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Mechanisms of cell size regulation in
slow-growing Escherichia coli cells:
discriminating models beyond the adder
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Under ideal conditions, Escherichia coli cells divide after adding a fixed cell size, a strategy known as
the adder. This concept applies to various microbes and is often explained as the division that occurs
after a certain number of stages, associated with the accumulation of precursor proteins at a rate
proportional to cell size. However, under poor media conditions, E. coli cells exhibit a different size
regulation. They are smaller and follow a sizer-like division strategy where the added size is inversely
proportional to the size at birth.We explore three potential causes for this deviation: degradation of the
precursor protein and two models where the propensity for accumulation depends on the cell size: a
nonlinear accumulation rate, and accumulation starting at a threshold size termed the commitment
size. These models fit the mean trends but predict different distributions given the birth size. To
quantify the precision of the models to explain the data, we used the Akaike information criterion and
compared them toopendatasets of slow-growingE. coli cells in differentmedia.We found that noneof
the models alone can consistently explain the data. However, the degradation model better explains
the division strategy when cells are larger, whereas size-related models (power-law and commitment
size) account for smaller cells. Our methodology proposes a data-based method in which different
mechanisms can be tested systematically.

Tomaintain tight distributions on size, bacteriamust control the division
time based on their size1,2. Recent measurements indicate that bacteria,
such as Escherichia coli and Bacillus subtilis, regularly divide using the
adder division strategy3,4, where the size (Δ) added during a division cycle
(birth to division) is not correlated with the size at birth (sb)

5,6. The
molecular mechanisms behind adder division in bacteria are complex
including the coordination of several processes, such as septal ring for-
mation, DNA replication, and cell wall synthesis4,7–11. A recent hypothesis
suggests that a single factor, the accumulation of the FtsZ protein, is the
main contributor to determining the timing of division under optimal
growth conditions4. FtsZ forms a ring at the future division site and
recruits other proteins to build a division apparatus12. Mathematical
models describe the accumulation of FtsZ as a stochastic counting pro-
cess with rates that depend on the size of the cell13–15 opening new
frontiers in the modeling of cell dynamics16–18. However, the exact
dynamics of the FtsZ accumulation and the conditions under which it is
the main contributor to the division remain unclear.

The addermechanism can be broken under slow growth conditions4,19.
Then, Δ is negatively correlated with sb. This deviation from the adder is
known as sizer-like strategy4,9,19,20 because it is an intermediate strategy
between the adder and the sizer. In this last strategy, cells divide once they
reach, on average, a specified size. This transition from adder to sizer-like by
changing growth conditions could reveal more information on the division
process and its regulation by different factors.

The study of possible mechanisms of division, especially under slow
growth conditions, has recently received increasing attention. The discovery
that FtsZ is one important factor for division in E. coli4, has led to several
studies suggesting the origins of the sizer-like strategy. here is evidence
supporting, mainly, the degradation of FtsZ by the clpX enzyme4,17 and the
limitation of the initiation of division by the initiation of chromosome
replication21–23. The importance of understanding the sizer-like has
prompted multiple groups to propose data analysis methods to distinguish
between different models of division7,24,25, opening a debate with no clear
conclusions yet. Here, we consider a general model that unifies three
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competing models as particular cases: (a) degradation of FtsZ4,26, which
assumes that these division regulatormolecules have a life span shorter than
the doubling time; (b) non-linear size dependence of the FtsZ accumulation
rate13,19, and (c) additional size control mechanism9,23,27, which posits that
FtsZ accumulation, and thus division, only starts when the cell reaches a
minimal size. This commitment between the cell cycle stages and a certain
size is common in the analysis of the cell cycle regulation for different
microorganisms28,29.

We observe that the three proposed models can fit the profile of Δ
versus sb by themselves4,19. However, it is difficult to experimentally test
which mechanism better determines the origin of the sizer-like in each
particular condition, as it requires experimental methods based on mole-
cular biology that are not always easily accessible4,21,23, especially for
organisms different from E. coli. This research will present a data-based
method in which, by comparing the predictions statistically with the data
and not needing the measurement of other variables such as the amount of
division regulatorymolecules or the instant of the initiation of chromosome
replication, it is possible to estimate which model has higher probability of
explain the observations.

Thepaper is organized as follows:wefirst introduce the threemodels of
bacterial division as special cases of a general stochastic counting process.
We obtain the distributions of size at division by numerically solving the
corresponding forward Kolmogorov equation for each model. We evaluate
themodels against the existing data sets4,19, using not only theirmean trends
but also their full distributions.We apply the Akaike Information Criterion
(AIC), a likelihood-based method, to measure the fit of the models pena-
lizing their complexity. We find that none of the models can explain the
sizer-like strategy consistently, but somemodels perform better than others
depending on how negative the correlation Δ vs. sb. Finally, we discuss the
implications of our findings and suggest further experiments to investigate
more aspects of cell division.

Methods
Modeling division in rod-shaped bacteria
We consider the division process as the completion of a certain number of
stages. During cell growth, as Fig. 1 shows, division occurs exactly when cell
crosses a fixed number of stages M14,30. From a biological perspective, a
possible interpretationof thedivision stages is related to the accumulationof
a precursor protein, usually the FtsZ mentioned above4,31. However, other
molecules could also be the main contributor to bacterial division32–35.
Therefore, we use division stages instead of number of precursor proteins to
explicitly keep our approach as general as possible.

Recent mathematical models have proposed cell-size based division
rates36,multi-stages13,19 and back transitions4 to explain the division strategy.
However, none of them can account for all the observed properties of cell
division24. In this article, we present amodel that encompasses each of these
models as a special case and propose a likelihood-based method to test the
predictions with data. We aim to provide a tool for hypothesis testing in
future experiments.

A cell cycle is defined as the set of processes occurring during two
consecutive divisions (Fig. 1). During the cell cycle, the cell size s grows
exponentially over time t with growth rate μ. This means that the cell size
follows:

ds
dt

¼ μs: ð1Þ

In the adder strategy, the transition between stages occurs at a rate
proportional to the current cell size14,19. To explain the sizer-like strategy, we
will generalize the accumulation rates. The rate of stage increase k+ is con-
sidered nonhomogeneous and, depending on the model, stages can revert
(by protein degradation) with a rate k−. At cell birth, that is, at the beginning
of the cell cycle, the cell starts from stagem = 0 and size sb (which can differ
from cell to cell). While cells grow exponentially, stages accumulate. When
reaching them =M stages, the cell divides.Exactlybeforedivision, the cell has
a size sd such that the added size Δ is defined as the difference Δ = sd− sb.
Finally, during cell splitting, cell size is halvedand the stages are reset tom = 0.

To describe stage accumulation in the cell cycle, let Pm(t) be the
probability thatm ≤M stages will be completed at time twith t = 0 being the
beginning of the cycle. Given the rates k+ and k−, the dynamics of these
probabilities are described by the master equation37:

dP0
dt ¼ �kþP0 þ k�P1

..

.

dPm
dt ¼ kþPm�1 � kþPm � k�Pm þ k�Pmþ1

..

.

dPM
dt ¼ kþPM�1:

ð2Þ

PM is the probability of reaching the target step M or, equivalently, the
probability of the division event to occur. Since after division the cell stars at
stagem = 0, the initial condition (t = 0) is considered asPm(t = 0) = δm,0 with
δi,j being the Kronecker delta function.

Fig. 1 | A generalmultistepmodel for triggering cell division. aDiagram of the cell
cycle explaining how division occurs at crossing M stages. bWhile bacteria grow
exponentially (lower panel), the division stages accumulate at rate k+ and might
revert at rate k− (upper panel). Once a number of stepsM is reached, the cell divides,

the steps are reset to zero, and the size is halved. The main variables of the bacterial
division cycle are also shown: size at birth sb, size at division sd, and added
size Δ = sd− sb.
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As shown in Fig. 2a, we are interested in the estimate of the time to
division τ. PM is related to τ as:

PMðtÞ :¼ Pfτ 2 ð0; tÞg: ð3Þ

This is,PM(t) is also the probability that τ occurs in the interval (0, t).Hence,
the probability density function PDF (also known as the distribution) of the
division time ρτ is related to PM following:

PMðtÞ ¼
Z t

0
ρτðt0Þdt0: ð4Þ

After estimating PM by solving (2), ρτ(t) can be calculated as follows38:

ρτðtÞ ¼
dPM

dt
¼ kþPM�1: ð5Þ

As shown in Fig. 2b, the PDF of the cell size at division sd can be
estimated from ρτ, considering that the cells grow exponentially. This
is, the cell size s is related to the size at birth sb through the time from
birth t:

s ¼ sbe
μt ; tðsÞ ¼ 1

μ

� �
ln

s
sb

� �
: ð6Þ

A transformation of variables allows us to obtain the PDF of sizes at
division ρsd ðsÞ as:

ρsd ðsÞ ¼ ρτðtðsÞÞ
dt
ds
; ð7Þ

where dt
ds ¼ 1

μs when exponential growth (1) is assumed. Observe

how, since the cell size depends on sb, these distributions also depend
on sb.

As explained in Fig. 2b, a comparison between experiment and theory
requires the calibration of themodel parameters. This is done by estimating
the moments of sd using the estimated ρsd ðsÞ in (7). If 〈. 〉 defines the aver-
aging operator, the α-moment of the distribution of sd, written as hsαdi, is
defined as follows,

sαd
� � ¼

Z 1

sb

sαρsd ðsÞds; ð8Þ

where themean size at division 〈sd〉, themoment with α = 1, can be used
to calculate the mean added size per division cycle 〈Δ〉 = 〈sd〉− sb as a
function of the size at birth sb. The particular parameters of the model
(as will be explained later) are adjusted, such as the predicted 〈sd〉 is
constrained to the observed average 〈sd〉 assuming that the mean size at
birth 〈sb〉 = 1.

After imposing this constraint, the best model parameters are adjusted
to the data by maximizing the likelihood function. As shown in Fig. 2c, the
likelihood function measures the precision of the PDF with the histogram
associatedwith the data.With a higher likelihood, the predicted distribution
fits the experiment better.

Themoments of sd can also be used to quantify the noise in added size
CV2

Δ, the ratio between var(Δ) (the variance of Δ) and 〈Δ〉2, which is a
measure of the stochastic variability of Δ. We can obtain CV2

Δ as a function
of sb from ρsd and its moments hs2di and 〈sd〉 using the formula19:

CV2
Δ ¼ varðΔÞ

hΔi2 ¼ hs2di � hsdi2
ðhsdi � sbÞ2

: ð9Þ

Observe how since hsαdi depends on sb, different models may predict dif-
ferent trends on CV2

Δ. For us, while the trend 〈Δ〉 vs sb is known as the
division strategy,CV2

Δ vs sb is the noise signature of themodel. Next, we will
explain these models as particular cases of k+ and k−.

The Adder strategy
The implementation of the adder, where 〈Δ〉 is independent on sb corre-
sponds to the particular case of (2) where k+ and k− are given by19:

kþ ¼ ks; k� ¼ 0; ð10Þ

with k a constant and s = sbe
μt is the cell size. Assuming exponentially

growing cells and a division process defined by both (2) and (10), the mean
added cell size 〈Δ〉 is given by19:

hΔi ¼ M
μ

k
; ð11Þ

which is, as expected, independent of sb. The noise in Δ, defined in (9)
follows:

CV2
Δ ¼ 1

M
; ð12Þ

which is also uncorrelated with sb as observations suggest
19.

Fig. 2 | Process to predict the distribution of size at division and its comparison
with data. aThe distribution of division times τ given the size at birth sb is estimated
by solving numerically the master equation (2). b The size distribution at division sd
is obtained from the distribution of division times and considering the exponential

growth using (7). c The comparison with the data is made using methods based on
likelihood. The distribution with higher likelihood fits the data better than a dis-
tribution with lower likelihood.
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Sizer-like by molecule degradation
As4 suggests, sizer-like division strategy can be obtained by including active
degradation of the division-triggering molecules. In our framework,
degradation is equivalent to a step backward in the accumulation of M
stages. In this case, the rates k+ and k− are given by:

kþ ¼ ks; k� ¼ γm; ð13Þ

where γ is the rate at which each molecule is degraded.
A negative slope is obtained in Δ vs sb as shown in Fig. 3a (top). The

higher γ, the more pronounced the slope. This model reduces to the adder
when γ≪ μ. The noise signature of this model is presented in Fig. 3a
(bottom) where, as the main property, we can see that for an increase γ, for
fixed division stepsM, it is expected a higher average CV2

Δ.

Sizer-like via non-linear division rate
Following19, we consider a scenariowhere amolecule that triggers division is
produced at a rate that depends on a power λ of cell size s, this is:

kþ ¼ ksλ; k� ¼ 0: ð14Þ

After substituting (14) in (2), plus the assumption of exponential
growth, thedivision strategy exhibits a sizer-likebehaviorwhenλ > 1 (Fig. 3b
top). For the particular case of λ = 1, themodel reduces to the adder. Hence,
the higher λ, the higher the slope of the relationship between Δ and sb. The
power law on the production rate also affects the fluctuations of the added
sizeCV2

Δ: it lowers the average noise level for a givenM and simultaneously
increases the positive slope of CV2

Δ versus sb (Fig. 3b bottom).

Sizer-like via a commitment size
Recent evidence suggests that cells may aim for a minimal size before
starting division programs9. We will denote this minimal or commitment
size by s0. We propose that it can be incorporated into our framework as

kþ ¼ ks

1þ ðs0=sÞβ
; k� ¼ 0: ð15Þ

By replacing (15) with (2), we can see that the division strategy has a
sizer-like behavior when β > 0 (Fig. 3c top). The parameter β can control the
slope of the curveΔ versus sb for a fixed s0. It also influences the fluctuations

of the added size CV2
Δ: It reduces the average noise level for a givenM, but

increases the positive slope of CV2
Δ versus sb (Fig. 3c bottom). This model

encompasses the adder strategy as a special case when β = 0.
The commitment size s0 relative to the mean size at birth 〈sb〉 also

affects the division strategy. For a fixed β, a low s0≪ sb mimics the adder,
while a high s0≫ sb approximates the sizer (the strategywhere the slope inΔ
versus sb is−1). This is because cells bornwith a size below s0 followaperfect
sizer strategy,while cells bornwith size above s0 follow theadder. For smallβ,
the adder strategy is recovered. For intermediate β, the transition from sizer
to adder is smoother as sb increases.

Comparison: theory versus datasets
We have shown how to derive the PDF ρ(sd∣sb) from different models. Now,
we want to estimate how accurate these distributions are relative to the data.
We use the Akaike Information Criterion (AIC)39 to reward the fit of the
models to thedatawhile penalizing thenumber of free parameters. The adder
model has one parameter (M), the degradation and power-law models have
two (γ,M and λ,M respectively), and the commitment size model has three
(s0, β andM). Taking into account all experiments, for eachpair of data (sb,Δ)
normalized by 〈sb〉we numerically compute the size-at-division distribution
ρsd ðsjsbÞ given sb using (7). We find the parameters that maximize the like-
lihood function40 based on the data. Then we calculate the AIC for each
model. The model with the lowest AIC is the most probable one, and we
denote its AIC value by AICmin. To compare the relative probability of each
modelwith themost probable one, we use the concept of relative likelihood41.
For a model iwith an AIC value ofAICi, the relative likelihood p is given by:

p ¼ exp½ðAICmin � AICiÞ=2�: ð16Þ

TheAICmethod is useful for estimating the accuracy of themodels but
is not easy to visualize since thematch of the distributions is very similar. To
gain a better intuitive understanding of how eachmodel behaves, we canuse
themethod of statistical moments. As shown in Fig. 3, thismethod involves
plotting the division strategy (〈Δ〉 versus 〈sb〉) and the noise signature (CV2

Δ
versus 〈sb〉) and comparing themwith the data. From theory, we can obtain
the moments directly: given a sb, they are calculated from the distribution
using (8). From the data set, we visualize the moments given sb using
quantile splitting. This method splits the data into a given number of
quantiles and computes the statistics for eachquantile separately. Thepoints
in Fig. 3 (five quantiles) represent the data from simulations, while Fig. 4a

Fig. 3 | Trends on mean added size before division 〈Δ〉 (top) and its stochastic
fluctuations (noise) CV2

Δ (bottom) as functions of the size at birth sb. a Trends
considering the model of degradation for different values of the degradation rate γ
relative to the growth rate μ in (13). b Predictions considering a division rate pro-
portional to a power of size for different exponents λ in (14). c, d Predictions

considering a commitment size with different values of the Hill function exponent β
and the commitment size s0, respectively, in (15). The trend lines correspond to the
numerical solutions of (2). Large dots are obtained from simulations. Error bars
represent the 95%-confidence interval over 10000 simulated cycles. The constant k is
set in each case such as 〈Δ〉 = 〈sb〉 = 1. Other parameters are shown inset.
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(also five quantiles) represents the experimental data. To study the division
strategy, we plot hsbiq and 〈Δ〉q for each quantile. The noise signature is
obtained by plotting the variance hðΔ� hΔiqÞi2=hΔi2q for each quantile.
Error bars indicate a 95% confidence interval using bootstrappingmethods.

Experiments
We analyzed two independent already published datasets of E. coli strains
under different growth conditions4,19. Data were obtained from time-lapse
microscopy images of confined single cells fed in amother machinemicro-
fluidic device. References4,19 imaged slow-growing cells corresponding to
steady growth conditions.

We measured the cell size using the cell length since the width is
approximately constant.Wenormalize all lengths by themean size at birth
〈sb〉. The theoretical division ratekwas estimated, given the free parameters
and setting the growth rate at μ ¼ lnð2Þ, from the observed 〈Δ〉 with
〈sb〉 = 1. Besides simplify our computations, with this time and cell-size
normalization, our idea is to obtain general results.Our conclusions should
be scale-free because we only study dimensionless quantities such as the
slope and correlation between Δ vs. sb and noise in added size CV2

Δ. These
properties of cell division emerge naturally given the model parameters.
The experimental data and the data analysis scripts are available at42.

Results
Figure 4a shows the comparison between the data and the theory. First, we
study the case where the division strategy is close to adder, that is, whenΔ is

independent of sb. This occurs for condition 1 (NCM3722 in MOPS with
Glucose) since the 95% confidence interval for the correlation includes zero
(Fig. 4b). For these conditions, the addermodel has a relativelyhighAIC, but
not as high as the other three models. The three models reach a similar
likelihood, but the commitment size model is punished for its complexity.
Both degradation and power-lawmodels reach similar AIC scores, and it is
not possible to discard one of those models with enough confidence.

For the other conditions, the division is sizer-like with statistical sig-
nificance (Fig. 4c). In Fig. 4c, we observe that the degradation model has a
minimum AIC (and therefore highest relative likelihood) for cells with a
larger mean size at birth (conditions 2 and 3, MG1655 in MOPS with
glycerol 11aa andMOPS with Glucose). For smaller strains, power-law and
commitment show lower AICs. Power-law has the lowest AIC for condi-
tions 4 and 5 (NCM3722 in MOPS glucose and MOPS arginine), and the
commitment size model performs best for cell conditions with the most
negative correlationΔvs sb (conditions 6 and7:MG1655 inM9withAcetate
and M9 with Glycerol).

To better visualize the performance of themodels, we can compare the
statistical moments with the binned moments of the data. In Fig. 4a, we
observe that all of our proposed models capture the mean trend in Δ vs sb.
However, they differ in noise signature (CV2

Δ vs sb). The degradationmodel
predicts a low correlation betweenCV2

Δ and sb, while the power-law model
predicts an increasing function. The commitment size model behaves like
the power lawwhen the slope ofΔ vs sb is small but predicts a higher slope of
CV2

Δ vs sb when the slope of Δ vs sb is large.

Fig. 4 |Discriminating betweenmodels across different experimental conditions.
a Top: trends of the added size Δ vs the size at birth sb. Bottom: Noise signatures,
quantified by stochastic fluctuations of the added size CV2

Δ versus sb. The numerical
prediction of the three models can be better discriminated: the degradation model
(red dotted line), the power law (green dashed line), and the commitment size (black
solid line). N represents the number of studied cell cycles. Cond represents the
condition number. In the middle of the figure, more detailed labels are shown. Error
bars represent the 95% CI using bootstrapping methods. b Comparison of the

correlation function between Δ and sb for different conditions. The more negative
this correlation is, the closer to sizer the division strategy is. c Relative likelihood of
each model with respect to the model with the best AIC score using (16). The black
dashed line represents the relative likelihood of 0.05. d Different conditions dis-
criminated by the mean cell size at birth versus the mean growth rate. The color of
the dots represents the most probable model, and the error bars represent the
standard deviation of each variable.
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Discussion
In this paper, we propose a general model that includes different mechan-
ismsof cell division regulationwith experimental evidence. Eachof them is a
particular case. We found that each mechanism contributes differently to
division depending on the growth condition. Our method can be used as a
tool for the study of the origin of different division strategies not only in E.
coli but also in other microorganisms. It includes complex observable
variables such as the growth rate or the division-initiation size. We believe
that our model can be generalized to other scenarios, such as cycle-stage-
dependent growth rate or size-independent division transition rates, as seen
in eukaryotic cells.

The transition from the adder to the sizer-like division strategies sug-
gests the presence of a dual mechanism governing cell division: a primary
mechanism that leads to the adder being themost important for larger cells,
and a secondarymechanism that gives rise to the sizer-like is more visible in
smaller cells. It is plausible that this secondary mechanism has often been
overlooked in laboratory settings, where cells are commonly cultivated in
nutrient-rich environments and are relatively large. However, this
mechanism is of substantial importance, as it could elucidate cell survival
and adaptation in real-world scenarios characterized by less-than-optimal
or slower growth conditions.

Si et al.4 found experimental evidence that FtsZ degradation could be
the basis for the sizer-like strategy. After inhibiting the production of ClpXP,
an ATP-dependent protease43 that degrades FtsZ, E. coli cells that showed a
sizer-like restored the adder division. Our investigation highlights the
potency of the degradation model in explaining the sizer-like strategy,
particularly when the relationship between added size and birth size is not
excessively steep. However, for steeper slopes, alternative mechanisms align
better with the data. We believe that the actual mechanism that explains
sizer-like is a composition of degradation and commitment size since they
are not exclusive.

The commitment size model posits a minimum size prerequisite for
division initiation, which yields the sizer-like behavior.When the cell size at
birth is relatively small, it often falls below this commitment size, needing to
grow until reaching this threshold. Then the division machinery starts to
build up. In contrast, when cells at birth exceed the commitment size,
division starts immediately.With division starting just after birth, we expect
large cells to follow theadder strategy.Avisual representationof how the cell
size plays a role in defining which model is more important is presented in
Fig. 4d,where cells with amean size at birth smaller than 2.3 μm(conditions
4–7) have a higher probability of being explained by a size-dependent
division rate (either power law or commitment size models). Cells with a
larger size (conditions 2 and 3) at birth aremore likely to have a sizer-like by
moleculedegradation.Condition1has almost nocorrelationΔversus sb and
does not have a clear main contributor. In contrast, the average growth rate
does not appear to define the main contributor to the division strategy.

This work shows that different models can fit the mean behavior, but
the noise signature can be used to distinguish them. However, we
acknowledge some limitations of these fluctuations-based methods. The
added size distribution has multiple noise sources in addition to random-
ness related to the control mechanism; we can include others, such as
instrumental precision: low camera resolutions, segmentation errors, and
length as a size proxy that ignores fluctuations in cell width18. These
uncertainties can addnoise to the added size, butwe believe that they cannot
explain the high level of noise we observe and that the noise component of
the division mechanism is high enough to neglect these instrumental
sources.

The power-law rate model operates on the premise that the division
rate has a stronger dependence on the size than the adder model. It is
important to note that this model is heuristic, using nonlinear size depen-
dency as an effective parameter to capture the intricacies of division. Thus,
the power-law rate may approximate the Hill function rate of the com-
mitment size model within a specific range. In contrast, the commitment
size model, with more free parameters, can exhibit greater adaptability
compared to the power-law model.

The notion of commitment size might relate to the initiation of
chromosome replication at a fixed size per origin9,44,45. Although our model
does not explicitly integrate chromosome replication, potential links
between these variables remain open. Recent studies hint at coordination
between division and replication in bacteria, resembling observations in
more complex organisms35,46–48. Other variables that we did not study can
contribute to the origin of the sizer-like. Recently, there is evidence about the
dependence of growth rate and cell size at birth25,49, the correlation between
lineage-related cells50 and randomness in growth rate51. We think that the
addition of new free parameters makes the model more complex, and our
fitting metric (the AIC score) punishes the complexity. Our aim is not to
over-fit themodel to each condition but tofind themore general conclusion
with the least number of assumptions.

The underlying biological mechanism enabling the cell to measure
commitment size remains a subject of active debate. One perspective sug-
gests tight synchronization between division and DNA replication, which
triggers division when reaching a target size for replication initiation9,21,52.
Another angle posits the existence ofmolecules acting as size proxies within
cells, regulating division initiation24,53. Further experiments, as proposed
in54,55, could provide additional information on the division strategy.
Dynamic environments, where the division strategy changes dynamically,
could shed light on these mechanisms. Other ways to achieve slow-growth
conditions can also help us understand the validity of the models. These
conditions can include decreasing growth temperature and growing in the
presence of a mild concentration of antibiotics. Furthermore, exploring the
division strategy with the clpX knockdown strain under different growth
conditions, coupled with the use of AIC or other likelihood-based methods
for data analysis, has the potential to provide a more comprehensive
understanding of these phenomena.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
Dataset and code used for the data analysis discussed in this manuscript
were gathered in a Zenodo repository with an MIT license at the following
link: https://doi.org/10.5281/zenodo.3951080.
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