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Coronary computed tomography angiography (CCTA) has emerged as a pivotal tool for diagnosing and risk-stratifying patients
with suspected coronary artery disease (CAD). Recent advancements in image analysis and artificial intelligence (AI) techniques
have enabled the comprehensive quantitative analysis of coronary atherosclerosis. Fully quantitative assessments of coronary
stenosis and lumen attenuation have improved the accuracy of assessing stenosis severity and predicting hemodynamically
significant lesions. In addition to stenosis evaluation, quantitative plaque analysis plays a crucial role in predicting and
monitoring CAD progression. Studies have demonstrated that the quantitative assessment of plaque subtypes based on CT
attenuation provides a nuanced understanding of plaque characteristics and their association with cardiovascular events.
Quantitative analysis of serial CCTA scans offers a unique perspective on the impact of medical therapies on plague modification.
However, challenges such as time-intensive analyses and variability in software platforms still need to be addressed for broader
clinical implementation. The paradigm of CCTA has shifted towards comprehensive quantitative plaque analysis facilitated by
technological advancements. As these methods continue to evolve, their integration into routine clinical practice has the
potential to enhance risk assessment and guide individualized patient management. This article reviews the evolving landscape

of quantitative plaque analysis in CCTA and explores its applications and limitations.
Keywords: Coronary computed tomography angiography; Artificial intelligence; Quantitative plaque analysis; Coronary

artery atherosclerosis

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of
morbidity and mortality in developed countries. Coronary
computed tomography angiography (CCTA) is a rapidly
evolving diagnostic imaging modality. Multiple clinical
studies have demonstrated its efficacy for diagnosing and
stratifying patients with suspected coronary artery disease
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(CAD). Recent guidelines from American and European
societies have endorsed CCTA as an initial testing modality
for assessing symptomatic CAD [1,2].

One of CCTA's key strengths is its ability to characterize
coronary atherosclerotic plaques. Owing to its three-
dimensional (3D), noninvasive nature, CCTA enables the
comprehensive assessment of coronary plaques throughout
the entire coronary tree. Conventional clinical assessment
using CCTA involves visual estimation and qualitative
evaluations of stenosis and plaque type. However, recent
advancements in image analysis and artificial intelligence
(AI) techniques have enabled the comprehensive
quantitative analysis of plaque composition, volume, and
degree of stenosis. This quantitative plaque assessment can
significantly improve the diagnosis of CAD and the prediction
of subsequent cardiac events. Furthermore, serial evaluation
of quantitative plaque characteristics facilitates evaluating
treatment response to drugs that favorably modulate
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coronary plaques and enables effective monitoring of CAD
progression.

This review provides a comprehensive overview of prior
studies, future applications, and potential limitations of
quantitatively assessing coronary artery plaques using CCTA.

Application of Quantitative Plaque Analysis in
Stenosis Evaluation

Numerous clinical studies have consistently reported the
high diagnostic accuracy of CCTA, particularly in excluding
obstructive CAD among symptomatic patients with a low-to-
intermediate pretest probability of CAD. However, traditional
visual assessment often overestimates the degree of stenosis
compared to invasive reference standards [3]. Moreover,
relying solely on the anatomical evaluation of stenosis
severity has demonstrated limited diagnostic accuracy
in identifying hemodynamically significant stenoses [4].
Consequently, recent research has focused on addressing the
limitations of CCTA for stenosis evaluation.

Quantitative Assessment of Stenosis Severity
Conventional qualitative analysis of coronary
atherosclerotic lesions is based on different categories
of diameter stenosis: none (no visible stenosis), minimal
(1%-24% estimated stenosis of the coronary luminal
diameter), mild (25%-49%), moderate (50%-69%), severe
(70%-99%), or occluded (100%) [5]. Recent advances
in CT workstations and specialized plaque analysis (PA)
software have facilitated semi-automated or fully automated
quantification of coronary artery stenosis. For example,
Boogers et al. [6] demonstrated that automated quantification
of stenosis severity on CCTA exhibited a good correlation
with quantitative coronary angiography (QCA) and improved
diagnostic accuracy compared to visual assessment alone.
Furthermore, machine learning and deep learning enable a
fully automated stenosis evaluation [7]. In a study by Hong
et al. [8] employing a deep learning approach featuring
the M-net CNN architecture, a fully quantitative assessment
of area stenosis and diameter stenosis demonstrated an
outstanding correlation (r = 0.984 for minimal luminal area
and r = 0.957 for diameter stenosis) with expert readers
with a rapid processing time of < 32 seconds. In another
recent study, Lin et al. [9] developed a fully automated
deep learning-based diameter and area stenosis evaluation
method that employed invasive coronary angiography and
intravascular ultrasound (IVUS) as the reference standard.
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The agreement for the minimal luminal area between

the deep learning algorithm and IVUS evaluation was
strong, with an interclass correlation coefficient of 0.904
(Fig. 1). In addition, Griffin et al. [10] demonstrated the
effectiveness of Al-based software that enables the rapid
and accurate identification and exclusion of high-grade
stenosis, with good agreement with QCA. Recently, AI-
based coronary stenosis quantification software exhibited

a high discriminatory ability for anatomic stenosis across
vessel segments, including area under the receiver operating
characteristic curve (AUC) values of 0.92 and 0.93 at 50%
and 70% thresholds [11]. Adopting a fully automated CT
stenosis evaluation can enhance the utility of CCTA, enabling
faster, more reproducible, and more accurate clinical
reporting.

Quantitative Assessment of Lumen Density to Detect
Hemodynamically Significant Lesion: TAG and CDD
Previous invasive studies have revealed significant
disparities between angiographically and functionally
significant lesions, as assessed by the fractional flow reserve
(FFR) [4]. A similar gap exists between CCTA and invasive
FFR. Recent developments in quantitative analysis have
demonstrated the potential of CCTA to evaluate the functional
significance of lesions, most notably using CT-FFR, especially
in patients with intermediate stenosis, which necessitates
further assessment of functional significance [12,13]. The
use of CT-FFR in intermediate lesions on CCTA has a Class
ITa recommendation in the American College of Cardiology/
American Heart Association guidelines for patients with
chest pain syndromes and a strong recommendation in the
guidelines of the European Society of Cardiology [1,2].
Although CT-FFR is a widely used tool for assessing the
hemodynamic significance of lesions, it has limitations. CT-
FFR entails additional costs and nitroglycerin administration
and requires high-quality contrast-enhanced CT images
free of artifacts or noise. Furthermore, a recent multicenter
observational study showed that CT-FFR has a low positive
predictive value (PPV) and is associated with a higher cost
than conventional stress-imaging approaches [14]. Only
one vendor, HeartFlow, currently provides CT-FFR based on
computational fluid dynamics. Recently, other approaches
assessing the functional significance of lesions using
machine learning and deep learning applied to coronary
plagues have shown a high correlation with invasive FFR
[15,16]. An alternative tool, CT myocardial perfusion, can
also offer a functional assessment of CAD [17]. However,
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Fig. 1. Deep-learning coronary artery plaque analysis. A-F: Case examples of deep-learning plague segmentation in the proximal to mid
LAD (A-C). Case examples of deep-learning plaque segmentation in the mid-LAD (D-F). Curved multiplanar reformation CCTA images (A,
D). Deep-learning segmentation of calcified plaque (yellow) and noncalcified plaque (red) (B, E). Three-dimensional rendered view of
the coronary tree (C, F). G: Per-vessel CAD-RADS categorization by deep learning versus expert readers and ICA. CAD-RADS categorical
agreement between deep learning and experts and between deep learning and ICA was strong (unweighted Cohen’s « coefficient =

0.78 and « = 0.75, respectively), and there was 99% (between deep learning and experts) and 97% (between deep learning and ICA)
agreement within one CAD-RADS category. Adapted from Lin et al. Lancet Digit Health 2022;4:e256-e265, with permission of Elsevier [9].
LAD = left anterior descending, CCTA = coronary computed tomography angiography, CAD-RADS = Coronary Artery Disease Reporting and
Data System, ICA = invasive coronary angiography

significant limitations constrain its widespread use in daily significance by analyzing lumen density changes.

clinical practice, including artifacts from CT imaging such TAG is the linear regression coefficient between luminal
as beam hardening, misregistration, image noise, motion attenuation and axial distance throughout a specific vessel,
artifacts, and requiring a second scan using pharmacological ~ with higher TAG values associated with higher stenosis
stress, with the disadvantages of extra radiation and altered  severity [18-20]. In an initial study, Choi et al. [19]

scheduling times. Alternatively, several other quantitative investigated the value of TAG in 370 major coronary arteries,
analysis methods, such as the transluminal attenuation measuring 7263 intervals of 5 mm length. In correlation
gradient (TAG) and contrast density drop (CDD), have with CCTA and invasive coronary angiography, there was a
been proposed to assess coronary stenosis’s functional consistent and significant decrease in TAG levels in vessels
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with a higher degree of stenosis. Furthermore, TAG has
shown an incremental value over CCTA alone in detecting
functionally significant coronary artery stenosis [21].
However, a decline in intraluminal attenuation was noted,
along with a reduction in vessel diameter [22]. Prior studies
have shown that TAG and transluminal diameter gradient do
not offer additional diagnostic value compared to CCTA alone
for detecting significant ischemia [23]. Further studies are
needed to standardize and validate the TAG evaluation using
a larger number of patients.

(DD, another quantitative method for assessing changes
in luminal contrast density over a coronary lesion, is the
maximum percentage difference in contrast densities relative
to the proximal reference cross-section, with a higher CDD
indicating hemodynamically significant lesions (Fig. 2) [24-
26]. Dey et al. [24] compared the coronary plaque burden
using CCTA in patients with acute coronary syndrome (ACS)
and those with stable CAD. Their findings showed that
higher CDD values reliably distinguished patients with ACS
from those with stable CAD, along with plaque parameters
such as noncalcified plague (NCP), total plaque burden, and
stenosis [24]. Diaz-Zamudio et al. [25] examined whether
automated quantitative measurements of plaque features
from CCTA could predict the presence of ischemia using
myocardial perfusion imaging at various stenosis severity
levels. In that study, CDD was strongly associated with
ischemia in vessels with > 70% stenosis. Hell et al. [26]
explored whether TAG and CDD could serve as indicators of
the hemodynamic significance of coronary artery stenoses
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by comparing the values of invasively measured FFR. They
demonstrated that the diagnostic accuracy (specificity,
75%; sensitivity, 33%; PPV, 35%; negative predictive
value, 73%) of CDD was superior to TAG for identifying
hemodynamically significant lesions. Furthermore, in a
study using machine learning techniques to develop a
model for predicting hemodynamically significant ischemia,
the combination of CDD and plaque assessment showed a
diagnostic performance comparable to that of CT-FFR in
identifying invasive FFR-defined ischemia [27]. Despite the
potential applications of CDD, certain limitations should be
noted. Validation of the clinical application of the CDD is
limited, and only one quantitative program can provide the
required data. Additionally, imaging artifacts, such as beam
hardening or metallic artifacts, and the timing of contrast
acquisition can affect the assessment of changes in luminal
density throughout the coronary arteries.

Application of Quantitative Analysis for Plagque
Burden Assessment

An essential advantage of CCTA is its ability to assess
total plaque burden. Traditionally, plaque burden has been
estimated using quantitative analysis of calcified plagues in
coronary artery calcification (CAC) scanning, the Agatston
score, or semi-quantitative visual evaluation of plaque
extent in several coronary segments. However, recent studies
have demonstrated that the quantitative assessment of

coronary plaques in CCTA enables a more comprehensive and

Fig. 2. Images of a 73-year-old female who presented with typical chest pain. A: Multiplanar reformat of CCTA demonstrating a borderline
(50%-69%) stenotic lesion in the proximal LAD. B: Quantitative analysis of CDD using the Autoplaque software. The start and end points
were selected manually, and the calculation yielded a CDD of 34. C: Invasive coronary angiography showing 75% stenosis of the proximal
LAD (arrows). CCTA = coronary computed tomography angiography, LAD = left anterior descending, CDD = contrast density drops
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robust analysis of plaques within individual segments and
across the entire coronary artery tree.

Conventional Semi-Quantitative Approach: CAC and
Semi-Quantitative CCTA Scores

CAC scoring is considered an effective method for the
early detection of CAD, especially in asymptomatic primary
prevention populations, compared to conventional clinical
risk scores such as the Framingham 10-year risk score
[28,29]. The CAC plaque burden was quantified using the
method described by Agatston et al. [30] and categorized as
none (CAC = 0), mild (1-100), moderate (101-300), severe
(301-1000), or extensive (> 1000) [5]. Although previous
studies have shown that CAC is a strong and independent
predictor of future adverse cardiovascular events and has
incremental prognostic value in predicting CVD events
[31-33], it does not account for NCP. Purely calcified
plaques are stable and unlikely to cause ACS events.

NCP, mainly low-density NCP, are the most rupture-prone
plaques. Furthermore, the utility of serial CAC assessment
is limited, given the tendency of preventive medications
such as statins to potentially elevate CAC scores while
simultaneously decreasing the risk of CVD.

In CCTA imaging, semi-quantitative scoring systems,
such as the Segment Involvement Score (SIS), Segment
Stenosis Score (SSS), and modified Duke CAD index, have
been conventionally employed to assess the coronary plaque
burden. The SIS provides a simple measure of the overall
coronary plaque burden by assigning a score of 1 to each
coronary artery segment with detectable atherosclerotic
plaques, irrespective of plaque severity [34]. In contrast, the
SSS and modified Duke index incorporate both the severity
and extent of coronary artery plaques [35]. Although these
semi-quantitative scores offer CAD plaque assessment, they
only provide an approximation of the CAD burden.

Quantitative Plaque Analysis Software

Recent advancements have introduced specialized software
that enables quantitative evaluation of plaques at both
the lesion and patient levels. These tools measure plaque
composition, volume, coronary stenosis, and positive
remodeling. Various quantitative CT software options are
now available, employing diverse approaches encompassing
automated or semi-automated techniques for detecting
the lumen border. Several FDA-approved quantitative PA
software options are available, including QAngio, SUREPlaque,
Autoplaque, vascuCAP, Cleerly, and automated AI-PA from
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HeartFlow (Table 1) [15,36-43].

The semi-automated plaque assessment process across
various platforms involves several key steps. Initially,
automated algorithms were used to extract the centerline
of the coronary artery. Automated methods detect the
boundaries of the lumen and outer vessel wall using
mathematical or rule-based approaches. The lumen of a
coronary artery is typically segmented based on cross-
sectional CCTA images, transforming the vessel’s entire
length into a single volume. Subsequently, the reader
manually adjusted the detected boundaries in multiplanar
reconstructed or cross-sectional views, with the extent of
adjustment dependent on the quality of the CCTA images.
Plague was identified as all voxels between the lumen and
vessel wall boundaries, and the software automatically
measured the plaque.

There is no standardized nomenclature for describing
plague volumes or components, leading to varied
terminology across software vendors. Plaque size is typically
measured volumetrically in cubic millimeters (mm?), and
analysis can be conducted at the per-lesion, per-coronary
segment, per-vessel, or per-patient level. The plaque
area on a 2D CCTA cross-section can also be determined
as the plague area (mm?). Similar to IVUS methodology,
the percentage of the overall vessel volume occupied by
plaque on CCTA can be calculated as the “percent atheroma
" “plaque burden volume ratio,” or simply “plaque
burden.” To account for differences in patient sex and
body size, plague volume was normalized to vessel volume,
reducing variability and providing a more optimal method
of reporting the coronary atherosclerotic plaque burden
[44]. In 2D cross-sectional PA, plaque area is indexed to
vessel area (mm?) to calculate the “cross-sectional plaque
burden,” typically at the site of maximal stenosis. Additional
parameters automatically calculated by PA software include
plaque length, plaque thickness, remodeling index, and the
ratio of the maximal vessel dimension within a lesion to that
at a proximal “normal” reference point.

Software vendors exhibit high heterogeneity in the
terminology and thresholds used to define plaque
components. Calcified plaque, or “dense calcium”, is
generally defined by a density > 350 Hounsfield unit (HU).
NCP, referred to as “fibrotic” or “medium density” plaque,
is often further categorized into fibrous and fibro-fatty
components. Low-density NCP, typically < 30 HU, may be
labeled as “necrotic core,” “lipid-rich,” “lipid-rich necrotic
core,” or simply “low attenuation plaque” [24,45]. While

volume,
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Table 1. FDA-cleared quantitative plaque analysis softwares
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Software Vendor FDA approval Key features Plaque types analyzed Key validation studies
QAngio Medis Medical Imaging 510k 2006  Stenosis, plaque volume, Necrotic core, fibrofatty, =~ Boogers et al. [36],
Systems, Leiden, vessel volume, remodeling fibrous, dense calcium  de Graaf et al. [37]
the Netherlands index, plaque types
SUREplaque Canon Medical Systems, 510k 2004  Stenosis, plague volume, Low density non calcified, Fujimoto et al. [38],
Otawara, Japan vessel volume, plague types  non-calcified, calcified  Voros et al. [39]
Cleerly Cleerly Healthcare, 510k 2019  Stenosis, plaque volume, Low density non calcified, Choi et al. [40]
New York, NY, USA vessel volume, remodeling non-calcified, calcified
index, plaque types
vascuCAP Elucid Bioimaging, 510k 2017  Stenosis, plaque volume, Lipid rich necrotic core, Sheahan et al. [41]
Wenham, MA, USA vessel volume, remodeling matrix, calcified plaque
index, plaque types
Autoplaque Cedars-Sinai Medical 510k 2012  Stenosis, plaque volume, Non-calcified, calcified, Dey et al. [15],
Center, Los Angeles, composition, and burden, low density non calcified, Dey et al. [42]
CA, USA vessel volume, remodeling necrotic core,
index, contrast density fibrous fatty, fibrous,
drop, plaque types dense calcium
HeartFlow Plaque HeartFlow, Mountain 510k 2022  Plaque volume, vessel volume, Low CT attenuation plaque, Tzimas et al. [43]

Analysis View, CA, USA

plague types

non-calcified, calcified

default HU thresholds are set for most software platforms,
users can adjust them. Some vendors use adaptive scan-
specific thresholds that are automatically adjusted based
on lumen attenuation, considering their influence on the
absolute HU of plaque components.

Software-based plaque measurement accuracy and
reproducibility depend on image quality and reader
experience. Puchner et al. [46] found that iterative
reconstruction algorithms enhanced CCTA-derived cross-
sectional plaque burden, correlating more strongly with IVUS
than traditional methods. Stolzmann et al. [47] revealed
excellent inter-reader reproducibility and a high correlation
with IVUS for plaque burden using CCTA, regardless of the
reconstruction algorithm used in an ex vivo study. Various
software vendors have shown robust intraobserver and
interobserver agreements for plaque volumes. However,
there is a lack of data on inter-platform reproducibility.

The QAngio software (Medis Medical Imaging Systems,
Leiden, the Netherlands) was validated against IVUS,
demonstrating a strong correlation between lumen area
stenosis and plaque burden. Moreover, the quantification of
plaque subtypes, including fibrofatty, fibrous, and calcified
volumes, exhibited excellent correlation with those assessed
by IVUS. The well-established (Progression of AtheRosclerotic
PlAque DetermIned by Computed Tomographic Angiography
Imaging) PARADIGM registry examined serial changes in
plague components using Medis QAngio for at least 2 years
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between baseline and follow-up scans for over 2000 patients.
The findings of multiple substudies revealed important
factors modulating plaque progression, including baseline
plaque burden and statin therapy [48,49].

SUREplaque (Canon Medical Systems, Otawara, Japan) was
also validated against IVUS in a prospective study focusing
on the accuracy of 3D quantitative PA using CCTA compared
to IVUS with radiofrequency backscatter analysis. Although
there was a wide limit of agreement, the overall mean
differences in the total plaque assessment were minor [39].
Furthermore, low-density NCP correlated with the necrotic
core and fibrofatty tissue on IVUS. Compared to the invasive
coronary angiography findings of the culprit lesion, CCTA
features of plaque disruption in patients with unstable
angina demonstrated good sensitivity (53%-81%) and
specificity (82%-95%) [50].

Cleerly Healthcare (New York, USA) offers Al-based,
fully automated CCTA analysis with manual adjustment, if
necessary. The software has been validated primarily through
studies comparing it with expert plaque quantification or
QCA analyses. Initial validation studies reported excellent
diagnostic performance for detecting > 70% and > 50%
stenosis compared to the consensus of three level-3 expert
CCTA readers [40]. In a sub-study of the PARADIGM registry,
the software proved effective in evaluating a large patient
population for detecting small changes in plaque burden and
reducing measurement variability compared with the initially
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used software [51].

vascuCAP (Elucid Bioimaging, Wenham, MA, USA) is
another plaque quantification software initially validated
against carotid CT imaging histopathological findings.

This study demonstrated a strong correlation between
calcification and Llipid-rich necrotic core [41]. The software
was also applied in the Effect of Vascepa on Improving
Coronary Atherosclerosis in People with High Triglycerides
Taking Statin Therapy (EVAPORATE) randomized trial,
which assessed changes in plaque morphology in a trial
evaluating the efficacy of icosapent ethyl in patients with
hypertriglyceridemia. Evaluation at three time points,
baseline, 9 months, and 18 months of follow-up, showed
potential in assessing plague changes early in follow-up
at 9 months [52]. Furthermore, this study suggests that
assessing more detailed changes in plaque characteristics,
such as maximal wall thickness and increases in cap
thickness, might be feasible.

Autoplaque (Cedars-Sinai Medical Center, Los Angeles, CA,
USA) is widely used and was initially validated and compared
with IVUS, showing an excellent correlation of quantified
NCPs between the software and IVUS. The software, utilized
in large multicenter clinical trials, such as the Scottish
Computed Tomography of the HEART (SCOT-HEART) and
Rapid Assessment of Potential Ischemic Heart Disease
with computerized tomography coronary angiography
(RAPID CTCA), demonstrated its capability to improve
the identification of patients at high risk for adverse CVD
events. Furthermore, quantitative plaque burden assessment
improved the assessment of lesion-specific ischemia and
predicted lesions requiring revascularization by implementing
machine-learning techniques [15,53]. Most recently, the
application of a rapid Al tool enabled fully automated
plaque quantification, showing good-to-excellent agreement
between automated plaque and expert reader measurements
of the total plaque volume and diameter stenosis [9].

HeartFlow (Mountain View, CA, USA) offers an automated
AI-PA that was validated against expert reader plaque
quantification using Autoplaque software. Pearson’s
correlation coefficient demonstrated a highly significant
correlation between AI-PA and CT readers when the
overall total atherosclerotic plaques were assessed [43].
The tool’s accuracy was also compared with that of IVUS,
demonstrating that the total plaque volume, vessel, lumen,
and plaque subtype volumes derived from the AI-PA tool
were highly correlated with those derived from IVUS in per-
lesion analysis.
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Clinical Application of Quantitative Plaque Assessment
Risk Prediction

Total Plague Burden

The total plaque burden derived from CCTA has
demonstrated a predictive value for subsequent cardiac events
[54,55]. In a prospective study analyzing the results of the
PARADIGM registry involving 1345 patients, the additional
value of semiautomated quantitative total plaque volume
over qualitative CCTA evaluation methods improved the
prediction of rapid plaque progression and adverse clinical
outcomes [56]. More recently, Lin et al. [9] demonstrated
that a deep learning-based plaque quantification system
could predict the risk of myocardial infarction.

Plaque Subtypes

A growing body of evidence suggests that the specific
plague phenotypes are more strongly associated with the
risk of plaque rupture and increased cardiovascular events.
In quantitative PA using CCTA imaging, the plaque subtype
was differentiated based on HU. The CT findings of low-
HU attenuation plaques signified the presence of high
intraplaque lipid content. Quantification of LAP holds
promise as a marker of high-risk plaques and a prognostic
indicator. Previous studies have shown that increased
low-density NCP increases the risk of plaque rupture and
myocardial infarction. For example, Chang et al. [54]
performed quantitative PAs in 234 patients with ACS and
234 matched controls in the Incident Coronary Syndromes
Identified by Computed Tomography (ICONIC) sub-study of
the Coronary CT Angiography Evaluation for Evaluation of
Clinical Outcomes: An International Multicenter Registry
(CONFIRM) registry. They found that the total, calcified, and
fibrous plaque volumes did not differ significantly between
patients with ACS and controls. In contrast, the fibrofatty
plaque and necrotic core volumes were substantially
higher in patients with ACS than in controls. In addition,
in the SCOT-HEART trial, LAP burden was the strongest
predictor of fatal or nonfatal myocardial infarction beyond
the cardiovascular risk score, CAC score, or obstructive
coronary artery stenoses [55]. They found that patients
with an LAP burden > 4% had a nearly five times higher
risk of myocardial infarction (Fig. 3). Similar observations
were reported for RAPID-CTCA. In patients with suspected
ACS, LAP burden is a significant predictor of 1-year death
or recurrent myocardial infarction [57]. Patients with an
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LAP burden above the median had an approximately 8-fold
increased risk of adverse CVD outcomes, outperforming
conventional stenosis-based approaches.

In contrast to low-density plaques, high-density calcium
is considered a stabilized plague phenotype associated with
low CVD risk. Early studies using noncontrast CAC scoring CT
scans have shown that calcium density is inversely related
to coronary heart disease and CVD risk at any CAC volume
level [58]. This density assessment can also be applied to
quantitative CCTA based on the HU threshold. In a substudy
of ICONIC, van Rosendael et al. [59] showed that patients

Korean Journal of Radiology

who experienced subsequent ACS events had not only a

high burden of low-density NCP but also a significantly

low burden of high-density calcium, defined as > 1000 HU,
compared with those without ACS events. Moreover, statin
treatment is associated with an increased volume of high-
density calcified plaques, suggesting that increased calcium
densification may be related to plaque healing and a reduced
risk of plaque rupture [48].

Plaque Distribution
In addition to the evaluation of plaque morphology

Low-attenuation non-calcified plaque burden
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Fig. 3. Plaque characteristics. A: Proximal LAD. B: First diagonal. C: Mid LAD. D: Mid-LAD plaque with blue lumen, red noncalcified
plaque, and orange LAP. E: Invasive coronary angiography. F: Cumulative incidence of MI in patients with and without a LAP burden
greater than 4%. Adapted from Williams et al. Circulation 2020;141:1452-1462, with permission of Wolters Kluwer Health [55]. LAD = left
anterior descending, LAP = low attenuation plaque, MI = myocardial infarction
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and burden, CCTA permits the accurate determination of
plaque distribution and vessel curvature. The quantitative
assessment of these geometric characteristics has improved
the risk prediction of future CVD events. In a serial CCTA
study of 1478 patients, proximally located lesions tend

to have more significant lipid-density plaque components
and progress rapidly [60]. Another study investigated the
incremental prognostic values of quantitative adverse
geometric characteristic assessments, including ostial to
plaque distance, vessel tortuosity, and lesion at bifurcation,
for future ACS in a sub-study of the ICONIC study [61].

This study found that CCTA-derived adverse geometric
characteristics were significantly associated with the risk
of future ACS-causing culprit lesions and conventional CCTA
assessments, including diameter stenosis, adverse plaque
characteristics, and quantitative plaque characteristics.

Plaque Radiomics

Radiomics is a method for extracting imaging features
(radiomic features) from medical images using data
characterization algorithms. This serves as a potential
quantitative approach to enhance the precise phenotyping
of diseases. Several studies have shown that applying
radiomics to CCTA can improve the identification of
vulnerable plague characteristics. Kolossvary et al. [62]
compared radiomics-based ML models with visual and
histogram-based assessments of ex vivo CCTA, using
histological examination as a reference standard for
detecting advanced atherosclerotic lesions. This study
showed that the radiomics-based ML model improved the
discrimination of plaques from advanced atherosclerotic
lesions, which are associated with a higher risk of future
myocardial infarction. In addition, Lin et al. [63] found
distinct radiomic features in culprit lesions in acute
myocardial infarction compared to nonculprit lesions in the
same patients and with lesions in stable CAD patients. Recent
studies have also suggested that the CCTA-derived radiomic
signature of coronary plaques enables better identification
of rapid plaque progression and improved prediction of
future adverse cardiac events compared to conventional
morphological plaque parameters [64,65]. Integrating
radiomic analysis with AI-based plaque assessment can
enhance the detection of patients at an elevated risk of
future cardiovascular events, potentially warranting more
aggressive preventive interventions. Nevertheless, the clinical
application of radiomics in CCTA PA is in its early phases,
and additional studies are required to validate its efficacy.
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The development of standardized radiomics approaches is
essential to ensure consistency and reliability across research
settings and clinical practices.

Monitoring Medical Therapy with Serial CCTA Scans

An essential advantage of the quantitative analysis
of plaque composition is that plaque changes over time
can be assessed as objective indicators through serial
CCTA. Table 2 summarizes previous studies that explored
the association between conventional clinical risk factors
and changes in quantitative plaque characteristics using
serial CCTA analysis [66-85]. Previous studies on patients
who underwent serial CCTA examinations have reported
associations between clinical factors, laboratory values,
and changes in quantitative plaque characteristics. For
example, the presence of conventional risk factors such as
diabetes or high low-density lipoprotein (LDL) cholesterol
levels is associated with accelerated plaque progression
[66,67,69,71-74]. Patients at high risk of atherosclerotic
cardiovascular disease (ASCVD) with an increased ASCVD risk
score demonstrated more rapid plaque progression, including
calcified plaques, fibrofatty plaques, and LAP, and exhibited
more newly developed adverse plaques [77]. Plague changes
exhibited sex-related distinctions, indicating more favorable
alterations in women. Women demonstrate slower NCP
progression and faster calcified plaque progression than men
[75,76]. Otaki et al. [68] also showed that a reduction in
LDL-cholesterol level was associated with a reduction in all
components of the NCP, including LAP.

Furthermore, a recent study showed that higher
lipoprotein(a) levels are associated with accelerated
progression of coronary LAP [83,85]. Beyond the established
risk factors, research has explored the link between
plaque progression and variables such as triglyceride
levels, hemoglobin changes, and blood pressure control
maintenance [79-81]. Consistent with the established link
between CVD risk factors and plaque modification, changes
in these risk factors can induce favorable changes in plaque
characteristics, potentially mitigating the risk of future CVD
events.

Table 3 summarizes prior research using serial CCTA
quantitative analysis to assess changes in coronary artery
plaques in response to therapies [48,49,86-108]. Studies have
consistently shown that statin use is associated with reduced
or slower progression of the overall coronary plaque volume
and reduced high-risk plaque features, while accelerating
the progression of calcified plaque volume in patients with
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Results

East Asians with PP had more clinical risk
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8.5 years

Plague
measures

o
—~~ (&5)
= ~
% o
2 [=
)
=
<)
o
=
1)
(%}
v ©
=y =
c
© [
= ) o
u] (%] E=
g c
<C
o
S o
]
a
—
.©
o | =
wil o [wn
D v |
Blecalo
s| © 3
> o<
vl g 52
ol v =|4
S5 |3
© a
by ©
-~ w
wv
=
—
<
5l e
R o
= > | .=
= i) 5
© > | O
= E=] ]
[ =i (=X
) )
H 2 e
)
7] [~
a
c
.2
=] =
.© =}
5] =)
2l = |3
G
7] >
© = =
7] <
s % |z
- =
:U’
C |8
Bg,-\g
al.2 =(Q
|5 —Y
| ©
o
wv
)
2
5
] >
n P ™
= @]
. 5 K3
N &
@ o
3
=1 o
o
-

kjronline.org

factors and higher plaque burden at baseline

Fibrous,
FF

Caucasian 279

observational

et al.,

2022 [84]

=
2 = 2
5 A S I'G
+=
7] <] c ns
i) = oL
© o E.Zo
o— o € c
Q = o =<
o a S >o
a = = S 5=
% © > S
= et
%] 2] © e
oz S o = [
> = a g eZ a0
= - [9] D ET
) () Qo HE
= 32 8 cSig
© — = o':,u_‘n
C —~ O = =2
© © = uwm_ Y
=] 5= n ~n
o T = o o=.2
oo 4 - ]
o= — =} =
=] =~ ca3
EQ vwm Lo S0l
g EE © < o 5ES
>= g = S v -53
o Y %5 82’ =
8 a5 u © 8223
o = © = = c.=2
= - o o [FNSlSE ]
L ® g o oz = S € =
[ = "‘;;w /-\8 "U>18
2t > T © o & xE
Sz .t S o o Q.2
S = Q [ =}
) w - o< © ©
ECT g
<
Sov 2O
[SE=R-FA
2 4] S o— 2~
© 5 1ol
=) — L= ~
[ c S Sas=F5c
= 0 O S a kD
) <3 <o [T
™ OE > _,Q,U"-a-'
N a — Q‘.Ez.osc—’
=%
'eg=>35
> I Re
(=) o 2]
= > o 5<C
2EY B=E !
s 24 o =
o .S Vg EMC
w oo 8 25 ~
n 3 ESa
o o ot T Qo =33
— — — o2y >,
o g @
Co @35
m o2 an
= © O
o —E.S 2
et V-oc o P
- O =
o Sl =
2™
= 9 5805 ™D
! © o SI1ag3
s = Spie]
> I =a ~©con
o [=% O VL
5 o > S c o
c = P oooos
2 E 25888
n << s T aovh
o822
< n
[2a) ;D'OII I
Lo =5
N S EEZa
™ o 3o m
S < el s a
= o N (_)"CUCU
17} N T Bunao
g = P I
g o ~ Q Q oF o
o0 3@ S s - (El2c
S v © AV sV ST
a9 ~ QS .= [S}
T =2 o+ == S=T
Lo L © © S oS w
o L oo a a T EPL
Z 0o oo — O S c s 3
=g "33
— 2 2o 25
— > © G I < © o
c 9 c S © os c %
v £ = .9 - 3T SET.o T
=2 T8 S22 g o
55 o © = o<t O§7
C8 2 25°8 S350 5
L > 0o L5 L = =X I
g 20 c S © st Eao
S v 529 2 © O°C co3ScS
S a @© o w 8 55 S P =SSE
a o o < I3
20 U X
_ e 5<E83
= = c 13T
N o— = T n o
7 5. 58 SBxof
= T2 a8 ec355 e
9] < 29 .o ®© ac=0 34
S = o h O < © L [Shts]
1%} FERS —_ N
© QO S = << Tm oo© g L3
=% S o = o2 o
= z£g 2E® |, 5BEls
8 F 1697,
S 530 80 w S- ma=g
— (%] wn STDEc .0
VUSgoouo
© 5 <
SSBEES
o o :D.;_gg,,?
()] i (o)) _
™ — — -'.Egllf:'g-*—'
ToO< Y It
(3] << 5 >
B &
5 E> ® .2
<~ < =
— o — —_ = © Z’|—
NT’UM o 0 o:w;m
. 0 [ee] o 0 owioc
S g ] S5%, 9%
© O — N eSS4y
o N oD o N £ 5205
B8 ER £R DT
. -
par = N e~ 5o
=g (>
o500
*» O.20 ©15

https://doi.org/10.3348/kjr.2023.1311

Korean Journal of Radiology

suspected CAD [49,86-88,91,93], acute myocardial infarction
[90] and human immunodeficiency virus [89,92,94]. These
findings suggest that the benefits of statins and lowering
LDL cholesterol levels in CVD risk reduction can be evaluated
by serial monitoring of quantitative CT PA, namely, favorable
modification of plaque subtypes (Fig. 4).

Studies have also shown that serial CCTA can monitor
plaque changes in patients receiving other lipid-lowering
therapies [95-99]. As noted above, the EVAPORATE
study revealed that icosapent ethyl was associated with
a significant regression of LAP volume compared to
placebo over 18 months [98]. More recently, the Effect of
Alirocumab on Atherosclerotic Plaque Volume, Architecture
and Composition (ARCHITECT) study demonstrated that
treatment with the PCSK9 inhibitor alirocumab and a high-
intensity statin for 78 weeks in patients with familial
hypercholesterolemia induced significant plaque regression
of the coronary artery and plaque stabilization with an
increase in calcified and fibrous plaques, accompanied by a
reduction in fibrofatty and necrotic plaques [99].

Several studies have examined the effects of medication
on plaque modification. The ongoing WARRIOR CCTA (NCT
05035056) sub-study evaluating plaque changes by serial
CCTA, in which symptomatic women with nonobstructive CAD
are randomized to usual care or intensive medical therapy
(statins, angiotensin-converting enzyme inhibitors, aspirin),
may shed further light on the effects of renin-angiotensin-
aldosterone system inhibitors on the atherosclerotic process
in addition to ACS, stroke, and cardiac mortality. In another
study, the impact of evolocumab on coronary artery plaque
volume and composition by CCTA and microcalcification
by 18F-sodium fluoride (18F-NaF) PET (EVOLVE study,
NCT03689946) was studied to determine the effects of
evolocumab on changes in coronary plague volume, as
measured by serial CCTA and microcalcification activity
using serial 18F-NaF PET. Future studies will provide critical
mechanistic insights into plaque characteristics that may
inform clinical trials of novel lipid-lowering agents or other
preventive strategies for reducing the risk of CVD.

Studies have also shown changes in coronary artery
plaques when treating conditions unrelated to cholesterol
treatment. Budoff et al. [102] investigated the effects of
testosterone treatment on coronary plaques in older men
with low testosterone levels in a double-blinded, placebo-
controlled trial. They found that 1 year of testosterone
gel treatment was associated with an increased volume of
noncalcified coronary artery plaques without changes in the
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Baseline

Follow-up

Per-patient plaque analysis

Plague volume (mm?)

Total 134
cp 44
NCP 90
LD-NCP 7
Plague burden (%)
Total 48
cp 16
NCP 32
LD-NCP 2

Per-patient plaque analysis

Plague volume (mm?)

Total 119
Ccp 52
NCP 67
LD-NCP 1
Plague burden (%)
Total 42
cp 19
NCP 24
LD-NCP 0

Fig. 4. 3D rendered view of the coronary tree and quantitative plague volume from a 64-year-old woman who was treated with high-
intensity statins. The interscan interval is 2.3 years. CP increased (yellow overlay in 3D and 2D images), and noncalcified and LD-NCPs
decreased (red overlay). Changes in plague volume and burden are presented in tables. D = dimensional, CP = calcified plaque, LD-NCP =

low-density NCP, NCP = noncalcified plaque

CAC score, as measured by serial CCTA scans. Elnabawi et al.
[100] evaluated the changes in coronary artery plaques in
psoriasis patients treated with biologic therapies, such as
anti-tumor necrosis factor, anti-interleukin (IL) 12/23, and
anti-IL 17. They observed a favorable modification, primarily
a reduction in the NCP burden, without significant changes in
calcified plaques. The study noted diminished inflammatory
phenotypes, including fibrofatty plaques and necrotic cores,
and biomarkers in patients with psoriasis receiving biological
treatment. Furthermore, studies have explored the influence
of drugs such as sarpogrelate [103], colchicine [105], aged
garlic extract [106], and liraglutide [108] on modifications
in plague composition. These findings suggest that

serial CCTA can be expanded to evaluate overall CVD risk
assessment in patients with various conditions that may
facilitate CVD progression and are at high risk for CVD.

kjronline.org https://doi.org/10.3348/kjr.2023.1311

Limitations and Barriers to Implementation

One challenge in implementing quantitative analysis in
clinical practice is the time required for the analysis. Most
methods are semi-automated and need human interaction
to refine the detected vessel contours. Significant time
investment is necessary when handling cases with high
plague burden and poor image quality. Consequently, much
of this software has been primarily applied in research
because its speed and labor-intensive nature are significant
barriers to its clinical deployment. Recently, several Al-
based CCTA PA software programs, which rapidly perform
with minimal subjective adjustment, have been approved by
the FDA for clinical use. Accelerating the speed of analysis
and improving access to these software tools are essential
factors in promoting their broader adoption in clinical practice.

Furthermore, despite validation using invasive imaging or
expert manual measurements, each software platform may
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yield very different results for plaque volumes. Head-to-
head comparisons of the latest technologies have yet to be
conducted.

The quality of CT images, and consequently, the accuracy
of quantitative plague measurements, can be influenced
by various factors, including CCTA and clinical parameters
such as imaging protocol, contrast timing, scan parameters,
reconstruction technique, temporal and spatial resolution,
heart rhythm variability, and patient-specific factors
[109-111]. Addressing these limitations requires the
establishment of standardized imaging protocols, guidelines,
and quality assurance measures to ensure the consistency
and comparability of results in clinical practice and research
involving CCTA. In addition, validating quantitative analysis
software across multiple CT vendors and diverse patient
cohorts, including populations with varying clinical and
imaging characteristics, is essential to address validity
concerns and enhance the reliability of the findings.

The principal limitation of the practical clinical use of
various quantitative plaque measurements is that physicians
do not yet know how to use these data to guide patient
management. Some studies have attempted to establish a
reference threshold for quantitative plaque volume based
on CCTA. HeartFlow AI-PA recently established age- and sex-
based nomograms for plaque volumes derived from a large
cohort of 11808 patients who underwent clinically indicated
CCTA [43]. A staging system was proposed for absolute total
plaque volume and percentage atheroma volume based on
lesions” anatomical and functional significance on invasive
QCA and FFR [112]. Although plaque measurements have
been shown to add predictive information regarding cardiac
events, there currently needs to be a consensus on applying
these findings to individual patient management. One
straightforward application is the assessment of therapy
effectiveness through consecutive measurements from
serial CCTA studies. Nonetheless, as AI methods continue to
improve the various software used for quantitative plaque
measurement, these assessments will soon be widely used in
the practical care of patients with coronary atherosclerosis.

CONCLUSION

The paradigm of CCTA image analysis has moved beyond
the visual assessment of coronary artery stenosis to include
the characteristics and quantitative analysis of coronary
plaques. CCTA-derived plaque volume and composition
measurements can now be efficiently performed using semi-

534

Lee et al.

automated software, demonstrating strong correlations
with IVUS results. Quantitative analysis of coronary plaques
improves subsequent cardiac event prediction and enables
a more precise assessment of temporal plaque changes on
serial imaging. Moreover, applying AI techniques such as
deep learning will facilitate the complete automation of
coronary plaque and stenosis quantification. Furthermore,
there is the potential to identify new “high-risk” plaque
phenotypes through ongoing software and AI advancements.
Integrating quantitative PA with factors such as stenosis
severity and high-risk plaque characteristics may contribute
to a more comprehensive cardiovascular risk assessment in
patients undergoing CCTA. However, for these analyses to
be incorporated into clinical practice, conducting studies
demonstrating how changes in plaque properties lead to
improved outcomes is essential.
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