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Abstract

Control interventions steer the evolution of molecules, viruses, microorganisms or other cells 

towards a desired outcome. Applications range from engineering biomolecules and synthetic 

organisms to drug, therapy and vaccine design against pathogens and cancer. In all these instances, 

a control system alters the eco-evolutionary trajectory of a target system, inducing new functions 

or suppressing escape evolution. Here, we synthesize the objectives, mechanisms and dynamics of 

eco-evolutionary control in different biological systems. We discuss how the control system learns 

and processes information about the target system by sensing or measuring, through adaptive 

evolution or computational prediction of future trajectories. This information flow distinguishes 

pre-emptive control strategies by humans from feedback control in biotic systems. We establish a 

cost–benefit calculus to gauge and optimize control protocols, highlighting the fundamental link 

between predictability of evolution and efficacy of pre-emptive control.

Introduction

For thousands of years, humans have steered the evolution of animals and plants by selective 

breeding. Such interventions are a form of eco-evolutionary control: they alter the ecological 

or evolutionary trajectory of a target system towards a predefined objective. Modern eco-

evolutionary control still fits this definition but has broader objectives and a wider range 

of applications in bioengineering, ecology, medicine and public health1. In many cases, the 
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targets of control are fast-evolving systems, such as microbial and viral pathogens or cancer 

cell populations.

Control of living systems is challenging because of their inherent complexity. An intended 

change is inevitably coupled to other molecular traits and functions. For example, a 

controlled metabolic change may increase the output of a target pathway but, at the same 

time, decrease the overall fitness of the target organism2,3. Or an induced immune response 

may target cancer cells but also affect healthy cells4. The interactions between controller and 

target system are often modulated by the ecological context of both systems. Hence, control 

is a multi-dimensional problem: desired and collateral changes, which generate benefits and 

costs of control, have to be weighed and managed simultaneously. In particular, evolution 

of the target system can be an intended or a collateral effect of control5,6. Fast-evolving 

pathogens respond rapidly to an intervention; for example, bacteria acquire resistance to 

antibiotics and viruses escape from vaccination. The challenge of controlling such systems is 

to develop pre-emptive strategies that factor in the likely evolution of the target.

In this Review, we first present examples of eco-evolutionary control that highlight recent 

experimental and modelling advances. In the second part, we distil common aspects and 

differences between these systems in the mechanisms of control and in the dynamics 

of target and controller. The target system may change by regulation and by evolution, 

and the controller may be a biotic system co-evolving with the target or a human 

applying rational control strategies, often implemented by computation. These dynamics 

determine central issues of control: how does the control system acquire and process 

information about the target system? What makes computational control different from co-

evolution? Specifically, we discuss the roles of target monitoring, adaptive learning 

and computational prediction7 in successful control strategies. In the third part, we outline 

elements of an emerging eco-evolutionary control theory and highlight challenges for future 

research with a focus on biomedical questions. We argue that theory-based optimization 

of control is important for further development of the field. We close with a discussion of 

ethical issues in eco-evolutionary control.

Examples of evolutionary control

Control of biological systems has a diverse set of goals, from enhancing productivity 

and sustainability of biosynthetic processes to controlling the spread of disease. Here, 

we introduce several examples of recent research that shows the extraordinary breadth 

of evolutionary control problems. In all these systems, the objective of control includes 

inducing or suppressing evolution of the target system.

Directed evolution for molecular design

Directed evolution experiments with artificial selection have been used 

to improve the activity and selectivity of molecules and enzymes, qualities that are often 

desirable in industrial or pharmaceutical applications (Fig. 1a). Recently developed in vivo 

directed evolution systems leverage the replication machinery of a host organism to perform 

autonomous hypermutation and selection steps without active external intervention8. In these 

systems, the artificial selection protocol couples the desired output of the target gene to the 
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reproductive fitness of a carrier cell or organism. This happens, for example, when the target 

gene acts to increase the metabolism of new resources or the tolerance of new environmental 

conditions. Directed evolution experiments implement feedback control mechanisms to 

monitor fitness and protein functions of interest and tune the strength of artificial selection 

accordingly9–13. The resulting protocols can steer the evolutionary trajectories of the target 

gene or pathway, subject to constraints imposed by the natural fitness landscape of the 

carrier organism.

Directed evolution of microorganisms

In biotechnology, inducing adaptive evolution under controlled laboratory conditions 

is highly effective in generating organisms with specific traits, such as heat tolerance14 or 

resistance to stressors15 (Fig. 1b). This approach is advantageous when the target organism 

is difficult to engineer or the genetic basis of the desired phenotype is complex and poorly 

understood. However, molecular traits lacking fitness benefit cannot be directly selected 

by adaptive evolution. This limitation can be circumvented by exploiting environment-

dependent trait correlations. For example, a recent study used environment switching, 

guided by metabolic modelling, to evolve fitness-neutral or costly traits in Saccharomyces 
cerevisiae3. Controlled evolution takes place in a transient environment, by adaptive 

evolution of a secondary trait that is coupled to the target trait via a metabolic network. 

After the controlled evolution phase, the target environment is switched on and the enhanced 

target trait becomes effective. This method allows the directed evolution of features such as 

metabolite secretion, which are currently inaccessible to direct adaptive evolution protocols.

Engineering of microbial communities

A new frontier in synthetic biology is to use genetic engineering in assembling microbial 

communities with designed functions. This allows division of labour and specialization 

of subpopulations towards a given objective, for example, the secretion of compounds. 

However, engineered functions consume resources and put stress on the community, which 

can lead to loss-of-function mutations and make these communities unstable16,17. Recent 

work has achieved the stabilization of a model community by adding a bacterial strain with 

an engineered toxin production mechanism18. This strain senses and controls the population 

size of competing species. Its toxin production can operate autonomously or by an externally 

set protocol, which manipulates the density of the underlying quorum sensing molecules. 

Such stabilization in variable environments can be achieved by various mechanisms, based 

on insights from engineering control theory19,20.

Control by gene drive

A gene drive is a genetic engineering technique that allows a specific allele of a diploid 

gene to spread rapidly through a population of sexually reproducing organisms so that the 

allele is inherited more than 50% of the time, that is, more than expected under Mendelian 

inheritance. Such systematic biasing of inheritance can drive chosen, even deleterious, 

alleles to prevalence in a target population. It serves, for example, to introduce new traits 

into a population or to reduce the prevalence of harmful traits or diseases21. However, gene 

drive systems, similar to control by drugs, can be affected by resistance evolution22. A 
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showcase application of this method will be to combat malaria by introducing a gene drive 

in mosquitoes that reduces transmission of the pathogen Plasmodium falciparum. Although 

many technological challenges of gene drives have been mastered, controlling resistance 

evolution and collateral effects as well as securing regulatory and community approval to 

test these systems in natural contexts remain major hurdles for this application21.

Antimicrobial interventions

Antibiotics control bacterial pathogens by interfering in cellular functions and metabolic 

pathways. Targets of these drugs include bacterial ribosomes, as well as cell wall and 

DNA synthesis pathways23. Most clinically relevant antibiotics are derived from natural 

compounds that are part of the inter-microbial weaponry24. Immune systems mount similar 

antimicrobial forces, including antimicrobial peptides25,26, which are also involved in the 

immune response to tumours27.

Bacteria acquire resistance to drugs by physiological adaptation or by evolution. The failure 

of antibiotic treatments due to resistance evolution generates an accelerating global health 

crisis28. Under antibiotic pressure, bacteria can mutate the molecules targeted by the drug, 

import resistance genes by horizontal gene transfer, activate specific defence pathways such 

as efflux pumps or globally re-allocate their proteome resources29,30. Diverse resistance 

mechanisms have also been described for antimicrobial peptides31. In some cases, metabolic 

fitness models can predict dosage-dependent trajectories of resistance evolution32 based 

on metabolic models of drug action33. Successful control protocols should limit resistance 

evolution, for example, by using judiciously chosen drug combinations34 or by exploiting 

ecological interactions35. However, we currently lack a general modelling framework to 

pre-empt resistance evolution and to optimize antimicrobial interventions.

Immunotherapy

A patient’s immune system can be activated to treat diseases. Such therapies trigger an 

adaptive immune response against an antigen, based on the binding of immune receptors 

to antigenic epitopes. In an immune response against cancer, T cell receptors recognize 

so-called neoantigens, short peptides presented on the surface of cancerous cells that 

contain information on cancer-specific genome mutations36. Thus, the primary objective 

of immunotherapy is to activate T cells with strong binding to a cancer neoantigen.

Collateral effects include autoimmune reactions caused by spurious binding to 

peptides presented by healthy cells37. Additionally, tumours can develop resistance to 

immunotherapy by regulatory changes or escape evolution38–42. The evolutionary feedback 

of cancers to immunotherapy includes immune editing39,43, that is, the dynamics of cancer 

clones and their associated neoantigens changes towards reduced immune recognition (Fig. 

1c). These dynamics are similar to the clade turnover of viral pathogens (discussed below). 

Recently, tumour–immune interactions have been combined into quantitative fitness models 

for cancer and used for computational prediction of neoantigens and their effects on cancer 

evolution38,43–45. Such models can serve as a basis for the optimized selection of cancer 

vaccines40,46,47.
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Immunotherapy can also be used to treat autoimmune diseases by modulating the overall 

immune response in a host. Autoimmunity is caused by dysregulated inflammation 

against antigens from the host, so-called self-antigens. Targeted immunotherapy against 

autoimmune diseases selectively inhibits inflammatory signals but affects other immune 

functions only minimally. A successful control approach is to induce appropriate 

combinations of signalling molecules48, while avoiding toxicity caused by high dosage of 

these molecules49. Modulation of signalling molecules can also be used to establish robust 

immune responses in cancer immunotherapy, improving the efficacy of these treatments50,51.

Vaccination

Active vaccines produce an adaptive immune response against a specific pathogen to 

reduce the risk of future infections and to mitigate their effects. This type of intervention 

combines multiple aspects of control: a human intervention triggers directed evolution in a 

biotic system, producing a control mechanism to combat the pathogen and to constrain its 

escape evolution. Vaccines against influenza or SARS-CoV-2 are raised against a circulating 

viral strain; they provide protection against infection by that strain and by closely related 

strains. However, viral populations are often highly heterogeneous, and some strains are not 

covered by the vaccine. Subsequent escape evolution of the virus from existing population 

immunity further degrades vaccine cross-protection against future strains. Therefore, the 

selection of vaccine strains for influenza has a pre-emptive objective: to generate optimal 

protection against circulating strains in the next winter season. Antigenic fitness models 

have been developed in recent years to predict viral evolution and to compare the expected 

performance of candidate vaccines against future strains52–54.

The evolutionary feedback of vaccination on viral evolution seems to be small for 

influenza55. By contrast, recent work for SARS-CoV-2 suggests that vaccination can 

significantly contribute to immune selection, shaping global evolution56. This is a 

prerequisite for using vaccination as evolutionary control, specifically to reduce the rate 

of escape evolution or to increase the collateral cost of escape for the virus.

Induced evolution of broadly neutralizing antibodies

Whereas antibodies generated by standard vaccines generate limited cross-protection against 

other strains, broadly neutralizing antibodies (bNAbs) bind to conserved protein regions and 

cover a diverse set of viruses. Vaccines that direct the immune system to evolve bNAbs 

can substantially improve the breadth and duration of protection against rapidly evolving 

viral pathogens. This topic has been extensively studied in HIV57–63 and influenza64–69. 

Previous computational work shows that bNAbs against HIV may be induced by successive 

vaccination in a healthy individual70–72. However, directing the immune system to evolve 

bNAbs against HIV has proved difficult. The main reason is that bNAbs require many 

mutations to acquire breadth, making their somatic evolutionary trajectories long and 

difficult to drive63,73–75. Moreover, under any given antigen challenge, bNAbs compete with 

many available target-specific antibodies of higher affinity70–72,76,77. For influenza, bNAbs 

targeting conserved regions of viral proteins have been elicited in animal systems64,66,68. 

Broad neutralization has also been achieved by simultaneous application of multiple 

antigens69. The immune interactions of conserved protein regions are often weak, but 
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presentation on nanoparticles and repeated applications have improved the immune response 

to these vaccines65,67. A population-level broadening of neutralization has also been 

observed against SARS-CoV-2, where repeat (booster) vaccinations are cross-protective 

against more viral variants than initial vaccinations78–82 and can even elicit bNAbs against 

the virus83.

The evolutionary feedback of broadly protective vaccines is currently unknown. Broader 

protection can be argued to decrease escape evolution. On the other hand, larger vaccination 

coverage and long-lived vaccine-induced immunity in the human population can increase 

selection pressure for viral escape compared with current vaccinations.

Key concepts of evolutionary control

The examples above show a common structure of eco-evolutionary control problems: a 

control system defines a control objective and sets up a control mechanism to interact with 

an evolving target system, following a control protocol (Fig. 2). Such interactions couple the 

eco-evolutionary dynamics of both systems and generate multiple feedback loops. We 

now discuss these building blocks and their role in successful control of evolving systems.

Objectives and collateral effects

Directed evolution.—A new biological feature in a target system can be elicited by a 

controlled evolution process. The control force is artificial selection superimposed onto the 

natural selection governing the unperturbed system. Directed evolution is often synergistic: 

control induces positive selection, increasing the controller’s payoff as well as the absolute 

fitness, or growth rate, of the target system in the presence of control (Fig. 3a). In parallel, 

the controlled target system often deviates from its intrinsic fitness peak, which defines 

the evolutionary optimum under natural selection. This marks a key problem of control: 

the gain of target features is coupled to deleterious changes of other functions15,84 (Fig. 

1b). In other words, control is likely to come with collateral effects on the target and the 

control system6. A ubiquitous source of collateral effects are co-varying secondary traits. 

An example is the directed evolution of PbrR, a multi-target transcription factor, to improve 

its affinity to a primary target. This process can reduce binding to other functional targets 

or induce spurious binding to off-target locations in the genome85 (Fig. 3a). Collateral 

effects will often reduce the payoff for the controller, but they can also be neutral or 

reinforce the primary objective (Fig. 1b). Hence, successful control requires navigating a 

multi-dimensional space, by monitoring and processing of multiple target interactions to 

optimize their combined payoff85,86.

Pathogen escape control.—In infection or cancer therapy, interventions are aimed at 

containing, weakening or eradicating the disease agent. In this case, the primary objective is 

antagonistic: the controller’s payoff increase is coupled to a decline in absolute fitness and 

population size of the target system. Again, successful control navigates a complex space of 

primary and collateral effects, which requires a careful choice of the control objective87,88. 

In pathogen control, a detrimental collateral effect is the evolution of resistant variants that 

escape control and carry a rebound of the pathogen population. In some cases, the target 

system can even hijack the control mechanism for its own benefit (as discussed below)89. 
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Escape evolution is common in antibiotic treatment, immune therapy and vaccination. 

Many successful protocols suppress or delay the rise of escape variants by reducing 

positive selection for escape (Fig. 3b). For example, evolutionarily informed adaptive cancer 

therapy90, which aims to contain rather than eradicate the cancer cell population, has shown 

success in patients with prostate cancer by limiting escape evolution91. In other cases, 

a decline in absolute fitness of the target system can be achieved by inducing positive 

selection for a costly trait92. Escape evolution can also generate collateral effects in the 

target system that act to strengthen control. For example, immune escape mutations of 

the influenza virus are often coupled to a loss in protein fold stability, which reduces the 

available evolutionary paths and the speed of escape evolution93–95.

The ecology of control

Primary and collateral interactions and their synergistic or antagonistic effects define what 

can be called the ecosystem of control and target systems (Fig. 2). As in any ecosystem, 

the strength of these interactions is modulated by feedback mechanisms in both components. 

Unlike in many ecological models, control interactions are not constants but can rapidly 

change by target evolution and control updates; we discuss these eco-evolutionary dynamics 

below. Control and target systems are often embedded in larger ecosystems, such as 

microbial communities. These ecological conditions can shape the efficacy of control. 

For example, the microenvironment of a cancer affects immunotherapy by modulating the 

density of T cells available for neoantigen recognition in a specific tissue96. In some cases, 

control protocols can exploit ecological complexity by steering the target system along 

environment-dependent fitness landscapes. An example is the directed evolution protocol 

discussed above, which bridges a fitness valley by switching environments3. Similarly, 

switching antigen environments may be a promising avenue to elicit bNAbs70–72,97–99.

Mechanisms and leverage of control

How are control interactions realized in biological systems? The biotic and computational 

control mechanisms discussed here are ultimately based on molecular interactions, including 

specific binding and biochemical reactions of host and target molecules. Understanding 

control interactions at the molecular level is often a prerequisite for tuning them towards 

a specific system-level objective. A prominent example is antibiotics that bind to specific 

proteins in a bacterial target system, thereby interfering in its metabolism or regulation. 

Many biotic control mechanisms are based on molecular interactions as well. For example, 

bacteria living in communities have co-evolved a broad control weaponry, including phages 

and tailocins24, as well as cognate response mechanisms. These interactions serve to control 

other microorganisms100–103 and to stabilize ecosystems against invasions104. Immune 

interactions involve an array of molecular mechanisms, including antimicrobial peptides 

produced by the innate immune system31,105,106, as well as T cells, B cells and antibodies 

of the adaptive immune system. These immune mechanisms have co-evolved with pathogens 

over millions of years, resulting in a biotic control machinery that can mount specific and 

effective responses against a multitude of infecting pathogens.

By modifying the balance of births and deaths, all of these mechanisms can alter selection 

in the target system. This is the most common form of evolutionary control. The selective 
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force specified by a control protocol is often time dependent: control induces a fitness 

seascape for the target system (Fig. 4). Time-dependent selection can be tuned by real-

time feedback from the growth of the target population10,13,15 (Fig. 1a,b). Similarly, spatial 

selection gradients induce effectively time-dependent selection on moving populations107.

Besides selection, mechanisms that facilitate exploration of the trait space and the 

associated fitness landscape can be leveraged for control. In directed evolution, these 

mechanisms include changing the rate and types of mutations108, as well as the population 

size of the target population. Control protocols for microbial communities can broadly 

manipulate species interactions, for example, through resource competition, species density 

manipulation or predation18,109.

Regardless of the precise mechanism, successful control depends on sufficient leverage to 

change the target system’s evolutionary trajectory. Limitations of control leverage observed 

ubiquitously across biology are a diminishing return and time-dependent degradation. For 

example, in control by molecular interactions, saturation of binding leads to a diminishing 

return per control molecule; thus, an intermediate level of control molecules often yields 

an optimal cost–benefit ratio110. Similarly, evolution of the target or the control system 

can curb control leverage over time. Both factors are present in the controlled microbial 

community discussed above18. First, the bacteria targeted by toxins can evolve resistance 

and overcome control. Second, in a microbial species performing autonomous control, the 

control mechanism of toxin production reduces growth, and adaptive evolution can lead to 

loss of this function.

These examples underscore that efficient control requires understanding the action pathway 

and the specific limitations of a given control mechanism. As it stands, such knowledge 

is often incomplete. For instance, many cancer drugs undergoing clinical trials do not act 

via the mechanism that was originally proposed. Instead, the reported preclinical efficacy 

results from off-target toxicity as a mechanism of action111. Off-target toxicity can lead to 

dangerous adverse effects and is a major cause of clinical trial failure112,113.

Dynamics of control

The eco-evolutionary dynamics of control can be described as a sequence of actions by the 

control system, which mounts and updates control pressure, and responses to such pressure 

by the target system. The fastest response takes place at the physiological level, by gene 

regulation and metabolic changes. For example, bacteria rearrange their cell metabolism 

in response to antibiotic pressure33. Control also changes the population dynamics of the 

target system, as well as the frequency of genetically or phenotypically distinct variants, 

thereby affecting its ecological interactions. Finally, de novo mutations lead to evolutionary 

adaptation of the target population. The speed of evolution depends on the strength of 

selection and on the mutational target generated by the control interaction. In rapidly 

evolving bacterial and viral systems, ecological and evolutionary changes are often linked 

and take place on overlapping timescales114,115. A prominent example is the dynamics 

of the SARS-CoV-2 pandemic, where most of the recent epidemic waves coincided with 

genetic turnover, leading to the rise of new variants with partial escape from population 

immunity within time intervals of a few months. Successful control protocols have to be 
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tuned to the speed of the target system. Thus, many of the systems discussed in this Review 

show tightly coupled target dynamics and control updates on a common timescale — a 

hallmark of eco-evolutionary control.

Information flow and modes of control

The control system continuously gathers information about the target system and processes 

that information into a control force acting on the target. This feedback loop is central 

to control dynamics (Fig. 2). We can distinguish different modes of information gain and 

processing. First, all evolutionary control protocols require repeated monitoring of the target 

system in its instantaneous state. This information is then processed into control updates, 

resulting in a fitness seascape for the target system (Fig. 4). In biotic systems, control 

updates based on monitoring can be realized by regulation or by co-evolution with the 

target system. For example, bacteria in communities ubiquitously update their ecological 

interactions based on monitoring of environmental parameters and of other species24,116. 

The adaptive immune system in vertebrates has a copious reservoir of naïve immune cells 

that enable monitoring and primary responses to novel pathogens117. Importantly, control 

dynamics based on monitoring alone can act against the current state of the target system but 

cannot pre-empt its future evolutionary changes (Fig. 4a).

In a second mode, the control system can gain leverage by learning broad features of the 

target’s evolutionary dynamics. Computational and biotic controllers can learn sufficiently 

simple and repeatable dynamical patterns by adaptive evolution of their control machinery 

— we refer to such processes as adaptive learning (Fig. 4b). For example, the human 

immune system reduces the prevalence of memory B cells with high-affinity receptors 

by negative feedback regulation, introducing a bias towards moderate-affinity, more cross-

reactive memory118,119. As shown by recent theoretical work, this bias can reflect a response 

of the immune system to the speed of evolution of typical antigens120–124. A high-affinity 

and highly specific memory repertoire is optimal against slowly evolving antigens, where a 

subsequent infection is likely to involve a strain similar to the primary infection. By contrast, 

a more diverse and cross-reactive repertoire can protect against a secondary infection by an 

evolved strain at some evolutionary distance from the primary strain. For example, our B cell 

defence against influenza is cross-protective over periods of 3–5 years, curbing the number 

and burden of infections over a human’s lifetime.

Human controllers can employ a third, rational control mode based on computational 

prediction of specific evolutionary trajectories in the target system38,43–45,52–54. This method 

processes not only broad features of the target dynamics but also real-time information 

about the target trajectory up to the starting point of predictions (Fig. 4c). In some systems 

and over limited periods, predictions capture a priori unlikely trajectories and previously 

unseen mutations32, provided the underlying evolutionary rules are sufficiently simple to 

be learned from the available training data. Most importantly, control protocols based on 

computational predictions can factor in the evolutionary response of the target system to 

the control pressure56 — we refer to this mode as pre-emptive control. Mathematical 

definitions of predictive information and pre-emptive control are given in Box 1. In the 

following sections, we describe how to construct such protocols.
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Towards quantitative control of evolving systems

As the discussion so far shows, eco-evolutionary control contains the full complexity of 

living systems, including regulation, metabolism, ecology and evolution. This challenge is 

epitomized by the collateral effects of control, which can couple the target trait to a vast 

number of a priori unrelated biological functions. Biological insight is required to compress 

this complexity into a manageable set of key phenotypes, mechanisms and dynamical modes 

relevant for the problem at hand. Quantitative control can then build on high-throughput 

evolutionary monitoring of target systems and on computational models for the control 

dynamics. Such models establish a quantitative cost–benefit tally of control, which serves 

two main purposes. First, it allows a judicious decision on when to apply control: a given 

protocol should be used only when its benefit exceeds its cost. Second, computation can 

rapidly screen large numbers of alternative control protocols and filter out candidates for 

in-depth comparison. In particular, control models rationalize how the information gathered 

by monitoring, adaptive learning and predictions shape control protocols (Fig. 5 and Box 

1). These are key elements of a developing eco-evolutionary control theory that will provide 

overarching principles for a diverse set of applications.

We now give a perspective on modelling and data input that will become important for the 

control of complex evolutionary systems.

Biological interactions of control

Cell metabolism.—Successful control often relies on a quantitative understanding of 

metabolic processes, including their response to control pressure. Coarse-grained data on 

metabolic pathways and rates can be used to quantify the metabolic fluxes inside a cell125. 

Metabolic models relate external parameters, including concentrations of nutrients and 

growth-limiting factors, to intracellular resource allocation and growth126,127, providing 

a computable link between environment and eco-evolutionary dynamics. Recent models 

include explicit biochemical enzyme–substrate relationships128. Metabolic models have 

been used to compute growth inhibition under antibiotic stress33, to predict antibiotic 

resistance mutations32 and to design control protocols for adaptive evolution3. More broadly, 

such models can serve to rationalize metabolic shifts in target systems and biotic hosts 

under control and to compute the resulting fitness and payoff effects. These dynamics can be 

monitored by proteomics, metabolomics and fitness assays.

Ecological interactions.—Developing a quantitative understanding of ecological 

feedback on control is important for successful strategies in complex environments. 

Abundance changes and emergent properties in multi-species communities can, in principle, 

be computed from basic reproductive rates of individual species and cross-species 

interaction parameters. In the context of control, ecological models can show how pressure 

on a target species propagates through an ecosystem and generates collateral effects on the 

other species. Recent work has started to link ecological interactions to the metabolism of 

the constituent species129 and to explore the implications for intra-species evolution104,130. 

Such integrative models may have the power to capture the complex interactions of cancers 

and their microenvironment and of intracellular host–pathogen systems. For example, 
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human cells remodel their mitochondria in response to pathogens, whereas the intracellular 

pathogen Toxoplasma gondii can highjack this metabolic shift for its own growth89. Models 

of multi-species communities contain a large number of parameters. This challenge can 

be addressed by combining scalable high-throughput experimentation and computation131 

and by choosing an appropriate level of modelling, for example, generalized Lotka–Volterra 

or resource–consumer dynamics132. Clearly, the optimal model choice depends on which 

parameters can be measured; for example, nutrient levels and uptake rates are the key input 

for resource–consumer models.

Immune interactions.—Human immunity is a stunningly complex defence system, 

where biotic and planned control of pathogens play in concert. In recent years, 

the quantitative understanding of immune systems has increased rapidly. Massively 

parallel sequencing of immune repertoires, combined with model-based analysis, has 

revealed patterns of global organization133,134 and molecular codes of antigen–receptor 

interactions135–143. In parallel, statistical models have characterized how evolutionarily 

optimized repertoires should be organized144,145, respond to pathogens146 and store memory 

of past responses for cross-protection against re-infections by similar antigens120,122–124. 

These advances will likely contribute to better vaccines and immunotherapies. Currently, 

however, it is still difficult to predict an individual’s immune response to a given pathogen. 

Another challenge is to predict how the combined adaptive immunity of the human 

population constrains the evolution of globally circulating pathogens, such as influenza and 

Sars-CoV-2. Progress on these questions is paramount for the central goal of evolutionary 

control in biomedicine: to devise pre-emptive interventions that factor in and curb the future 

escape evolution of the pathogen.

Fitness and payoff components

Metabolic, ecological and immune models are examples of system interaction models that 

provide a key input of control: to quantify the relevant benefit and cost components for 

the target system and the control system (Fig. 2). The fitness of the target system under 

control includes the direct effect of control caused by the interaction with the control system, 

as well as intrinsic fitness costs of defence traits or escape from control. In many cases, 

such fitness functions contain a trade-off: systems that maximize fitness under control are 

suboptimal in the absence of control, and vice versa147,148. The net payoff for the controller 

is the direct benefit of control, which is generated by the intended impact on the target 

system, discounted by the control costs. As shown by the preceding examples, evolutionary 

control often has a diminishing return of benefit relative to the control effort. This is for two 

main reasons: the saturation of control leverage (for example, through binding interaction), 

and resistance or escape evolution of the target population. Importantly, escape evolution 

introduces a decline of benefit over time, which has to be included appropriately into the 

payoff tally (Box 1).

Direct costs of mounting control include external resources, establishment and maintenance 

of a control repertoire (for example, the immune system), and protocol-dependent costs 

(for example, the immune response to a specific pathogen). Other costs arise from adverse 

interactions with the target system, such as collateral binding and off-target toxicity (Fig. 3) 
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or the reduction of diversity in a microbial community149. These cost factors, in particular 

collateral costs, arise from quite heterogeneous sources and may be difficult to quantify 

and compare in a given application. Nevertheless, plausible forms of all relevant cost terms 

should be included into the fitness and payoff tally, to test robustness and assess risks of 

control under variation of the corresponding model coefficients.

By accounting for cost and benefit factors, we can evaluate the total payoff for a given 

control protocol, ψ. Maximizing the total payoff defines the optimal protocol in a set 

of available protocols. In most cases, the optimal protocol differs substantially from the 

maximum-impact protocol, which maximizes only the direct benefit of control. Moreover, 

the payoff maximum, ψ*, is often difficult to attain; realistic protocols have stochastically 

distributed payoffs ψ < ψ*. We can also compare protocols with the payoff in the absence of 

control, ψ0. This sets an action threshold: control should be applied only if ψ > ψ0.

Modelling control dynamics

Fitness and payoff terms enter the coupled dynamics of the controlled and the control 

systems. We can describe the control protocol by a time-dependent action coordinate, x(t), 
which maps the actual control in a high-dimensional space of possible protocols. Similarly, 

the target system is described by a time-dependent state variable, y(t), which contains all 

traits that are affected by control and contribute to fitness. Recording these host and target 

variables over the entire period of control defines a specific control path (x, y) (Fig. 4).

As described above, biotic systems update action coordinates and target variables by 

regulation or evolution. In the simplest case of a so-called greedy control dynamics, 

sequential updates of x(t) and y(t) follow the uphill gradient of the instantaneous payoff 

and fitness function, Ψ(x(t), y(t)) and F(x(t), y(t)), respectively. The structure of the fitness 

seascape and the supply of fitness-changing mutations determine the target’s evolutionary 

dynamics and, hence, the outcome of control. In the case of directed evolution, successful 

control requires sufficient mutational supply and a navigable fitness seascape, where 

evolution along adaptive paths can generate new target features over realistic control 

periods. Mutational bottlenecks and intermediate fitness valleys, which are a characteristic 

of rugged fitness landscapes150–152, slow down directed evolution and compromise the 

control objective. Escape control often works against a large number of potential escape 

mutations, because the loss of molecular binding interactions is favoured by entropy153–155. 

However, co-varying traits can introduce intermediate fitness valleys and restrict the number 

of escape paths93–95; building such constraints by control selection can be a viable strategy 

for escape control5,6.

Mathematically, the evolutionarily stable fixed points of deterministic gradient dynamics 

in a time-independent landscape are Nash equilibria, which express a classic link 

between evolution and game theory156. With additional stochastic terms generated by 

system-specific noise, this type of dynamics captures many cases of Darwinian evolution, 

as well as regulatory mechanisms evolved to maintain high fitness under recurrent 

stress. By contrast, computational protocols follow a long-term objective, for example, to 

maximize the average payoff over the entire control period. Importantly, the fixed points 

of computational protocols can be at higher payoff than Nash equilibria, by giving up 
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short-term gain for long-term optimization5,157. This mathematical framework quantifies a 

frequent characteristic of biomedical interventions: a drop in short-term payoff to ensure 

long-term success.

Learning and prediction

Pre-emptive control is based on predicting the evolution of the target system from 

fitness and payoff models and dynamical rules for the resulting evolutionary change. 

Specifically, fitness models informed by host–pathogen interaction data can be fed into 

population-genetic evolution equations to forecast specific evolutionary trajectories of 

pathogen populations over limited periods into the future. This approach has been applied 

successfully to the global evolution of influenza52–54 (with a prediction horizon of 

about 1 year7) and to the clonal evolution of cancer38,41,43. Similar methods can predict 

the escape evolution of HIV from bNAbs158,159 and inform the design of combination 

therapies158. Importantly, predictions for globally circulating pathogens depend on a 

worldwide concerted surveillance of genomic and antigenic evolution53,56. Moreover, 

deep mutational scanning160–164 and laboratory evolution experiments with bar-coded 

strains165,166 can replay, and to some degree pre-play, evolutionary trajectories under 

controlled conditions. This may enable mechanistic fitness models to tackle a major 

challenge: to predict likely future mutations not yet seen in the wild.

As an alternative to mechanistic models, machine learning and artificial intelligence 

algorithms can learn evolutionary rules and inform control protocols. Recent work used 

machine learning-based selection of features to predict the success of emerging mutants167. 

Artificial intelligence algorithms have been developed to infer sequence-to-function or 

structure-to-function maps for proteins168–173 and regulatory sequences174, which can enter 

fitness models for evolution. Similar methods have been developed for evolutionary control 

of microbial co-cultures in bioreactors175 and for directed evolution experiments176,177. 

Specifically, artificial intelligence-trained genotype–phenotype maps from prior rounds of 

the experiment can improve the next selection cycle. Combining artificial intelligence 

techniques with emerging symbolic regression methods can guide the interpretation of the 

results and serve as a basis for follow-up mechanistic modelling178.

Selecting control protocols

Successful predictions serve to rank the available control protocols by specific criteria, for 

example, maximizing the total expected payoff or the expected speed of target evolution. 

Importantly, this step requires probabilistic models that describe not only the observed target 

dynamics but also its likely perturbations under different control protocols to be compared. 

For example, predictive immune interaction models of viral evolution can directly integrate 

the effect of vaccinations on the subsequent dynamics56.

The computation of optimal protocols can build on sophisticated mathematical methods 

developed in the engineering and physical sciences179, as well as in finance180,181. 

As in evolutionary control, the controller biases the stochastic process of a target 

system by applying a control force. Stochastic control theory provides powerful dynamic 

programming182 and path-integral techniques183 to compute the time-dependent value of the 
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control force that maximizes the future payoff for the controller. These methods have proven 

valuable for the solution of eco-evolutionary control problems in cases where a known 

model describes the underlying dynamics5,6,184,185. However, multiple salient features of 

biological systems are beyond the focus of established control theory. These include strongly 

non-linear fitness and (diminishing return) payoff functions, limited information gathering 

and forecasting capabilities, and high-dimensional spaces of evolutionary and control force 

trajectories5,6. Hence, the broader application to complex eco-evolutionary systems calls for 

major innovations in control theory.

Ethics of control

Eco-evolutionary control introduces genetic changes in pathogen systems outside laboratory 

environments, whether or not the evolution of the target system is the primary objective 

or a collateral effect of control. Development and application of control require stringent 

oversight by independent review panels following common ethical guidelines, in accordance 

with standard practice in the life sciences and medicine186. This should ensure a 

transparent analysis of benefits, costs and risks for affected individuals, for communities 

and ecosystems, and at the global scale. Two broad classes of issues can arise in the 

application of control. First, self-replicating re-engineered cells may cause harm if they 

escape or overwhelm their intended environment187. Similar issues arise in synthetic 

biology, where a bioethics framework already exists (for example, for the approval of 

novel gene therapies188). When gene drive is used as a control mechanism, the drive 

machinery and driven traits can spread to populations beyond the target population or even 

to off-target species. Several safeguard systems have been engineered, including metabolic 

dependence on non-standard amino acids in synthetic cells189 and kill switches190. Second, 

ethical considerations arise in public health policies of control. For example, in the case of 

malaria or bacterial infections, pathogen-targeting drugs beneficial for an infected individual 

may have detrimental long-term effects at the population level, such as the emergence of 

resistance191. Hence, setting an appropriate objective for sustained control is challenging. 

Both kinds of issues call for cross-disciplinary studies in collaboration with bioethicists. 

Quantitative modelling, including an assessment of evolutionary predictability, can play an 

important role in pre-playing evolutionary scenarios of control.

Conclusions

In this Review, we have outlined the key concepts of eco-evolutionary control and discussed 

several important applications ranging from biotechnology to infection therapy. In this 

framework, control objectives, mechanisms and leverages as well as the dynamics of target 

and control systems are intimately coupled (Fig. 2). All these determinants inform a calculus 

of eco-evolutionary control based on a quantitative cost–benefit tally. This provides an 

action threshold to decide whether control should be undertaken and allows systematic 

optimization of strategies and protocols.

In summary, evolutionary control approaches have shown remarkable success in numerous 

systems to date. At the same time, broader applications of evolutionary control face 

experimental challenges in monitoring target systems and delivering targeted control 
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interactions, as well as theoretical questions of learning, prediction and optimization 

of control. Together, this field holds the promise of successful eco-evolutionary control 

interventions, guided by common principles, in multiple biomedicine and bioengineering 

systems.
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Glossary

Action threshold
A boundary between parameter regimes of control protocols with higher/lower payoff than 

in the absence of control.

Adaptive evolution
The accumulation of heritable genetic changes that increase fitness in a given environment.

Adaptive learning
Evolutionary processes where the increase of information is coupled to a fitness benefit.

Artificial selection
Fitness effects in a target population induced by human intervention (in contrast to natural 

selection).

Co-evolution
The coupled evolution of two or more species interacting by natural selection, biological 

interactions and dependencies.

Directed evolution experiments
Laboratory protocols where organisms or biomolecules with desired traits are generated and 

amplified through iterative rounds of mutation and selection.

Eco-evolutionary dynamics
The coupled dynamics of population sizes, genetic changes and interactions between 

multiple species in an ecosystem.

Fitness seascape
A moving fitness landscape, generating selective forces that explicitly depend on time.

Greedy control
Algorithms with update rules that increase the instantaneous payoff.

Immunotherapy
The prevention or treatment of disease with substances that invoke immune responses.
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Microbial communities
Multiple species of microorganisms that live together in a shared environment and interact 

with each other.

Molecular traits
Components of the molecular machinery of the cell relevant for a specific function. 

Examples include gene expression levels, binding affinities and activities of enzymes.

Nash equilibria
States of a game where no player can increase their payoff by unilaterally changing their 

strategy.

Prediction horizon
The timescale over which a computational model provides significant information about 

future evolutionary trajectories.

Pre-emptive control
Algorithms with update rules that increase payoff over future time periods.
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Box 1

Optimizing control by monitoring, learning and predictions

Here we describe the dynamics of information gathering by the controller and the 

resulting optimization of protocols in a minimal model for the control of escape evolution 

(Fig. 4). The maximum-impact protocol xmax closely follows a moving target y, which 

requires full, posterior knowledge of its stochastic evolutionary path in the presence of 

the control force. In any practical application, the best available (forward) protocol x* 

follows a projection of the target path informed only by data from the past (Fig. 5). 

To compare and optimize forward protocols, we use a payoff function Ψ(t) = Ψmax(t) 
−ΔΨ(t) −C, where Ψmax(t) = Ψ(xmax(t)) is the direct benefit at the maximum-impact 

point, ΔΨ(t)=c(x*(t) − xmax(t))2 is the payoff cost generated by the mismatch x*(t)− 

xmax(t) and C is the sum of control costs.

Monitoring

Measurements provide information about the instantaneous state of the target. In between 

measurements, x* deviates from xmax′ reflecting the increase of uncertainty on the 

target’s evolutionary path (cones in Fig. 5). In the minimal model, the time-dependent 

mismatch x*(t) − xmax(t) follows a random walk with diffusion constant D0. Each 

control update by measurement resets the mismatch to a small value determined by the 

measurement error and generates a measurement cost Cm, caused by the physiological 

process of signal processing. Over a time interval (t, t + τ) between consecutive updates, 

the optimal monitoring-based forward protocol maintains the action coordinate xmax(t) 
set by the last measurement (Fig. 5a). This produces an expected average payoff ψ* = 

ψmax − Δψ − cm − c0 with mismatch cost Δψ = cD0 τ/2, a measurement cost cm = 

Cm/τ, and other costs c0. More frequent updates reduce the mismatch but increase the 

measurement cost per unit of time6 (Fig. 5a,b). Hence, there is an optimal time interval 

between updates, τ*=[2Cm/(cD0)]1/2. We can express the information gain, or loss of 

uncertainty, by measurements as a Kullback–Leibler divergence (DKL):

Im(t, t + τ) = DKL Qt, t + τ, ∣ , Qt, t + τ
0 .

Here Qt, t + τ
0  is the prior distribution generated by the diffusion of the target’s evolutionary 

path up to time t+τ, following a measurement at time t, and Qt, t + τ is the posterior 

distribution of paths after the measurement at time t+τ. The Kullback–Leibler divergence 

between these probability distributions indicates how likely random draws from the prior 

distribution look as if drawn from the posterior distribution; this probability decreases 

exponentially with increasing DKL. Intuitively, Im counts the (inverse, log) fraction of 

paths in the uncertainty cone that are compatible with the next measurement (Fig. 5a).

Adaptive learning

Long-term evolution of the control machinery can increase its efficacy. For example, 

a larger control range increases the payoff and reduces the target fitness at a given 

mismatch x*− xmax. This reduces the mismatch cost (c decreases) and can slow down 
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target evolution (D0 decreases). Hence, adaptive learning increases the net payoff gain 

of monitoring-based protocols, but the more complex control machinery generates an 

additional control cost (Fig. 5c).

Evolutionary predictions

Computational predictions use dynamical rules inferred from past data to reduce the 

uncertainty about future path segments269. Here we define the predictive information7,52 

of evolutionary models as a difference between Kullback–Leibler divergences:

Ip(t, t + τ) = DKL Qt, t + τ, ∣ , Qt, t + τ
0 − DKL Qt, t + τ, ∣ , Qt, t + τ

p ,

where Qt, t + τ
p  is the predicted distribution of the target evolutionary path up to time 

t+τ based on data up to time t. Intuitively, Ip counts the density of paths compatible 

with the next measurement in the prediction-informed uncertainty cone (Fig. 5d), 

relative to the corresponding density in the naïve cone (Fig. 5a). The information 

measures Im and Ip show the complementary roles of monitoring and computational 

predictions: measurements constrain the starting point of future evolutionary paths at 

time t, and predictions explain a part of the evolutionary change from t to t+τ. The 

power of predictions is limited by incomplete knowledge of the past and by the intrinsic 

stochasticity of the future dynamics.

Pre-emptive control protocols, by definition, generate predictive information (Ip > 0) 

and harvest it to increase payoff. In the minimal model, pre-emptive control results in 

a reduced diffusion constant of the control path, D < D0 for time intervals of order τp 

after each update (Fig. 5d). This timescale, called the prediction horizon, determines 

the added value of prediction for computational control6,7. Given limited measurement 

information (τp < τ), successful pre-emptive protocols follow the predicted path after 

each update and are phased out to a constant action coordinate after a characteristic time 

τc (Fig. 5d). This crossover sets the pre-emptive control horizon, the period for which 

we bank on computational predictions for control. In protocols with τc < τp, the control 

path undershoots the prediction horizon (at a time Δt after the last update, its mismatch 

cost increases with diffusion constant D for Δt < τc and with D0 for Δt > τc). Conversely, 

in protocols with τc > τp, the path overshoots into a wrong direction (the cost increases 

with diffusion constant D for Δt < τp and with D′ > D0 for Δt > τp). This suggests a 

general relationship: pre-emptive control becomes optimal if the control horizon matches 

the prediction horizon (τc ≈ τp). That is, pre-emptive control is effective for as long as 

the target evolution can be successfully predicted6. Beyond this scale, control relies again 

on monitoring. Notably, control itself can generate or reduce predictive information, for 

example, by restricting the accessible trajectories or by accelerating escape evolution.
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Fig. 1 |. Examples of evolutionary control.
a, Directed evolution of an enzyme. The TmHisA enzyme, which is part of a histidine 

production pathway, is evolved to function in a new species, Saccharomyces cerevisiae. Top: 

the control protocol gradually decreases the supply of external histidine, using a feedback 

mechanism to maintain an approximately constant growth rate in four replicate populations 

(R1–R4 in different colours). By evolution of TmHisA, the yeast cells gradually adapt 

to function in environments without external histidine. Bottom: fitness in a histidine-free 

environment for the wild type (black circle) and for evolved TmHisA variants sampled 

from each replicate population after 700 h (~100 generations, R1–R4 in different colours). 

Successful TmHisA variants acquired 6–15 mutations. Part a adapted with permission 

from ref. 13. b, Directed evolution of antibiotic resistance. Top: controlled evolution of 

tetracycline resistance in four replicate Escherichia coli populations (R1–R4); resistance 

is measured by the half-inhibitory drug concentration (IC50) relative to the wild type. 

Feedback control maintains stable growth by keeping the actual drug concentration close 

to the IC50 value. Bottom: collateral trait evolution, measured against seven other drugs, 

can increase or decrease sensitivity; lines show the drug with maximum and minimum 

IC50 in each population. Part b re-plotted using data from ref. 15. c, Control of cancers 

by the immune system. Evolving cancers accumulate new mutations and new neoantigens. 

The resulting change in immune recognition during the evolution from a primary to a 
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recurrent tumour is computed from a neoantigen fitness model and compared between 

cohorts of long-term (blue) and short-term (orange) survivors. These dynamics are shaped 

by immune interactions: recognition increases less in long-term survivors, indicating the 

stronger suppression of clones with high-affinity neoantigens. Part c re-plotted using data 

from ref. 43
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Fig. 2 |. Concepts and key steps of evolutionary control.
All instances of evolutionary control discussed involve a fast-evolving target system 

and a biotic or computational control system. The controller establishes a control 

objective and sets up a mechanism and protocol for control interaction with the 

target system. Control mechanisms include directed evolution experiments8–10,12,192–196, 

gene drive21, genetic engineering197–199, vaccination and immunotherapy4,40,46,200,201, 

and metabolic perturbations, for example by antibiotics33. The mechanisms of control 

determine the control protocols that can be realized, for example, in therapies158,202–

206 and vaccination58,70–72,74,98,207–210. Red frame and arrows highlight the key 

feedback loop of control and the underlying interactions. Control alters fitness and 

evolution of the target system towards the control objective; evolution under control 

includes microbial escape158,159,211,212, tumour escape in cancer38,39,41,213, immune–

pathogen co-evolution77,122,146,214 and mutation-selection cycles in directed evolution 

experiments9,12,13,189,215–221. The controlled dynamics generates benefit and costs of 

control, which determine the net payoff for the controller. Control cost is system 

specific and includes the cost associated with the emergence of resistance213,222–

227, cross-resistance39,228,229 or tolerance230,231 in microbes targeted by a therapy 

(for example, antibiotics), off-target disturbance of other microbes in the same 

ecological environment232–236, resistance to pesticides in agriculture237–242, latency and 

formation of pathogenic reservoirs243–247, treatment side effects248–250 and disturbance of 

ecosystems251,252. Monitoring253–262, adaptive learning176,177 and prediction of the target 

dynamics based, for example, on a catalogue of resistance mutations263, evolutionary 

models38,43,52,53, metabolic models32,264–266 or statistical inference of sequence–function 

maps168,171,176,177,267,268 serve to evaluate the net payoff and to update and improve control 

protocols
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Fig. 3 |. Directed evolution versus escape control.
Control dynamics on target fitness (left) and control payoff landscapes (right) for two modes 

of evolutionary control. a, Directed evolution. Control is to elicit a primary trait of the target 

system, here molecular binding. The evolution of this trait is driven by a fitness increase of 

the target system, which goes along with a payoff increase for the control system (dashed 

arrows). The simultaneous evolution of collateral traits, here spurious binding, can reduce 

the payoff gain (solid arrows). b, Escape control. Control is to suppress the target pathogen 

by neutralization, that is, functional binding to control molecules of the host system. Binding 

increases by updates of a control trait (red arrows) and decreases by escape evolution that 

affects a cognate pathogen trait (cyan arrows). Target fitness and control payoff evolve in 

opposite ways.
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Fig. 4 |. Monitoring, adaptive learning and prediction shape control protocols.
In the control of a pathogen, control is a moving fitness trough for the target population 

(red, darker shading indicates lower fitness). Control partially suppresses growth in the 

target system and induces escape evolution away from the fitness trough (cyan arrows). 

In response, the control seascape is updated (red arrows); control updated at time t acts 

on the target system in the next time interval (t t, +1). The update dynamics of control 

protocols are shown for a given evolutionary trajectory of the pathogen in three different 

control modes. a, Control based on monitoring. Protocols are informed only by monitoring 

of past and present states and lag behind the evolution of the target system. b, Control 

based on adaptive learning. Protocols can adapt to broad dynamical features of target 

evolution (here, the breadth of the fitness trough is tuned to the speed of target evolution). c, 
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Computational control leverages short-term predictions of target evolutionary trajectories to 

generate pre-emptive protocols.
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Fig. 5 |. Computing and optimizing control.
Upper panels: optimal control protocols available for different modes of information 

processing, x*(t) (red lines), compared with the maximum-impact protocol, xmax(t)(cyan 

lines), and the no-control protocol, x0 (grey lines). Each protocol is characterized by a 

time-dependent action coordinate embedded in a high-dimensional space of a priori possible 

protocols (this space is indicated by planes). For control of escape evolution, the maximum-

impact protocol closely follows the evolutionary trajectory of the target system (cf. Fig. 

4). In all forward protocols x*(t), the action coordinate is periodically updated to the 

instantaneous maximum-impact point, which is inferred by monitoring the target system 

(updating times are marked by planes). In between updates, uncertainty about the target’s 

future trajectory generates a mismatch x*(t)−xmax(t) (expected uncertainty range indicated 

by cones). Lower panels: average payoff of conditionally optimal protocols, ψ* (red lines), 

and of the no-control protocol, ψ0 (grey lines), depending on the maximum-impact action 

coordinate xmax at the end of the displayed time interval (top planes). These payoffs include 

a mismatch cost, as well as costs for monitoring and mounting control (red dashed lines), 

that differ between control modes (see Box 1 for a minimal payoff model). a,b, Monitoring-

based control. The action coordinate of each update is maintained for the subsequent time 

interval. A large mismatch cost can reduce the payoff below the action threshold (grey 

dashed line), that is, below the payoff of the no-control protocol (panel a). More frequent 

measurements of the target system reduce the mismatch, albeit at an additional monitoring 

cost (panel b). c, Adaptive learning. Here, adaptive increase of the control range reduces the 

mismatch cost and slows down target evolution (indicated by a narrower uncertainty cone), 

but generates an additional cost of the control machinery. d, Pre-emptive control. Using 

computational prediction of target evolutionary paths reduces the mismatch over limited 

periods (indicated by a tilted, narrower cone).
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