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INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of 
morbidity and mortality in developed countries. Coronary 
computed tomography angiography (CCTA) is a rapidly 
evolving diagnostic imaging modality. Multiple clinical 
studies have demonstrated its efficacy for diagnosing and 
stratifying patients with suspected coronary artery disease 
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Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients 
with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques 
have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary 
stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically 
significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and 
monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT 
attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events. 
Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plaque modification. 
However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader 
clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by 
technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the 
potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape 
of quantitative plaque analysis in CCTA and explores its applications and limitations.
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(CAD). Recent guidelines from American and European 
societies have endorsed CCTA as an initial testing modality 
for assessing symptomatic CAD [1,2].

One of CCTA’s key strengths is its ability to characterize 
coronary atherosclerotic plaques. Owing to its three-
dimensional (3D), noninvasive nature, CCTA enables the 
comprehensive assessment of coronary plaques throughout 
the entire coronary tree. Conventional clinical assessment 
using CCTA involves visual estimation and qualitative 
evaluations of stenosis and plaque type. However, recent 
advancements in image analysis and artificial intelligence 
(AI) techniques have enabled the comprehensive 
quantitative analysis of plaque composition, volume, and 
degree of stenosis. This quantitative plaque assessment can 
significantly improve the diagnosis of CAD and the prediction 
of subsequent cardiac events. Furthermore, serial evaluation 
of quantitative plaque characteristics facilitates evaluating 
treatment response to drugs that favorably modulate 
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The agreement for the minimal luminal area between 
the deep learning algorithm and IVUS evaluation was 
strong, with an interclass correlation coefficient of 0.904 
(Fig. 1). In addition, Griffin et al. [10] demonstrated the 
effectiveness of AI-based software that enables the rapid 
and accurate identification and exclusion of high-grade 
stenosis, with good agreement with QCA. Recently, AI-
based coronary stenosis quantification software exhibited 
a high discriminatory ability for anatomic stenosis across 
vessel segments, including area under the receiver operating 
characteristic curve (AUC) values of 0.92 and 0.93 at 50% 
and 70% thresholds [11]. Adopting a fully automated CT 
stenosis evaluation can enhance the utility of CCTA, enabling 
faster, more reproducible, and more accurate clinical 
reporting.

Quantitative Assessment of Lumen Density to Detect 
Hemodynamically Significant Lesion: TAG and CDD

Previous invasive studies have revealed significant 
disparities between angiographically and functionally 
significant lesions, as assessed by the fractional flow reserve 
(FFR) [4]. A similar gap exists between CCTA and invasive 
FFR. Recent developments in quantitative analysis have 
demonstrated the potential of CCTA to evaluate the functional 
significance of lesions, most notably using CT-FFR, especially 
in patients with intermediate stenosis, which necessitates 
further assessment of functional significance [12,13]. The 
use of CT-FFR in intermediate lesions on CCTA has a Class 
IIa recommendation in the American College of Cardiology/
American Heart Association guidelines for patients with 
chest pain syndromes and a strong recommendation in the 
guidelines of the European Society of Cardiology [1,2]. 
Although CT-FFR is a widely used tool for assessing the 
hemodynamic significance of lesions, it has limitations. CT-
FFR entails additional costs and nitroglycerin administration 
and requires high-quality contrast-enhanced CT images 
free of artifacts or noise. Furthermore, a recent multicenter 
observational study showed that CT-FFR has a low positive 
predictive value (PPV) and is associated with a higher cost 
than conventional stress-imaging approaches [14]. Only 
one vendor, HeartFlow, currently provides CT-FFR based on 
computational fluid dynamics. Recently, other approaches 
assessing the functional significance of lesions using 
machine learning and deep learning applied to coronary 
plaques have shown a high correlation with invasive FFR 
[15,16]. An alternative tool, CT myocardial perfusion, can 
also offer a functional assessment of CAD [17]. However, 

coronary plaques and enables effective monitoring of CAD 
progression.

This review provides a comprehensive overview of prior 
studies, future applications, and potential limitations of 
quantitatively assessing coronary artery plaques using CCTA.

Application of Quantitative Plaque Analysis in 
Stenosis Evaluation

Numerous clinical studies have consistently reported the 
high diagnostic accuracy of CCTA, particularly in excluding 
obstructive CAD among symptomatic patients with a low-to-
intermediate pretest probability of CAD. However, traditional 
visual assessment often overestimates the degree of stenosis 
compared to invasive reference standards [3]. Moreover, 
relying solely on the anatomical evaluation of stenosis 
severity has demonstrated limited diagnostic accuracy 
in identifying hemodynamically significant stenoses [4]. 
Consequently, recent research has focused on addressing the 
limitations of CCTA for stenosis evaluation.

Quantitative Assessment of Stenosis Severity
Conventional qualitative analysis of coronary 

atherosclerotic lesions is based on different categories 
of diameter stenosis: none (no visible stenosis), minimal 
(1%–24% estimated stenosis of the coronary luminal 
diameter), mild (25%–49%), moderate (50%–69%), severe 
(70%–99%), or occluded (100%) [5]. Recent advances 
in CT workstations and specialized plaque analysis (PA) 
software have facilitated semi-automated or fully automated 
quantification of coronary artery stenosis. For example, 
Boogers et al. [6] demonstrated that automated quantification 
of stenosis severity on CCTA exhibited a good correlation 
with quantitative coronary angiography (QCA) and improved 
diagnostic accuracy compared to visual assessment alone. 
Furthermore, machine learning and deep learning enable a 
fully automated stenosis evaluation [7]. In a study by Hong 
et al. [8] employing a deep learning approach featuring 
the M-net CNN architecture, a fully quantitative assessment 
of area stenosis and diameter stenosis demonstrated an 
outstanding correlation (r = 0.984 for minimal luminal area 
and r = 0.957 for diameter stenosis) with expert readers 
with a rapid processing time of < 32 seconds. In another 
recent study, Lin et al. [9] developed a fully automated 
deep learning-based diameter and area stenosis evaluation 
method that employed invasive coronary angiography and 
intravascular ultrasound (IVUS) as the reference standard. 
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significant limitations constrain its widespread use in daily 
clinical practice, including artifacts from CT imaging such 
as beam hardening, misregistration, image noise, motion 
artifacts, and requiring a second scan using pharmacological 
stress, with the disadvantages of extra radiation and altered 
scheduling times. Alternatively, several other quantitative 
analysis methods, such as the transluminal attenuation 
gradient (TAG) and contrast density drop (CDD), have 
been proposed to assess coronary stenosis’s functional 

significance by analyzing lumen density changes. 
TAG is the linear regression coefficient between luminal 

attenuation and axial distance throughout a specific vessel, 
with higher TAG values associated with higher stenosis 
severity [18-20]. In an initial study, Choi et al. [19] 
investigated the value of TAG in 370 major coronary arteries, 
measuring 7263 intervals of 5 mm length. In correlation 
with CCTA and invasive coronary angiography, there was a 
consistent and significant decrease in TAG levels in vessels 
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Fig. 1. Deep-learning coronary artery plaque analysis. A-F: Case examples of deep-learning plaque segmentation in the proximal to mid 
LAD (A-C). Case examples of deep-learning plaque segmentation in the mid-LAD (D-F). Curved multiplanar reformation CCTA images (A, 
D). Deep-learning segmentation of calcified plaque (yellow) and noncalcified plaque (red) (B, E). Three-dimensional rendered view of 
the coronary tree (C, F). G: Per-vessel CAD-RADS categorization by deep learning versus expert readers and ICA. CAD-RADS categorical 
agreement between deep learning and experts and between deep learning and ICA was strong (unweighted Cohen’s κ coefficient = 
0.78 and κ = 0.75, respectively), and there was 99% (between deep learning and experts) and 97% (between deep learning and ICA) 
agreement within one CAD-RADS category. Adapted from Lin et al. Lancet Digit Health 2022;4:e256-e265, with permission of Elsevier [9]. 
LAD = left anterior descending, CCTA = coronary computed tomography angiography, CAD-RADS = Coronary Artery Disease Reporting and 
Data System, ICA = invasive coronary angiography
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with a higher degree of stenosis. Furthermore, TAG has 
shown an incremental value over CCTA alone in detecting 
functionally significant coronary artery stenosis [21]. 
However, a decline in intraluminal attenuation was noted, 
along with a reduction in vessel diameter [22]. Prior studies 
have shown that TAG and transluminal diameter gradient do 
not offer additional diagnostic value compared to CCTA alone 
for detecting significant ischemia [23]. Further studies are 
needed to standardize and validate the TAG evaluation using 
a larger number of patients.

CDD, another quantitative method for assessing changes 
in luminal contrast density over a coronary lesion, is the 
maximum percentage difference in contrast densities relative 
to the proximal reference cross-section, with a higher CDD 
indicating hemodynamically significant lesions (Fig. 2) [24-
26]. Dey et al. [24] compared the coronary plaque burden 
using CCTA in patients with acute coronary syndrome (ACS) 
and those with stable CAD. Their findings showed that 
higher CDD values reliably distinguished patients with ACS 
from those with stable CAD, along with plaque parameters 
such as noncalcified plaque (NCP), total plaque burden, and 
stenosis [24]. Diaz-Zamudio et al. [25] examined whether 
automated quantitative measurements of plaque features 
from CCTA could predict the presence of ischemia using 
myocardial perfusion imaging at various stenosis severity 
levels. In that study, CDD was strongly associated with 
ischemia in vessels with > 70% stenosis. Hell et al. [26] 
explored whether TAG and CDD could serve as indicators of 
the hemodynamic significance of coronary artery stenoses 

by comparing the values of invasively measured FFR. They 
demonstrated that the diagnostic accuracy (specificity, 
75%; sensitivity, 33%; PPV, 35%; negative predictive 
value, 73%) of CDD was superior to TAG for identifying 
hemodynamically significant lesions. Furthermore, in a 
study using machine learning techniques to develop a 
model for predicting hemodynamically significant ischemia, 
the combination of CDD and plaque assessment showed a 
diagnostic performance comparable to that of CT-FFR in 
identifying invasive FFR-defined ischemia [27]. Despite the 
potential applications of CDD, certain limitations should be 
noted. Validation of the clinical application of the CDD is 
limited, and only one quantitative program can provide the 
required data. Additionally, imaging artifacts, such as beam 
hardening or metallic artifacts, and the timing of contrast 
acquisition can affect the assessment of changes in luminal 
density throughout the coronary arteries.

Application of Quantitative Analysis for Plaque 
Burden Assessment

An essential advantage of CCTA is its ability to assess 
total plaque burden. Traditionally, plaque burden has been 
estimated using quantitative analysis of calcified plaques in 
coronary artery calcification (CAC) scanning, the Agatston 
score, or semi-quantitative visual evaluation of plaque 
extent in several coronary segments. However, recent studies 
have demonstrated that the quantitative assessment of 
coronary plaques in CCTA enables a more comprehensive and 

Fig. 2. Images of a 73-year-old female who presented with typical chest pain. A: Multiplanar reformat of CCTA demonstrating a borderline 
(50%–69%) stenotic lesion in the proximal LAD. B: Quantitative analysis of CDD using the Autoplaque software. The start and end points 
were selected manually, and the calculation yielded a CDD of 34. C: Invasive coronary angiography showing 75% stenosis of the proximal 
LAD (arrows). CCTA = coronary computed tomography angiography, LAD = left anterior descending, CDD = contrast density drops

A B C
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robust analysis of plaques within individual segments and 
across the entire coronary artery tree.

Conventional Semi-Quantitative Approach: CAC and 
Semi-Quantitative CCTA Scores

CAC scoring is considered an effective method for the 
early detection of CAD, especially in asymptomatic primary 
prevention populations, compared to conventional clinical 
risk scores such as the Framingham 10-year risk score 
[28,29]. The CAC plaque burden was quantified using the 
method described by Agatston et al. [30] and categorized as 
none (CAC = 0), mild (1–100), moderate (101–300), severe 
(301–1000), or extensive (> 1000) [5]. Although previous 
studies have shown that CAC is a strong and independent 
predictor of future adverse cardiovascular events and has 
incremental prognostic value in predicting CVD events 
[31-33], it does not account for NCP. Purely calcified 
plaques are stable and unlikely to cause ACS events. 
NCP, mainly low-density NCP, are the most rupture-prone 
plaques. Furthermore, the utility of serial CAC assessment 
is limited, given the tendency of preventive medications 
such as statins to potentially elevate CAC scores while 
simultaneously decreasing the risk of CVD.

In CCTA imaging, semi-quantitative scoring systems, 
such as the Segment Involvement Score (SIS), Segment 
Stenosis Score (SSS), and modified Duke CAD index, have 
been conventionally employed to assess the coronary plaque 
burden. The SIS provides a simple measure of the overall 
coronary plaque burden by assigning a score of 1 to each 
coronary artery segment with detectable atherosclerotic 
plaques, irrespective of plaque severity [34]. In contrast, the 
SSS and modified Duke index incorporate both the severity 
and extent of coronary artery plaques [35]. Although these 
semi-quantitative scores offer CAD plaque assessment, they 
only provide an approximation of the CAD burden.

Quantitative Plaque Analysis Software
Recent advancements have introduced specialized software 

that enables quantitative evaluation of plaques at both 
the lesion and patient levels. These tools measure plaque 
composition, volume, coronary stenosis, and positive 
remodeling. Various quantitative CT software options are 
now available, employing diverse approaches encompassing 
automated or semi-automated techniques for detecting 
the lumen border. Several FDA-approved quantitative PA 
software options are available, including QAngio, SUREPlaque, 
Autoplaque, vascuCAP, Cleerly, and automated AI-PA from 

HeartFlow (Table 1) [15,36-43].
The semi-automated plaque assessment process across 

various platforms involves several key steps. Initially, 
automated algorithms were used to extract the centerline 
of the coronary artery. Automated methods detect the 
boundaries of the lumen and outer vessel wall using 
mathematical or rule-based approaches. The lumen of a 
coronary artery is typically segmented based on cross-
sectional CCTA images, transforming the vessel’s entire 
length into a single volume. Subsequently, the reader 
manually adjusted the detected boundaries in multiplanar 
reconstructed or cross-sectional views, with the extent of 
adjustment dependent on the quality of the CCTA images. 
Plaque was identified as all voxels between the lumen and 
vessel wall boundaries, and the software automatically 
measured the plaque.

There is no standardized nomenclature for describing 
plaque volumes or components, leading to varied 
terminology across software vendors. Plaque size is typically 
measured volumetrically in cubic millimeters (mm3), and 
analysis can be conducted at the per-lesion, per-coronary 
segment, per-vessel, or per-patient level. The plaque 
area on a 2D CCTA cross-section can also be determined 
as the plaque area (mm2). Similar to IVUS methodology, 
the percentage of the overall vessel volume occupied by 
plaque on CCTA can be calculated as the “percent atheroma 
volume,” “plaque burden volume ratio,” or simply “plaque 
burden.” To account for differences in patient sex and 
body size, plaque volume was normalized to vessel volume, 
reducing variability and providing a more optimal method 
of reporting the coronary atherosclerotic plaque burden 
[44]. In 2D cross-sectional PA, plaque area is indexed to 
vessel area (mm2) to calculate the “cross-sectional plaque 
burden,” typically at the site of maximal stenosis. Additional 
parameters automatically calculated by PA software include 
plaque length, plaque thickness, remodeling index, and the 
ratio of the maximal vessel dimension within a lesion to that 
at a proximal “normal” reference point. 

Software vendors exhibit high heterogeneity in the 
terminology and thresholds used to define plaque 
components. Calcified plaque, or “dense calcium”, is 
generally defined by a density ≥ 350 Hounsfield unit (HU). 
NCP, referred to as “fibrotic” or “medium density” plaque, 
is often further categorized into fibrous and fibro-fatty 
components. Low-density NCP, typically < 30 HU, may be 
labeled as “necrotic core,” “lipid-rich,” “lipid-rich necrotic 
core,” or simply “low attenuation plaque” [24,45]. While 
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default HU thresholds are set for most software platforms, 
users can adjust them. Some vendors use adaptive scan-
specific thresholds that are automatically adjusted based 
on lumen attenuation, considering their influence on the 
absolute HU of plaque components.

Software-based plaque measurement accuracy and 
reproducibility depend on image quality and reader 
experience. Puchner et al. [46] found that iterative 
reconstruction algorithms enhanced CCTA-derived cross-
sectional plaque burden, correlating more strongly with IVUS 
than traditional methods. Stolzmann et al. [47] revealed 
excellent inter-reader reproducibility and a high correlation 
with IVUS for plaque burden using CCTA, regardless of the 
reconstruction algorithm used in an ex vivo study. Various 
software vendors have shown robust intraobserver and 
interobserver agreements for plaque volumes. However, 
there is a lack of data on inter-platform reproducibility. 

The QAngio software (Medis Medical Imaging Systems, 
Leiden, the Netherlands) was validated against IVUS, 
demonstrating a strong correlation between lumen area 
stenosis and plaque burden. Moreover, the quantification of 
plaque subtypes, including fibrofatty, fibrous, and calcified 
volumes, exhibited excellent correlation with those assessed 
by IVUS. The well-established (Progression of AtheRosclerotic 
PlAque DetermIned by Computed Tomographic Angiography 
Imaging) PARADIGM registry examined serial changes in 
plaque components using Medis QAngio for at least 2 years 

between baseline and follow-up scans for over 2000 patients. 
The findings of multiple substudies revealed important 
factors modulating plaque progression, including baseline 
plaque burden and statin therapy [48,49].

SUREplaque (Canon Medical Systems, Otawara, Japan) was 
also validated against IVUS in a prospective study focusing 
on the accuracy of 3D quantitative PA using CCTA compared 
to IVUS with radiofrequency backscatter analysis. Although 
there was a wide limit of agreement, the overall mean 
differences in the total plaque assessment were minor [39]. 
Furthermore, low-density NCP correlated with the necrotic 
core and fibrofatty tissue on IVUS. Compared to the invasive 
coronary angiography findings of the culprit lesion, CCTA 
features of plaque disruption in patients with unstable 
angina demonstrated good sensitivity (53%–81%) and 
specificity (82%–95%) [50]. 

Cleerly Healthcare (New York, USA) offers AI-based, 
fully automated CCTA analysis with manual adjustment, if 
necessary. The software has been validated primarily through 
studies comparing it with expert plaque quantification or 
QCA analyses. Initial validation studies reported excellent 
diagnostic performance for detecting > 70% and > 50% 
stenosis compared to the consensus of three level-3 expert 
CCTA readers [40]. In a sub-study of the PARADIGM registry, 
the software proved effective in evaluating a large patient 
population for detecting small changes in plaque burden and 
reducing measurement variability compared with the initially 

Table 1. FDA-cleared quantitative plaque analysis softwares

Software Vendor FDA approval Key features Plaque types analyzed Key validation studies
QAngio Medis Medical Imaging 

Systems, Leiden, 
the Netherlands 

510k 2006 Stenosis, plaque volume, 
vessel volume, remodeling 
index, plaque types

Necrotic core, fibrofatty, 
fibrous, dense calcium

Boogers et al. [36],
de Graaf et al. [37]

SUREplaque Canon Medical Systems, 
Otawara, Japan

510k 2004 Stenosis, plaque volume, 
vessel volume, plaque types

Low density non calcified, 
non-calcified, calcified

Fujimoto et al. [38],
Voros et al. [39]

Cleerly Cleerly Healthcare, 
New York, NY, USA

510k 2019 Stenosis, plaque volume, 
vessel volume, remodeling 
index, plaque types

Low density non calcified, 
non-calcified, calcified

Choi et al. [40]

vascuCAP Elucid Bioimaging, 
Wenham, MA, USA

510k 2017 Stenosis, plaque volume, 
vessel volume, remodeling 
index, plaque types

Lipid rich necrotic core, 
matrix, calcified plaque

Sheahan et al. [41]

Autoplaque Cedars-Sinai Medical 
Center, Los Angeles, 
CA, USA

510k 2012 Stenosis, plaque volume, 
composition, and burden, 
vessel volume, remodeling 
index, contrast density 
drop, plaque types 

Non-calcified, calcified, 
low density non calcified, 
necrotic core, 
fibrous fatty, fibrous, 
dense calcium

Dey et al. [15],
Dey et al. [42]

HeartFlow Plaque 
Analysis

HeartFlow, Mountain 
View, CA, USA

510k 2022 Plaque volume, vessel volume, 
plaque types 

Low CT attenuation plaque, 
non-calcified, calcified

Tzimas et al. [43]
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used software [51].
vascuCAP (Elucid Bioimaging, Wenham, MA, USA) is 

another plaque quantification software initially validated 
against carotid CT imaging histopathological findings. 
This study demonstrated a strong correlation between 
calcification and lipid-rich necrotic core [41]. The software 
was also applied in the Effect of Vascepa on Improving 
Coronary Atherosclerosis in People with High Triglycerides 
Taking Statin Therapy (EVAPORATE) randomized trial, 
which assessed changes in plaque morphology in a trial 
evaluating the efficacy of icosapent ethyl in patients with 
hypertriglyceridemia. Evaluation at three time points, 
baseline, 9 months, and 18 months of follow-up, showed 
potential in assessing plaque changes early in follow-up 
at 9 months [52]. Furthermore, this study suggests that 
assessing more detailed changes in plaque characteristics, 
such as maximal wall thickness and increases in cap 
thickness, might be feasible.

Autoplaque (Cedars-Sinai Medical Center, Los Angeles, CA, 
USA) is widely used and was initially validated and compared 
with IVUS, showing an excellent correlation of quantified 
NCPs between the software and IVUS. The software, utilized 
in large multicenter clinical trials, such as the Scottish 
Computed Tomography of the HEART (SCOT-HEART) and 
Rapid Assessment of Potential Ischemic Heart Disease 
with computerized tomography coronary angiography 
(RAPID CTCA), demonstrated its capability to improve 
the identification of patients at high risk for adverse CVD 
events. Furthermore, quantitative plaque burden assessment 
improved the assessment of lesion-specific ischemia and 
predicted lesions requiring revascularization by implementing 
machine-learning techniques [15,53]. Most recently, the 
application of a rapid AI tool enabled fully automated 
plaque quantification, showing good-to-excellent agreement 
between automated plaque and expert reader measurements 
of the total plaque volume and diameter stenosis [9]. 

HeartFlow (Mountain View, CA, USA) offers an automated 
AI-PA that was validated against expert reader plaque 
quantification using Autoplaque software. Pearson’s 
correlation coefficient demonstrated a highly significant 
correlation between AI-PA and CT readers when the 
overall total atherosclerotic plaques were assessed [43]. 
The tool’s accuracy was also compared with that of IVUS, 
demonstrating that the total plaque volume, vessel, lumen, 
and plaque subtype volumes derived from the AI-PA tool 
were highly correlated with those derived from IVUS in per-
lesion analysis.

Clinical Application of Quantitative Plaque Assessment

Risk Prediction

Total Plaque Burden
The total plaque burden derived from CCTA has 

demonstrated a predictive value for subsequent cardiac events 
[54,55]. In a prospective study analyzing the results of the 
PARADIGM registry involving 1345 patients, the additional 
value of semiautomated quantitative total plaque volume 
over qualitative CCTA evaluation methods improved the 
prediction of rapid plaque progression and adverse clinical 
outcomes [56]. More recently, Lin et al. [9] demonstrated 
that a deep learning-based plaque quantification system 
could predict the risk of myocardial infarction. 

Plaque Subtypes
A growing body of evidence suggests that the specific 

plaque phenotypes are more strongly associated with the 
risk of plaque rupture and increased cardiovascular events. 
In quantitative PA using CCTA imaging, the plaque subtype 
was differentiated based on HU. The CT findings of low-
HU attenuation plaques signified the presence of high 
intraplaque lipid content. Quantification of LAP holds 
promise as a marker of high-risk plaques and a prognostic 
indicator. Previous studies have shown that increased 
low-density NCP increases the risk of plaque rupture and 
myocardial infarction. For example, Chang et al. [54] 
performed quantitative PAs in 234 patients with ACS and 
234 matched controls in the Incident Coronary Syndromes 
Identified by Computed Tomography (ICONIC) sub-study of 
the Coronary CT Angiography Evaluation for Evaluation of 
Clinical Outcomes: An International Multicenter Registry 
(CONFIRM) registry. They found that the total, calcified, and 
fibrous plaque volumes did not differ significantly between 
patients with ACS and controls. In contrast, the fibrofatty 
plaque and necrotic core volumes were substantially 
higher in patients with ACS than in controls. In addition, 
in the SCOT-HEART trial, LAP burden was the strongest 
predictor of fatal or nonfatal myocardial infarction beyond 
the cardiovascular risk score, CAC score, or obstructive 
coronary artery stenoses [55]. They found that patients 
with an LAP burden > 4% had a nearly five times higher 
risk of myocardial infarction (Fig. 3). Similar observations 
were reported for RAPID-CTCA. In patients with suspected 
ACS, LAP burden is a significant predictor of 1-year death 
or recurrent myocardial infarction [57]. Patients with an 
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LAP burden above the median had an approximately 8-fold 
increased risk of adverse CVD outcomes, outperforming 
conventional stenosis-based approaches.

In contrast to low-density plaques, high-density calcium 
is considered a stabilized plaque phenotype associated with 
low CVD risk. Early studies using noncontrast CAC scoring CT 
scans have shown that calcium density is inversely related 
to coronary heart disease and CVD risk at any CAC volume 
level [58]. This density assessment can also be applied to 
quantitative CCTA based on the HU threshold. In a substudy 
of ICONIC, van Rosendael et al. [59] showed that patients 

who experienced subsequent ACS events had not only a 
high burden of low-density NCP but also a significantly 
low burden of high-density calcium, defined as > 1000 HU, 
compared with those without ACS events. Moreover, statin 
treatment is associated with an increased volume of high-
density calcified plaques, suggesting that increased calcium 
densification may be related to plaque healing and a reduced 
risk of plaque rupture [48].

Plaque Distribution
In addition to the evaluation of plaque morphology 
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Fig. 3. Plaque characteristics. A: Proximal LAD. B: First diagonal. C: Mid LAD. D: Mid-LAD plaque with blue lumen, red noncalcified 
plaque, and orange LAP. E: Invasive coronary angiography. F: Cumulative incidence of MI in patients with and without a LAP burden 
greater than 4%. Adapted from Williams et al. Circulation 2020;141:1452-1462, with permission of Wolters Kluwer Health [55]. LAD = left 
anterior descending, LAP = low attenuation plaque, MI = myocardial infarction
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and burden, CCTA permits the accurate determination of 
plaque distribution and vessel curvature. The quantitative 
assessment of these geometric characteristics has improved 
the risk prediction of future CVD events. In a serial CCTA 
study of 1478 patients, proximally located lesions tend 
to have more significant lipid-density plaque components 
and progress rapidly [60]. Another study investigated the 
incremental prognostic values of quantitative adverse 
geometric characteristic assessments, including ostial to 
plaque distance, vessel tortuosity, and lesion at bifurcation, 
for future ACS in a sub-study of the ICONIC study [61]. 
This study found that CCTA-derived adverse geometric 
characteristics were significantly associated with the risk 
of future ACS-causing culprit lesions and conventional CCTA 
assessments, including diameter stenosis, adverse plaque 
characteristics, and quantitative plaque characteristics.

Plaque Radiomics
Radiomics is a method for extracting imaging features 

(radiomic features) from medical images using data 
characterization algorithms. This serves as a potential 
quantitative approach to enhance the precise phenotyping 
of diseases. Several studies have shown that applying 
radiomics to CCTA can improve the identification of 
vulnerable plaque characteristics. Kolossváry et al. [62] 
compared radiomics-based ML models with visual and 
histogram-based assessments of ex vivo CCTA, using 
histological examination as a reference standard for 
detecting advanced atherosclerotic lesions. This study 
showed that the radiomics-based ML model improved the 
discrimination of plaques from advanced atherosclerotic 
lesions, which are associated with a higher risk of future 
myocardial infarction. In addition, Lin et al. [63] found 
distinct radiomic features in culprit lesions in acute 
myocardial infarction compared to nonculprit lesions in the 
same patients and with lesions in stable CAD patients. Recent 
studies have also suggested that the CCTA-derived radiomic 
signature of coronary plaques enables better identification 
of rapid plaque progression and improved prediction of 
future adverse cardiac events compared to conventional 
morphological plaque parameters [64,65]. Integrating 
radiomic analysis with AI-based plaque assessment can 
enhance the detection of patients at an elevated risk of 
future cardiovascular events, potentially warranting more 
aggressive preventive interventions. Nevertheless, the clinical 
application of radiomics in CCTA PA is in its early phases, 
and additional studies are required to validate its efficacy. 

The development of standardized radiomics approaches is 
essential to ensure consistency and reliability across research 
settings and clinical practices.

Monitoring Medical Therapy with Serial CCTA Scans
An essential advantage of the quantitative analysis 

of plaque composition is that plaque changes over time 
can be assessed as objective indicators through serial 
CCTA. Table 2 summarizes previous studies that explored 
the association between conventional clinical risk factors 
and changes in quantitative plaque characteristics using 
serial CCTA analysis [66-85]. Previous studies on patients 
who underwent serial CCTA examinations have reported 
associations between clinical factors, laboratory values, 
and changes in quantitative plaque characteristics. For 
example, the presence of conventional risk factors such as 
diabetes or high low-density lipoprotein (LDL) cholesterol 
levels is associated with accelerated plaque progression 
[66,67,69,71-74]. Patients at high risk of atherosclerotic 
cardiovascular disease (ASCVD) with an increased ASCVD risk 
score demonstrated more rapid plaque progression, including 
calcified plaques, fibrofatty plaques, and LAP, and exhibited 
more newly developed adverse plaques [77]. Plaque changes 
exhibited sex-related distinctions, indicating more favorable 
alterations in women. Women demonstrate slower NCP 
progression and faster calcified plaque progression than men 
[75,76]. Otaki et al. [68] also showed that a reduction in 
LDL-cholesterol level was associated with a reduction in all 
components of the NCP, including LAP. 

Furthermore, a recent study showed that higher 
lipoprotein(a) levels are associated with accelerated 
progression of coronary LAP [83,85]. Beyond the established 
risk factors, research has explored the link between 
plaque progression and variables such as triglyceride 
levels, hemoglobin changes, and blood pressure control 
maintenance [79-81]. Consistent with the established link 
between CVD risk factors and plaque modification, changes 
in these risk factors can induce favorable changes in plaque 
characteristics, potentially mitigating the risk of future CVD 
events.

Table 3 summarizes prior research using serial CCTA 
quantitative analysis to assess changes in coronary artery 
plaques in response to therapies [48,49,86-108]. Studies have 
consistently shown that statin use is associated with reduced 
or slower progression of the overall coronary plaque volume 
and reduced high-risk plaque features, while accelerating 
the progression of calcified plaque volume in patients with 
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suspected CAD [49,86-88,91,93], acute myocardial infarction 
[90] and human immunodeficiency virus [89,92,94]. These 
findings suggest that the benefits of statins and lowering 
LDL cholesterol levels in CVD risk reduction can be evaluated 
by serial monitoring of quantitative CT PA, namely, favorable 
modification of plaque subtypes (Fig. 4). 

Studies have also shown that serial CCTA can monitor 
plaque changes in patients receiving other lipid-lowering 
therapies [95-99]. As noted above, the EVAPORATE 
study revealed that icosapent ethyl was associated with 
a significant regression of LAP volume compared to 
placebo over 18 months [98]. More recently, the Effect of 
Alirocumab on Atherosclerotic Plaque Volume, Architecture 
and Composition (ARCHITECT) study demonstrated that 
treatment with the PCSK9 inhibitor alirocumab and a high-
intensity statin for 78 weeks in patients with familial 
hypercholesterolemia induced significant plaque regression 
of the coronary artery and plaque stabilization with an 
increase in calcified and fibrous plaques, accompanied by a 
reduction in fibrofatty and necrotic plaques [99]. 

Several studies have examined the effects of medication 
on plaque modification. The ongoing WARRIOR CCTA (NCT 
05035056) sub-study evaluating plaque changes by serial 
CCTA, in which symptomatic women with nonobstructive CAD 
are randomized to usual care or intensive medical therapy 
(statins, angiotensin-converting enzyme inhibitors, aspirin), 
may shed further light on the effects of renin-angiotensin-
aldosterone system inhibitors on the atherosclerotic process 
in addition to ACS, stroke, and cardiac mortality. In another 
study, the impact of evolocumab on coronary artery plaque 
volume and composition by CCTA and microcalcification 
by 18F-sodium fluoride (18F-NaF) PET (EVOLVE study, 
NCT03689946) was studied to determine the effects of 
evolocumab on changes in coronary plaque volume, as 
measured by serial CCTA and microcalcification activity 
using serial 18F-NaF PET. Future studies will provide critical 
mechanistic insights into plaque characteristics that may 
inform clinical trials of novel lipid-lowering agents or other 
preventive strategies for reducing the risk of CVD.

Studies have also shown changes in coronary artery 
plaques when treating conditions unrelated to cholesterol 
treatment. Budoff et al. [102] investigated the effects of 
testosterone treatment on coronary plaques in older men 
with low testosterone levels in a double-blinded, placebo-
controlled trial. They found that 1 year of testosterone 
gel treatment was associated with an increased volume of 
noncalcified coronary artery plaques without changes in the Ta
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CAC score, as measured by serial CCTA scans. Elnabawi et al. 
[100] evaluated the changes in coronary artery plaques in 
psoriasis patients treated with biologic therapies, such as 
anti-tumor necrosis factor, anti-interleukin (IL) 12/23, and 
anti-IL 17. They observed a favorable modification, primarily 
a reduction in the NCP burden, without significant changes in 
calcified plaques. The study noted diminished inflammatory 
phenotypes, including fibrofatty plaques and necrotic cores, 
and biomarkers in patients with psoriasis receiving biological 
treatment. Furthermore, studies have explored the influence 
of drugs such as sarpogrelate [103], colchicine [105], aged 
garlic extract [106], and liraglutide [108] on modifications 
in plaque composition. These findings suggest that 
serial CCTA can be expanded to evaluate overall CVD risk 
assessment in patients with various conditions that may 
facilitate CVD progression and are at high risk for CVD.

Limitations and Barriers to Implementation

One challenge in implementing quantitative analysis in 
clinical practice is the time required for the analysis. Most 
methods are semi-automated and need human interaction 
to refine the detected vessel contours. Significant time 
investment is necessary when handling cases with high 
plaque burden and poor image quality. Consequently, much 
of this software has been primarily applied in research 
because its speed and labor-intensive nature are significant 
barriers to its clinical deployment. Recently, several AI-
based CCTA PA software programs, which rapidly perform 
with minimal subjective adjustment, have been approved by 
the FDA for clinical use. Accelerating the speed of analysis 
and improving access to these software tools are essential 
factors in promoting their broader adoption in clinical practice. 

Furthermore, despite validation using invasive imaging or 
expert manual measurements, each software platform may 

Per-patient plaque analysis

Plaque volume (mm3)

Total 134

CP   44

NCP   90

LD-NCP     7

Plaque burden (%)

Total   48

CP   16

NCP   32

LD-NCP     2

Per-patient plaque analysis

Plaque volume (mm3)

Total 119

CP   52

NCP   67

LD-NCP     1

Plaque burden (%)

Total   42

CP   19

NCP   24

LD-NCP     0

Baseline

Follow-up

Fig. 4. 3D rendered view of the coronary tree and quantitative plaque volume from a 64-year-old woman who was treated with high-
intensity statins. The interscan interval is 2.3 years. CP increased (yellow overlay in 3D and 2D images), and noncalcified and LD-NCPs 
decreased (red overlay). Changes in plaque volume and burden are presented in tables. D = dimensional, CP = calcified plaque, LD-NCP = 
low-density NCP, NCP = noncalcified plaque
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yield very different results for plaque volumes. Head-to-
head comparisons of the latest technologies have yet to be 
conducted. 

The quality of CT images, and consequently, the accuracy 
of quantitative plaque measurements, can be influenced 
by various factors, including CCTA and clinical parameters 
such as imaging protocol, contrast timing, scan parameters, 
reconstruction technique, temporal and spatial resolution, 
heart rhythm variability, and patient-specific factors 
[109-111]. Addressing these limitations requires the 
establishment of standardized imaging protocols, guidelines, 
and quality assurance measures to ensure the consistency 
and comparability of results in clinical practice and research 
involving CCTA. In addition, validating quantitative analysis 
software across multiple CT vendors and diverse patient 
cohorts, including populations with varying clinical and 
imaging characteristics, is essential to address validity 
concerns and enhance the reliability of the findings.

The principal limitation of the practical clinical use of 
various quantitative plaque measurements is that physicians 
do not yet know how to use these data to guide patient 
management. Some studies have attempted to establish a 
reference threshold for quantitative plaque volume based 
on CCTA. HeartFlow AI-PA recently established age- and sex-
based nomograms for plaque volumes derived from a large 
cohort of 11808 patients who underwent clinically indicated 
CCTA [43]. A staging system was proposed for absolute total 
plaque volume and percentage atheroma volume based on 
lesions’ anatomical and functional significance on invasive 
QCA and FFR [112]. Although plaque measurements have 
been shown to add predictive information regarding cardiac 
events, there currently needs to be a consensus on applying 
these findings to individual patient management. One 
straightforward application is the assessment of therapy 
effectiveness through consecutive measurements from 
serial CCTA studies. Nonetheless, as AI methods continue to 
improve the various software used for quantitative plaque 
measurement, these assessments will soon be widely used in 
the practical care of patients with coronary atherosclerosis. 

CONCLUSION 

The paradigm of CCTA image analysis has moved beyond 
the visual assessment of coronary artery stenosis to include 
the characteristics and quantitative analysis of coronary 
plaques. CCTA-derived plaque volume and composition 
measurements can now be efficiently performed using semi-

automated software, demonstrating strong correlations 
with IVUS results. Quantitative analysis of coronary plaques 
improves subsequent cardiac event prediction and enables 
a more precise assessment of temporal plaque changes on 
serial imaging. Moreover, applying AI techniques such as 
deep learning will facilitate the complete automation of 
coronary plaque and stenosis quantification. Furthermore, 
there is the potential to identify new “high-risk” plaque 
phenotypes through ongoing software and AI advancements. 
Integrating quantitative PA with factors such as stenosis 
severity and high-risk plaque characteristics may contribute 
to a more comprehensive cardiovascular risk assessment in 
patients undergoing CCTA. However, for these analyses to 
be incorporated into clinical practice, conducting studies 
demonstrating how changes in plaque properties lead to 
improved outcomes is essential. 
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