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Abstract
Background Definitions of aggressive MS employ clinical and MR imaging criteria to identify highly active, rapidly pro-
gressing disease courses. However, the degree of overlap between clinical and radiological parameters and biochemical 
markers of CNS injury is not fully understood. Aim of this cross-sectional study was to match clinical and MR imaging 
hallmarks of aggressive MS to serum/CSF markers of neuroaxonal and astroglial injury (neurofilament light chain (sNfL, 
cNfL), and glial fibrillary acidic protein (sGFAP, cGFAP)).
Methods We recruited 77 patients with relapsing–remitting MS (RRMS) and 22 patients with clinically isolated syndrome. 
NfL and GFAP levels in serum and CSF were assessed using a single-molecule-array HD-1-analyzer. A general linear model 
with each biomarker as a dependent variable was computed. Clinical and imaging criteria of aggressive MS, as recently 
proposed by the ECTRIMS Consensus Group, were modeled as independent variables. Other demographic, clinical or 
laboratory parameters, were modeled as covariates. Analyses were repeated in a homogenous subgroup, consisting only of 
newly diagnosed, treatment-naïve RRMS patients presenting with an acute relapse.
Results After adjusting for covariates and multiplicity of testing, sNfL and cNfL concentrations were strongly associated 
with the presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.00008;  pcNfL = 0.004) as well as the presence of infraten-
torial lesions on MRI (psNfL = 0.0003;  pcNfL < 0.004). No other clinical and imaging criteria of aggressive MS correlated 
significantly with NfL or GFAP in serum and CSF. In the more homogeneous subgroup, sNfL still was associated with the 
presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.001), presence of more than 20 T2-lesions (psNfL = 0.049) as well as 
the presence of infratentorial lesions on MRI (psNfL = 0.034), while cNfL was associated with the presence of ≥2 gadolinium-
enhancing lesions (psNfL = 0.011) and presence of more than 20 T2-lesions (psNfL = 0.029).
Conclusions Among proposed risk factors for an aggressive disease course, MRI findings but not clinical characteristics 
correlated with sNfL and cNfL as a marker of neuroaxonal injury and should be given appropriate weight considering MS 
prognosis and therapy. No significant correlation was detected for GFAP alone.
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Introduction

Over the past decades, the phenotypes of relapsing–remit-
ting and primary progressive multiple sclerosis (MS) 
have been intensively studied [1]. More recently, sev-
eral attempts have been made to identify a subgroup of 
patients with a particularly aggressive disease course and 
a rapid accumulation of significant disability [2]. Early 
access to high efficacy therapies can slow down dis-
ease progression and prevent severe long-term disability 
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accumulation [2]. Therefore, tools to early identify those 
patients at risk are urgently needed.

Clinical parameters of disease activity such as num-
ber and severity of relapses, Expanded Disability Status 
Scale (EDSS) deterioration, or the achievement of EDSS 
milestones as well as treatment failure have been pro-
posed as markers for aggressive disease [2]. Increasingly, 
MRI activity markers such as new or enlarging T2-hyper-
intense lesions or the presence of gadolinium-enhancing 
lesions (Gd+) are integrated in defining an aggressive 
disease course [2]. However, a major drawback of com-
monly applied definitions of an aggressive MS course is 
the need for either retrospective assessment or a long-
term prospective observation, delaying the identification 
of aggressive disease courses and, therefore, the initiation 
of highly effective therapies [2].

Recently, the European Committee for Treatment and 
Research in Multiple Sclerosis (ECTRIMS) consensus 
group highlighted clinical and paraclinical parameters 
(e.g., symptoms at first relapse, relapse severity and 
recovery, EDSS ≥ 3 in the first year, presence of spinal 
cord and infratentorial lesions, gadolinium-enhancing 
lesions as well as lesion load) as likely relevant for the 
identification of aggressive MS [2]. Still, the extent to 
which these conventional markers are matched to the 
degree of neuroaxonal and astroglial damage remains 
unclear.

On a pathophysiological level, an aggressive MS dis-
ease course would be associated with more pronounced 
neuroinflammation and neurodegeneration and thus with 
higher serum/CSF concentrations of neuroaxonal and 
astroglial injury markers. Serum/CSF concentrations of 
neurofilament light chain (NfL) and glial fibrillary acidic 
protein (GFAP) increase subsequently to neuroaxonal or 
astroglial damage [3, 4] and are, therefore, strong candi-
dates as biochemical markers of aggressive MS. The cor-
relation of clinical and MRI hallmarks of increased MS 
disease activity with biochemical markers of CNS injury 
could facilitate in the process of establishing defining 
criteria of an aggressive MS disease course, and provide 
pathophysiological validation.

Aim of this study was to investigate the association 
between hallmarks of aggressive MS disease activity, as 
defined by the ECTRIMS Consensus Group, and mark-
ers of neuroaxonal and astroglial injury in the serum and 
CSF in people with MS (pwMS). In addition, pwMS with 
defined elevated values for serum NfL and serum GFAP 
as well as the combination of both are characterized in 
order to better understand the predictive value of both 
biomarkers.

Methods

Study population

Patients were recruited between October 2017 and December 
2020 at the Department of Neurology, University Hospital 
Frankfurt, where they were referred to due to suspected 
MS based either on a clinical observation or based on MRI 
imaging results or, if they already had an established MS 
diagnosis, due to a novel clinical/imaging finding. Subjects 
were included in the study if they were ≥18 years old, agreed 
to participate, were scheduled for a clinically indicated 
lumbar puncture and the diagnostic workup resulted in 
the diagnosis of a relapsing–remitting multiple sclerosis 
(RRMS) or clinically isolated syndrome (CIS) according to 
the 2017 revision of the McDonald criteria [5]. The study 
was performed in accordance with the Code of Ethics of 
the World Medical Association (Declaration of Helsinki) 
for experiments involving humans and was approved by the 
local ethics committee at the University Hospital Frankfurt. 
Written informed consent was obtained from all subjects. All 
subjects underwent a neurological examination, laboratory 
tests, lumbar puncture, and MR-imaging as part of the 
clinical routine. Serum and CSF samples were obtained 
during a clinically scheduled sample collection. Degree of 
physical disability was evaluated by a neurologist with the 
Kurtzke EDSS [6]. MR-imaging data were examined by 
specialized neuroradiologists (M.H. and K. W.) (Table 1).

Serum and CSF measurements

Blood tubes containing coagulation activating agent 
(S-Monovette, 4.7  ml, Sarstedt) as well as CSF tubes 
(Greiner PS, 14 ml) were used for blood/CSF sample col-
lection. Only CSF samples with erythrocyte count below 
500/μl were included. Samples were centrifuged at 3000 rpm 
for 10 min, pipetted and frozen within 60 min of collection 
at −20 °C according to an established procedure reported 
in previous studies from our and other working groups 
[28–35]. Every 4 weeks the collected samples were moved 
to a −80 °C freezer, where they remained frozen until the 
final laboratory measurements. The serum and CSF samples 
were sent to the Department of Neurology at the University 
of Mainz for NfL and GFAP quantification. All laboratory 
technicians performing the measurements were blinded to 
the clinical data. The Single Molecule Array (SIMOA) HD-1 
analyzer  (Quanterix®) was utilized to determine NfL and 
GFAP levels in serum and CSF using the Neurology 4-Plex 
A Advantage Kit  (Quanterix®) according to the manufac-
turer’s instructions. The NfL and GFAP values were meas-
ured with two different kit LOTs. The inter-LOT Coefficient 
of Variability (CV) for the two control samples with high 
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and low concentration was below 10%. In CSF, manually 
counted cell counts for leukocytes and erythrocytes per 
 mm3, CSF/serum albumin quotient (Qalb), and intrathecal 
Immunoglobulin G (IgG) synthesis were assessed. The Qalb 
as a marker of Blood–brain barrier dysfunction was inter-
preted based on the age-adjusted upper reference limit as 
introduced by Reiber et al. (Qalb = 4 + Age/15) [36].

Magnetic resonance imaging (MRI)

MRI was performed in clinical routine with acquisition 
of at least a sagittal 3D double inversion recovery (DIR), 
a 2D T2-weighted as well as 2D and 3D fluid-attenuated 
inversion recovery (FLAIR) sequence. Furthermore, a 
gadolinium-contrast enhanced T1-weighted sequence was 
assessed. Further adjustments to the MRI protocol were done 
according to the respective clinical indication. MRI field 
strength varied between 1.5 and 3 Tesla. T2-lesion count 
was assessed by two experienced neuroradiologists (M.H. 
and K.W.). Lesion volume was assessed semi-automatically 
using 3D sequences [29]. In total, MRI of the brain was 
available in 94 patients (95%) and spinal cord MRI was 
available in 55 patients (55%).

Statistical analysis

One-way analysis of variance (ANOVA), Spearman rank 
correlations, non-parametric Mann–Whitney U tests and 
Pearson’s Chi-squared tests with significance level set at 
p < 0.05 were used to identify associations between NfL in 
serum (sNfL) and CSF (cNfL), as well as GFAP in serum 

(sGFAP) and CSF (cGFAP), with baseline demographic, 
clinical, imaging and laboratory characteristics such as 
age, sex, disease phenotype, body-mass index (BMI), 
EDSS, gadolinium-enhancing lesions (Gd+), presence of 
acute relapse, blood-CSF barrier dysfunction, CSF leuko-
cytes count, intrathecal synthesis of immunoglobulin G 
(IgG), positive oligoclonal bands and CSF/blood albumin 
quotient. Baseline characteristics with significant associa-
tion were later modeled as covariates in the general linear 
model (GLM) for the respective biomarker. In the primary 
analysis, for each of the potential predictors of aggressive 
disease course (Table 3, 4) four GLMs with each of the bio-
markers sNfL, cNfL, sGFAP and cGFAP as a dependent 
variable were computed, while controlling for the baseline 
characteristics. Before entering the analysis, serum and CSF 
parameters were log-transformed. Results were corrected for 
false-discovery rate (FDR) using the Benjamini–Hochberg 
procedure. Adjusted and corrected for multiple comparisons, 
q values for each predictor were calculated and significance 
level was set at q < 0.05. In an exploratory, secondary analy-
sis, based on recent literature, pwMS with sNfL > 10 pg/ml 
[37], sNfL in the 4th quartile (>17.5 pg/ml), sGFAP in the 
4th quartile (>109 pg/ml) as well as patients with combined 
elevation of sNfL and sGFAP in the 4th quartile [38] were 
additionally assessed and characterized in regard to baseline 
parameters and presence of the ECTRIMS criteria for an 
aggressive disease course (Table 5, 6).

To explore if our results would be confirmed if the 
analysis is restricted only to a more homogenous subgroup, 
we compared sNfL, sGFAP, cNfL, cGFAP and z-scores 
for sNfL computed based on the references suggested by 

Table 1  Potential red flags and parameters of aggressive disease

a  With additional research and validation, one or more of the following characteristics, along with physician judgement, may be considered a red 
flag for poor short- and long-term prognosis and thus could imply initiation of a highly effective therapy
b  Potential parameters associated with more aggressive disease course (anyone or a combination of these characteristics may signal aggressive 
disease, and all are deserving of further exploration and if possible, validation in the context of assessing severity of disease and poor prognosis)

Probable red  flagsa Potential  parametersb

Motor symptoms at onset [7, 8] Male sex [9, 10]
Age > 35 years at symptom onset Older age at onset (>35 or >40 years) [10–12]
EDSS ≥ 3.0 in the first year Severe relapses of ≥1 point increase in EDSS or ≥2 points in any functional system
Presence of pyramidal signs in the first year of disease 

evolution [12]
Affecting motor, cerebellar, cognition, or sphincter functions [11, 13–17]

 ≥2 Gd+ lesions at the time of disease onset [18, 19] High relapse frequency (≥3) within the first 2 years after MS onset [20]
High T2 lesion load [21, 22]
[0, 1–3, 4–9, ≥10, ≥20 T2 lesions]

Poor recovery from the first two relapses [7]

Presence of infratentorial lesions [23, 24]
Presence of ≥1 spinal cord lesion, symptomatic or asymptomatic [23, 25, 26]
Elevated IgG Index [27]
[oligoclonal bands]
If a relapse has led to a severe deficit relevant to everyday life after exhaustion of 

relapse therapy
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Benkert et al. [39] for RRMS groups defined by the factors 
identified as significant predictors in the initial analysis 
(presence of at least 2 Gd+ lesions; presence of infratentorial 
lesions; presence of >20 T2 lesions in brain MRI). This 
analysis was computed using independent samples t-tests 
with Levene’s tests for equality of variances and included 
only a homogeneous subgroup of n = 59 newly diagnosed, 
treatment-naïve RRMS patients without any previous 
disease-modifying treatment, presenting with an acute 
relapse and available samples for all four biomarkers sNfL, 
cNfL, sGFAP, cGFAP.

Results

Patient characteristics

In total 99 Patients with relapsing–remitting multiple 
sclerosis (RRMS; n = 77) or clinically isolated syndrome 
(CIS; n = 22) according to the revised McDonald criteria 
from 2017 [5] were included in the study. The patient 
characteristics were: 77/99 female (78%) and 22/99 male 
patients (22%) with mean age of 34 years (SD ± 9.5 years) 
and mean EDSS of 1.9 (SD ± 1.2). Out of the total 99 
patients in this study, 95 patients were first diagnosed with 
either RRMS or CIS, 84 of whom having recently suffered 
an acute relapse, and 11 patients that underwent lumbar 
punction solely because of recent MRI abnormalities 
without an acute clinical correlate. The remaining 4 
patients were already under disease-modifying therapy with 
previous diagnosis of RRMS (2 patients under natalizumab, 
1 under ocrelizumab, 1 under fingolimod) and received 
lumbar puncture either to rule out progressive multifocal 
leukoencephalopathy (PML, n = 2) or because of an atypical 
clinical presentation (n = 2). Time between relapse onset and 
assessment of blood samples was less than 6 weeks, in most 
patients within 2 weeks after relapse onset. When necessary, 
relapses were treated with intravenous methylprednisolone 
but only after blood and CSF samples were taken. Time 
between sample acquisition and MRI image acquisition 
was 4.9  days. Demographic, clinical, and laboratory 
characteristics and their respective association with serum/
CSF biomarker concentrations are displayed in Table 2.

Markers of neuroaxonal and astroglial injury

For age and biological sex, no significant correlations 
were found for all the assessed biomarkers. Higher NfL 
concentration in serum was significantly associated with 
the disease phenotype (p = 0.001, U = 424), with higher 
concentrations in RRMS-patients (median 12.32 pg/ml, IQR 
12.71 pg/ml) than in CIS-patients (median 6.97 pg/ml, IQR 
6.18 pg/ml). Moreover, sNfL concentration increased with 

CSF leukocyte count (r = 0.29, p = 0.004) and was higher in 
patients with positive oligoclonal bands (p = 0.034, U = 560; 
median 11.69 pg/ml with IQR 11.27 pg/ml vs. 8.39 pg/
ml with IQR 6.89 pg/ml). The sNfL concentration was 
significantly higher in patients with gadolinium-enhancing 
lesions than in those without (p = 0.041, median 12.95 pg/ml 
with IQR 14.83 pg/ml vs. 8.72 pg/ml with IQR 6.87 pg/ml).

Disease phenotype also was significantly associated 
with higher CSF NfL concentrations (p = 0.001), with 
higher concentrations in RRMS (median 2082 pg/ml, IQR 
2652.07 pg/ml) than in CIS patients (median 1025.37 pg/
ml, IQR 1141.43 pg/ml). Furthermore, CSF NfL showed a 
significant positive correlation with CSF leukocytes count 
(r = 0.36, p < 0.0001).

Serum GFAP showed a negative correlation with BMI 
(r = −0.23, p = 0.03). A positive correlation between sGFAP 
and EDSS (r = 0.21, p = 0.04) was found. Higher serum 
GFAP concentration was significantly associated with the 
presence of an acute relapse (p = 0.02, median 83.01 pg/ml 
with IQR 50.14 pg/ml vs. 8.75 pg/ml with IQR 8.86 pg/ml). 
For cGFAP, a negative correlation with CSF/blood albumin 
quotient (r = −0.06, p = 0.04) was found.

Matching biomarker concentrations to criteria 
of an aggressive MS disease course

Increased sNfL concentrations were strongly associated 
with the presence of ≥2 Gd+ lesions (p = 0.00008; 
q = 0.0035) as well as with the presence of infratentorial 
lesions (p = 0.0003; q = 0.0065), after adjusting for those 
covariates found significant in the primary analysis 
(see Table 1). The presence of 20 or more T2 lesions in 
brain MRI was also associated with increased serum NfL 
(p = 0.018), but this result was rendered insignificant by 
the correction for multiple comparisons (q = 0.16). These 
associations were also found in treatment naïve patients with 
relapsing–remitting MS suffering acute relapse with higher 
sNfL levels in patients with at least 2 Gd+ lesions (p = 0.001, 
1.27 ± 0.27 pg/ml vs. 1.04 ± 0.21 pg/ml) as well as in patients 
with infratentorial lesions (p = 0.034; 1.24 ± 0.26 pg/ml vs. 
1.08 ± 0.26 pg/ml) and with 20 T2-lesions or more in brain 
MRI (p = 0.049; 1.26 ± 0.25 pg/ml vs. 1.11 ± 0.27 pg/ml). 
Furthermore, sNfL z-scores in the RRMS subgroup were 
found to be significantly increased in patients with at least 
2 gadolinium enhancing lesions (p = 0.013; 2.33 ± 0.88 
vs. 1.62 ± 1.07) and in patients with infratentorial lesions 
(p = 0.03; 2.26 ± 0.89 vs. 1.67 ± 1.12).

The cNfL concentration showed significant correlations 
with presence of ≥2 Gd+ lesions (p = 0.004; q = 0.048) as 
well as with the presence of infratentorial lesions (p < 0.004; 
q = 0.048). Presence of ≥20 T2 lesions in brain MRI showed 
a correlation with cNfL levels (p = 0.019), which did not 
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remain significant after correcting for multiple comparisons 
(q = 0.15). After controlling for covariates and correction for 
multiple comparisons, none of the clinical and paraclini-
cal markers for aggressive MS could be predicted either 
with sGFAP or cGFAP. In the smaller subgroup, increased 
cNfL was strongly associated with the presence of ≥2 Gd+ 

lesions (p = 0.011, 3.52 ± 0.42 pg/ml vs. 3.25 ± 0.35 pg/ml) 
as well as presence of at least 20 T2-brain lesions (p = 0.029; 
3.55 ± 0.36 pg/ml vs. 3.31 ± 0.40 pg/ml) (Table 3, 4; Fig. 1).  

Table 2  Demographic, clinical, and laboratory characteristics of the sample in relation to serum and CSF biomarkers

RRMS relapsing–remitting multiple sclerosis, CIS clinically isolated syndrome, EDSS Expanded Disability Status Scale, Gd gadolinium, MRI 
magnetic resonance imaging, CSF cerebrospinal fluid, IgG immunoglobulin G, NfL neurofilament light, GFAP glial fibrillary acidic protein, SD 
standard deviation
The patients were compared with regard to their demographic, clinical and laboratory characteristics using one-way analysis of variance 
(ANOVA, a) as well as Spearman rank correlation (b) and Chi-square tests (c), if not indicated otherwise, two-sided. Significance level was set at 
p < 0.05 (bold). Non-significant p values are provided for every biomarker without further data
1  Serum and CSF NfL values were higher in RRMS patients compared to CIS patients
2  Serum GFAP values decrease with higher BMI
3  Serum GFAP increases with higher EDSS
4  Higher Serum NfL values were find in patients with Gd-enhancing lesions, post-hoc Fisher’s Least Significant Difference (LSD) analysis p 
value is provided in brackets between the “yes” and the “no” subgroup
5  Serum GFAP values were higher in patients with acute relapse
6  Serum and CSF NfL showed a positive correlation with CSF leukocytes count
7  Serum Nfl values were higher when positive oligoclonal bands were found
8  CSF GFAP decreases with higher CSF/blood albumin quotient

Patient sample
n = 99

Serum NfL CSF NfL Serum GFAP CSF GFAP

Baseline data
Age (years), mean (SD) 34.0 (±9.5) r = −0.004

p = 0.97b
r = −0.066
p = 0.52b

r = −0.017
p = 0.87b

r = 0.127
p = 0.21b

Female, n (%) 77 (77.7) 0.16c 0.55c 0.13c 0.08c

Male, n (%) 22 (22.2)
RRMS, n (%) 77 (77.7) p = 0.001c,1

U = 424
p = 0.001c,1

U = 454
0.09c 0.54c

CIS, n (%) 22 (22.2)
BMI (kg/m2), mean (SD) 25.0 (±5.2) r = −0.03

p = 0.78b
r = 0.09
p = 0.40b

r = −0.232

p = 0.03b
r = −0.12
p = 0.28b

Clinical and laboratory data
EDSS, mean (SD) 1.9 (±1.2) r = 0.08

p = 0.45b
r = 0.03
p = 0.75b

r = 0.213

p = 0.04b
r = 0.07
p = 0.48b

Gadolinium-enhancing T1-weighted lesions on MRI, n (%)
 Yes 58 (58.6) p = 0.041a

pLSD = 0.0174
0.101a 0.87a 0.44a

 No 35 (35.4)
 Gd not administered 6 (6.1)

With acute relapse, n (%) 86 (86.9) 0.23c 0.42c p = 0.02c,5

U = 661
0.92c

Blood-CSF barrier dysfunction, n (%) 19 (19.2) 0.76c 0.69c 0.29c 0.37c

CSF leukocytes count  (mm−3), mean (SD) 9.9 (±12.6) r = 0.296

p = 0.004b
r = 0.366

p < 0.0001b
r = −0.03
p = 0.75b

r = −0.07
p = 0.49b

Intrathecal synthesis of IgG, n (%) 60 (60.6) 0.15c 0.33c 0.64c 0.27c

Positive oligoclonal bands, n (%) 90 (90.9) p = 0.034c,7

U = 560
0.11c 0.19c 0.71c

CSF/blood albumin quotient, mean (SD) 5.0 (±2.1) r = 0.02
p = 0.86b

r = 0.19
p = 0.06b

r = −0.06
p = 0.55b

r = 0.218

p = 0.04b
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Characterization of pwMS with elevated sNfL 
and sGFAP levels

To better understand which characteristics distinguish 
patients with the highest sNfL and sGFAP concentrations 

from the other patients, we extracted the data for the 
subgroups with elevated sNfL > 10  pg/ml, sNfL in the 
highest quartile (>17.5  pg/ml), sGFAP in the highest 
quartile (>109  pg/ml), and the combined elevation of 
both biomarkers. Tables 5 and 6 present the respective 

Table 3  Clinicoradiological 
markers of aggressive MS 
disease and NfL

EDSS Expanded Disability Status Scale, Gd+ gadolinium-enhancing lesion, NfL neurofilament light chain, 
FDR false discovery rate, n.s. not significant
Potential clinical and imaging predictors of aggressive MS disease course computed with the biomarkers 
sNfL and cNfL as a dependent variable, while controlling for the baseline characteristics. Before analysis, 
serum and CSF parameters were log-transformed. Results were corrected for false-discovery rate (FDR) 
using the Benjamini–Hochberg procedure. Adjusted and corrected for multiple comparisons q values for 
each predictor were calculated and significance level was set at q < 0.05. Significant results are highlighted 
in bold

Serum NfL CSF NfL

p q (FDR) p q (FDR)

Motor symptoms at onset 0.476 n.s 0.378 n.s
Pyramidal signs in first year 0.355 n.s 0.335 n.s
Motor, cerebellar, cognitive or sphincter function 0.464 n.s 0.727 n.s
EDSS > 3 in first year 0.815 n.s 0.262 n.s
Severe relapses > 1 point EDSS 0.849 n.s 0.928 n.s
Poor recovery from first relapse 0.91 n.s 0.77 n.s
2 or more Gd+ lesions 0.00008 0.0035 0.004 0.048
At least one spinal cord lesion 0.295 n.s 0.158 n.s
Presence of infratentorial lesions 0.0003 0.0065 0.004 0.048
Presence of spinal > infratentorial lesions 0.051 n.s 0.108 n.s
More than 10 T2 lesions on brain MRI 0.214 n.s 0.529 n.s
More than 20 T2 lesions on brain MRI 0.018 0.16 0.019 0.15

Table 4  Clinicoradiological 
markers of aggressive MS 
disease and GFAP

EDSS Expanded Disability Status Scale, Gd+ gadolinium-enhancing lesion, GFAP glial fibrillary acidic 
protein, FDR false discovery rate, n.s. not significant
Potential clinical and imaging predictors of aggressive MS disease course computed with the biomarkers 
sGFAP and cGFAP as a dependent variable, while controlling for the baseline characteristics. Before 
analysis, serum and CSF parameters were log-transformed. Results were corrected for false-discovery 
rate (FDR) using the Benjamini–Hochberg procedure. Adjusted and corrected for multiple comparisons q 
values for each predictor were calculated and significance level was set at q < 0.05. Presence of “2 or more 
Gd+ lesions” was defined for two or more Gd+ lesions on brain and/or spinal imaging

Serum GFAP CSF GFAP

p q (FDR) p q (FDR)

Motor symptoms at onset 0.890 n.s 0.240 n.s
Pyramidal signs in first year 0.200 n.s 0.185 n.s
Motor, cerebellar, cognitive or sphincter function 0.666 n.s 0.533 n.s
EDSS > 3 in first year 0.552 n.s 0.122 n.s
Severe relapses > 1 point EDSS 0.571 n.s 0.461 n.s
Poor recovery from first relapse 0.509 n.s 0.101 n.s
2 or more Gd+ lesions 0.877 n.s 0.760 n.s
At least one spinal cord lesion 0.326 n.s 0.712 n.s
Presence of infratentorial lesions 0.194 n.s 0.587 n.s
Presence of spinal > infratentorial lesions 0.961 n.s 0.099 n.s
More than 10 T2 lesions on brain MRI 0.775 n.s 0.856 n.s
More than 20 T2 lesions on brain MRI 0.556 n.s 0.761 n.s
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baseline characteristics as well as the ECTRIMS criteria 
for an aggressive MS disease course compared to the whole 
sample.

Baseline characteristics showed that an elevation of 
sNfL, and even more so the combination of both elevated 
sNfL and sGFAP were exclusively found in patients with 
RRMS and predominantly present in patients with Gd+ 
lesions and an acute relapse. Moreover, with exception of 
“Presence of spinal > infratentorial lesions”, all ECTRIMS 
criteria for an aggressive MS disease course were more 
commonly present if sNfL was elevated in the 4th quartile. 
This finding was predominantly present for the presence of 
2 or more gadolinium-enhancing lesions (83.3% vs. 38.5% 
in total sample), presence of infratentorial lesions on brain 
MRI (75.0% vs. 40.7%), and for more than 20 T2 lesions on 
brain MRI (54.2% vs. 26.0%). An increase of sNfL above 
the cutoff value of 10 pg/ml, as previously introduced in the 
literature [37], showed a similar tendency, though weaker 
discrimination. With the exception of motor symptoms 
at disease onset and at least one spinal cord lesion, the 
combination of increased sNfL and cGFAP selected patients 
with more risk factors for an aggressive MS disease course 
than increased sNfL alone.

Discussion

In patients with aggressive MS, early access to high efficacy 
therapies can slow down the disease progression and prevent 
severe long-term disability accumulation. Moreover, there is 
evidence that the therapeutic window is narrow, suggesting 
early treatment with high efficacy therapies is preferable over 
escalation strategies in patients with aggressive MS disease 
courses [19, 40]. Therefore, the early identification of those 
patients at risk is vital to reduce disability progression 
and preserve life quality. To date, there is no standardized 
definition for aggressive MS, making the early identification 
of patients difficult. The ECTRIMS Consensus group 
discussed risk factors characterizing aggressive MS disease 
courses but it remained unclear to which extent these clinical 
predictors of aggressive MS can be matched to biochemical 
measures of neuroaxonal and astroglial damage.

In recent years, the diagnostic and prognostic utility of 
fluid biomarkers, especially NfL, has been demonstrated 
in MS patients. There is strong evidence that patients 
with higher NfL concentrations are at risk for long-term 
disability [41, 42] with worse clinical and MRI outcome 
[43], developing a higher rate of brain atrophy in the fol-
lowing 2 years compared to patients with lower values [44, 
45]. Extremely high sNfL levels indicate subclinical dis-
ease activity and could drive therapeutic decision making 

Fig. 1  Heat plot. This heat plot diagram shows potential clinical 
and imaging predictors of aggressive MS disease course (lines) with 
NfL and GFAP levels in serum and CSF (columns) analyzed in this 
study. Colors indicate the results of the general linear model pro-
vided as p values with the respective biomarker as a dependent vari-
able, while controlling for the baseline characteristics. It is apparent 

that only imaging parameters correlate with NfL levels in serum and 
CSF, while no significant correlation was found for clinical param-
eters or for GFAP. EDSS = Expanded Disability Status Scale; Gd+ 
MRI = magnetic resonance imaging with gadolinium administration; 
CSF = cerebrospinal fluid; IgG = immunoglobulin G; NfL = neurofila-
ment light; GFAP = glial fibrillary acidic protein
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in individual patients [46]. Furthermore, NfL can help in 
selecting patients with a high probability of a progressive 
disease course [42, 47, 48]. NfL in serum after disease onset 
was also shown to reliably predict NEDA-3 status [48, 49] 
as well as T1-hypointense lesions over a 6-year follow-up 
period [48]. Moreover, NfL can be relevant for therapeutic 
response monitoring: sNfL concentrations of MS patients 
treated with high efficacy therapies as Natalizumab or Fin-
golimod goes back to the level of healthy controls, signifi-
cantly exceeding the amount of decrease in patients treated 
with platform therapies [50–52]. In addition to sNfL, also 
sGFAP has recently shown its complementary potential 
as a prognostic biomarker for future disease progression 
and accelerated gray-matter brain volume loss in pwMS, 
especially when combing the elevation of z-scores of both, 
sNfL and sGFAP [38]. GFAP was shown also to be higher 
in NMOSD compared to MS or MOGAD with increasing 
levels in CSF and serum during acute relapses being associ-
ated with disability. However, astrocytic damage is more 
severe and occurs earlier during acute relapses in NMOSD 
compared to MS, therefore leading to higher concentrations 
of GFAP in CSF and serum and making assessment easier 
[53]. Possibly, this could be one potential explanation of 
the negative findings from our study with regard to GFAP.

How well serum/CSF concentrations of NfL and GFAP 
overlap with the risk factors of aggressive MS proposed by 
the ECTRIMS Consensus group [2] is undetermined. In this 

study, we aimed to match objective measures of neuroaxonal 
and astroglial damage to proposed clinical and paraclinical 
characteristics of patients at risk for an especially severe 
disease burden. This would allow to describe a biopathologi-
cal valid “fingerprint” of aggressive disease course criteria.

We demonstrated that the presence of 2 or more 
gadolinium-enhancing lesions as well as the presence of 
infratentorial lesions is strongly associated with higher 
NfL concentrations as marker for neuroaxonal damage 
in serum as well as CSF after controlling for covariates. 
These findings are in line with the evidence from other 
studies suggesting that these MRI criteria provide relevant 
insight into the individual prognosis already in early 
disease stages and are predictors for essential disease 
activity, disease progression and accumulation of long-
term disability, as recently reviewed in Hoffmann et al. 
[54].

However, no correlations with disability captured 
by EDSS was found, which is in line with the literature 
[47, 55–58], though the reports are inconclusive [55, 
57, 59–61]. Still, none of the clinical risk factors of 
aggressive MS correlated with NfL and GFAP as markers 
of neuroaxonal and astroglial damage. In this study, 
only imaging criteria, but not clinical characteristics 
were significantly associated with serum and CSF NfL 
concentrations in pwMS. Several explanations for these 
results have to be considered.

Table 6  Clinicoradiological markers of an aggressive MS disease course in patients with elevated sNfl and/or sGFAP

RRMS relapsing–remitting multiple sclerosis, CIS clinically isolated syndrome, EDSS Expanded Disability Status Scale, Gd+ MRI magnetic 
resonance imaging with gadolinium administration, CSF cerebrospinal fluid, IgG immunoglobulin G, NfL neurofilament light, GFAP glial 
fibrillary acidic protein, SD standard deviation
Possible predictors of aggressive MS disease course and the respective serum NfL and serum GFAP values of patients in the highest quartiles 
in comparison to all 99 patients. Patients with more than 20 T2 lesions are also included in “more than 10 T2 lesions on brain MRI”. Spinal MR 
imaging was available in 55 out of 99 patients, Gadolinium administration was available in 93 out of 99 patients

All patients
n = 99

4th quartile serum 
NfL, > 17.5 pg/ml
n = 24

4th quartile serum 
GFAP, > 109 pg/ml
n = 24

Serum 
NFL > 10.0 pg/ml
n = 55

Combined 4th 
quartile serum 
NfL & 4th 
quartile serum 
GFAP
n = 9

n % n % n % n % n %

Motor symptoms at onset 15 16.3 5 21.7 7 29.2 13 23.6 1 11.1
Pyramidal signs in first year 21 21.9 8 33.3 12 50 17 30.9 4 44.4
Motor, cerebellar, cognitive or sphincter function 22 22.9 8 33.3 10 41.7 18 32.7 4 44.4
EDSS > 3.0 in first year 19 20.7 6 27.3 6 25 13 23.6 2 22.2
Severe relapses > 1 point EDSS 35 36.5 11 45.8 15 62.5 23 41.8 5 55.6
Poor recovery from first relapse 22 23.7 9 37.5 8 33.3 16 29.1 3 33.3
2 or more Gd+ lesions 35 38.5 20 83.3 12 50.0 28 50.9 6 66.7
At least one spinal cord lesion 41 45.1 11 45.8 14 58.3 24 43.6 4 44.4
Presence of infratentorial lesions 37 40.7 18 75.0 12 50.0 31 56.4 7 77.8
Presence of spinal > infratentorial lesions 27 29.9 4 16.7 7 29.2 12 21.8 1 11.1
More than 10 T2 lesions on brain MRI 17 17.7 5 20.8 3 12.5 10 18.2 0 0
More than 20 T2 lesions on brain MRI 25 26.0 13 54.2 10 41.7 19 34.5 6 66.7
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First, the higher interrater variability of clinical 
characteristics with better objectivity of imaging findings 
in contrast to clinical characteristics needs to be considered. 
Especially, the individual EDSS rating can bear significant 
interrater variability [62], whereby recording of cognitive 
or vegetative deficits frequently is only rudimentarily 
performed.

Another explanation, however, could be that clinical 
criteria are less appropriate for assessing the extent of 
neuroaxonal damage. If they affect significant regions such 
as the corona radiata or brainstem, even small cerebral 
lesions can result in pronounced clinical symptoms, with 
less NfL being released than in a cumulatively high lesion 
load with only subtle clinical symptoms. On the other hand, 
patients with a higher lesion load might still have enough 
cerebral reserves available allowing them to compensate 
for the corresponding neuroaxonal damage and exhibit only 
low levels of neurological deficits. This “clinical-imaging 
mismatch” or “clinico-radiological paradox” [63] might be 
a possible explanation of our findings. Additional studies 
with larger patient cohorts are needed for further evaluation.

Fluid biomarkers as NfL or GFAP for assessment of 
aggressive MS have some advantages over MRI marker 
of disease activity. It has to be considered that MRI 
parameters (e.g., lesion load; exception: Gd+ lesions) 
are mostly results of previous disease activity, while fluid 
biomarkers as NfL reflect ongoing disease activity and are 
elevated up to 6 years before the first clinical manifestation 
[64, 65]. Moreover, assessment of brain atrophy as well as 
cortical lesions is not widely available and therefore easily 
accessible objective biomarkers for evaluation of the risk 
of aggressive MS are warranted. The limited correlation 
between clinical disability and MRI parameters (clinico-
radiological paradox) [63, 66, 67] indicates that treatment 
decisions based solely on clinical presentation could be 
insufficient [66]. In addition, only brain MRI is performed 
regularly for disease monitoring, but the assessment of 
spinal cord MRI is much less frequent. Here, NfL could 
provide additional diagnostic information as it reflects actual 
neuroaxonal damage in the whole CNS and thus takes into 
consideration also disease activity in the spinal cord [65], 
though it has to be considered that no differentiation between 
neurodegenerative and inflammatory processes leading to an 
increase of the NfL level is possible.

Interestingly, the characterization of selected pwMS 
with elevated levels of sNfL showed a similar, moderately 
increased presence of risk factors for an aggressive disease 
course in patients with a cutoff > 10 pg/ml and patients with 
a cutoff > 17.5 pg/ml sNfL (4th quartile in study sample) 
when compared to the whole study sample. This underlines 
the value of sNfL as a driver and complementor of treatment 
decisions in MS, especially for ambiguous cases. However, 
the findings indicate a more linear relationship for the 

radiological items “presence of 2 or more Gd+ lesions”, 
“presence of infratentorial lesions”, and “more than 20 T2 
lesions on brain MRI”, which highlights the strength of the 
biomarker sNfL in correlating objective, structural CNS 
injury (neuroaxonal injury) with increasing blood levels. 
This finding goes well in agreement with the results of the 
primary analysis, that showed best correlations for sNfL 
and cNfL with objective measures of structural CNS injury. 
However, we did not find any correlation of GFAP with 
clinicoradiological characteristics of aggressive MS though 
studies revealed release of GFAP in CSF and serum through 
CNS damage [68]. Still, some studies reported that GFAP 
break down product concentrations are higher in serum than 
concentration of full length GFAP, therefore making it more 
sensitive to detect astrocytic damage [53, 69]. While it is not 
entirely clear whether reactive astrocytosis might contribute 
majorly to increased serum GFAP levels in MS [70], there 
are several studies suggesting direct associations between 
astrocyte damage and elevated GFAP serum concentrations 
[71]. More precisely, evidence from studies on traumatic 
brain injury and stroke show increasing GFAP blood levels 
already few hours after the corresponding damage, thus 
suggesting GFAP release due to damaged astrocytes [38, 
72]. Furthermore, in MS, studies revealed higher EDSS 
scores in patients with higher GFAP levels, supporting the 
hypothesis of increasing GFAP due do astrocytic damage 
[38].

Our study is not without limitations. MRI was performed 
in clinical routine; therefore, no information on brain 
atrophy or cortical lesions was applicable, which is why no 
correlation of brain or lesion volume with NfL or GFAP 
could be evaluated. However, as MRI was assessed in 
clinical routine, especially spinal MRI was not available in 
all patients. Moreover, 4 patients already were treated with 
high efficacy drugs, therefore, GFAP and NfL level could 
be decreased in those patients compared to patients without 
treatment at time of measurement, influencing the results. 
However, the secondary analysis focusing only on treatment-
naïve patients confirmed our findings. Furthermore, no 
longitudinal follow-up was performed, though recent 
studies revealed that NfL levels already increase before 
clinical relapse and can progression independent of relapse 
activity [73]. It could be also argued that the temporary 
freezing at −20 °C could affect our findings. However, the 
transfer between the −20 and −80 °C freezer was done 
within few minutes while always ensuring that no thawing 
occurs. Furthermore, several studies suggested that NfL 
concentration is especially robust to factors such as delayed 
freezing (up to 8 days) and repetitive thawing (up to 4 thaws) 
[28, 74–76]. Several works have been already published 
following this algorithm [28–33].



3522 Journal of Neurology (2024) 271:3512–3526

Conclusions

The findings of the current study indicate that MRI param-
eters but not clinical parameters considered risk factors of an 
aggressive disease course in pwMS correlate strongly with 
NfL as a marker of neuroaxonal injury in serum and CSF. No 
such correlation was apparent for GFAP as a marker of astro-
glial injury. MRI findings should be given appropriate weight 
when deciding on the type of disease-modifying therapy.
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