydrite-
loaded sand columns (Zhang et al. 2022a). The process was 
investigated using mesocosm coupled with DGT for in situ 
visualization. Zhang et al. (2022b) used the DGT to assess 
the effects of soil remediation by nanoscale zero-valent iron 
on heavy metal (Cr, Cu, Zn, Pb) bioavailability in soil.
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The content of water in soil along with the way it is 
managed also has a role in PTE mobility. In a study, DGT 
was used to examine the effects of the soil-drying pro-
cesses on metal availability in contaminated soil. Soil 
moisture influences the metal availability, but it is depend-
ent on the metal species and soil types (Li et al. 2015). 
Three water-management treatments, namely continuous 
flooding, intermittent flooding, and non-flooding, were 
conducted in pot experiments to assess their effects on 
the Cd phytoavailaility in three types of paddy soils and 
the Cd accumulation in rice (Wang et al. 2020). The DGT 
technique measured the available Cd in soil and provided 
the most trustworthy prediction for the Cd accumulation 
in rice. Zhao et al. (2021) studied the effect of sulfur on 
soil Cd mobility under flooded conditions in the soil-rice 
system with the aid of the DGT technique. It was found 
that the synergistic effect of Fe and S reduced the mobil-
ity of Cd. Wang et al. (2022b) used DGT and soil pore 
water sampling to explore the impacts of various types of 
S application on the bioavailability of Cd. It was reported 
that soluble and labile Cd concentration was immediately 
fixed in soil after flooding, but activated next to the rice 
transplantation.

Hyperaccumulator plants can modify the PTE mobility 
in rhizosphere by their roots. The effects of phytoextrac-
tion using the hyperaccumulator S. plumbizincicola on Cd 
and Zn availability, desorption kinetics, and speciation in 
contaminated soils were examined by chemical extraction 
and by the DIFS model (Li et al. 2016). The effects of two 
fern species on the mobility changes in rhizosphere soil 
were investigated in pot experiments using DGT (Senila 
et al. 2013). An increase of As labile fraction was observed 
in the rhizosphere of the fern species, a hyperaccumulator, 
in the grown plant. Zheng et al. (2019) studied the influ-
ence of biochar addition on the phytoextraction process of 
an As hyperaccumulator. A pot experiment was conducted 
to investigate the biochar effect on the As transfer in Pteris 
vittata fern. The DGT technique was utilized to character-
ize the migration of As in soil. The results showed that 
phytoextraction meaningly decreases Cd and Zn availabil-
ity and that the hyperaccumulator has a significant role 
in the mobilization of less available metal fractions by 
repeated phytoextraction.

The effect of different aging times on Cd bioavailability 
in soil was evaluated by means of chemical extractions, DGT 
technique, and biological indicators (toxicity to barley) (Ma 
et al. 2022). It was observed that aging decreases the Cd 
bioavailability and transfer to barley. The plant root is more 
appropriate for predicting the Cd transfer from soil, while 
the plant shoot can well assess the toxic effect of Cd stress 
on plants. A better evaluation of the Cd bioavailability to 
barley was reported for the DGT, compared to the classical 
chemical extractions.

Studies using DGT as tool for the evaluation of Hg 
bioavailability in soil

Hg exhibits several features which differentiate its assess-
ment in soil from other metals. Five recent studies on Hg 
in soil measured by DGT were examined in this review. 
In the case of Hg, the specific resin gels used in the DGT 
units contain thiol groups with a high affinity for Hg, such 
as spheron-thiol or 3-mercaptopropyl-functionalized silica 
gel (Turull et al. 2019a). In order to differentiate the inor-
ganic and organic labile Hg species in soil, Turull et al. 
(2019a) used open and restricted diffusive gels. Polyacryla-
mide crosslinked with agarose was used as open pore dif-
fusive gel, while, as restricted pore layer, a polyacrylamide 
crosslinked with bis-acrylamide gel was prepared. Both open 
and restricted gels provided linear relationships between the 
mass of Hg collected in the resin gels and the Hg concen-
tration in the solution. The two types of DGT units were 
successfully used to measure inorganic and organic Hg spe-
cies in soil and were confirmed to effectively predict the 
Hg uptake by lettuce plants. The DGT technique was also 
used to measure the bioavailability of Hg in agricultural soils 
amended with organic fertilizers (biochar and compost), and 
predicted its uptake by lettuce (Turull et al. 2019b). Both 
open and restricted diffusive layers were also used in this 
study to test organic and inorganic Hg species in soils.

The DGT and the DIFS instruments were implemented to 
examine the Hg resupply kinetics, diffusion, and availability 
in a paddy soil exposed to flood-drain-reflood management 
and straw application (Yang et al. 2023). The straw amend-
ment restricted the bioavailability of Hg in the porewater by 
lessening its resupply capacity, while the transformation into 
MeHg was substantially enhanced after straw application. 
Pelcová et al. (2019) studied the mercury bioavailability to 
Pisum sativum L. in soils and compared the bioaccumula-
tion with the DGT measurements. Significantly positive cor-
relations were reported between the Hg-DGT flux and the 
Hg flux into the plant root, leaf, and stem. The DGT total 
and labile Hg concentrations in garden soils from a former 
nonferrous metal mining area and the transfer to crops were 
evaluated (Senila et al. 2023). It was found that, on aver-
age, 84% of the Hg content in soil solution was found in its 
DGT-labile form.

Conclusions and perspectives

The DGT technique relates the diffusive flux of analyte to 
the gradient of the concentration. The current review pro-
vides an update of the existing DGT applications in the agri-
cultural field, mainly for assessing the nutrients’ and PTEs’ 
labile fractions and bioavailability in soil. Recent DGT 
research focus not only on the nutrients’ bioavailability in 
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agricultural soils, mostly P, Se, K, Mn, and nitrogen com-
pounds, but also on the soil and plant contamination with 
potentially toxic elements, such as Hg, Cd, Pb, Zn, Cu, Cr, 
and As. Most of the reviewed literature reported significant 
positive correlations of the DGT labile fraction with the 
concentration in soil solution and with the bioaccumulated 
concentrations of the studied analytes in various biologi-
cal indicators. In order to obtain accurate results, specific 
binding and diffusive layers were developed for certain ana-
lytes, such as Hg, Cd, Zn, P, and Se, although, in most cases, 
Chelex-based binding gels for cations and ferrihydrite-based 
hydrogels for oxyanions were mainly used. Generally, the 
DGT technique was more predictive for the soil mobility 
and bioaccumulation rates of the analytes than the classi-
cal extraction and fractionation methods, while being more 
compliant to the safety and environmental requirements.

Currently, studies on DGT deployments in situ are limited 
mainly to flooded soils. However, the development of DGT 
for in situ deployment for non-flooded soils is particularly 
interesting. Clear procedures for controlling soil parameters 
during the DGT deployments should be established for this. 
Another possible future development is the production of 
tools capable of expanding the number of target analytes 
that can be simultaneously determined.

Because DGT has several limitations in mimicking some 
key processes in dynamic environments, future research 
to link DGT results with bioassays and equilibrium-based 
methods will offer a more complete understanding of ele-
ment bioavailability. Although DGT is a very promising 
technique and has several unique features which offers 
information on element bioavailability and toxicity that can 
be integrated to improve the regulatory work in toxicologi-
cal and environmental fields, extensive research to produce 
larger datasets is still necessary (Guan 2019).

DGT as a passive sampling tool is already well integrated 
in the general tendency in analytical chemistry to achieve 
greener methodologies. It can improve the limits of quanti-
fication, eliminate the interferences by separation of analytes 
from the complex matrices, thus contributing to the improve-
ment of the performances of analytical methods, reduces 
the number of necessary steps of analytical procedures, 
can replace or eliminate the use of toxic reagents in sample 
preparation, and can be used for performing multi-parameter 
analysis. Since different binding gels must still be used for 
the analysis of different nutrients/PTEs, the production of 
gels capable of expanding the number of target analytes 
simultaneously determined can be a future development.
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