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The discovery of upstream regulatory genes of a gene of interest still remains challenging. Here we
applied a scalable computational method to unbiasedly predict candidate regulatory genes of critical
transcription factors by searching thewhole genome.We illustrated our approachwith a case study on
the master regulator FOXP3 of human primary regulatory T cells (Tregs). While target genes of FOXP3
have been identified, its upstream regulatory machinery still remains elusive. Our methodology
selected five top-ranked candidates that were tested via proof-of-concept experiments. Following
knockdown, threeout of five candidates showedsignificant effects on themRNAexpressionof FOXP3
across multiple donors. This provides insights into the regulatory mechanisms modulating FOXP3
transcriptional expression in Tregs.Overall, at thegenome level this represents a high level of accuracy
in predicting upstream regulatory genes of key genes of interest.

Understanding the mechanisms behind the dynamics of gene expression is
fundamental to learn how cells work. With the development of large-scale
experimental approaches, identificationof the target genes of a transcription
factor of interest becomes relatively straightforward1,2. However, the dis-
covery of upstream regulatory genes that control or modulate expression
levels of a given critical gene is so far realized in biological laboratories
mainly by trial and error, which is very demanding in terms of time and
resources. To this end, we applied and validated an unbiased computational
approach to accelerate the discoveries of upstream regulatory genes, beyond
the promoter-binding transcription factors, of a critical transcription factor
in primary human cells.

In recent years, thanks to the availability of high-throughput experi-
ments that measure the whole genome, there has been substantial progress
in methods for inference of gene regulatory networks from large-scale
transcriptional datasets3–7. In particular, crucial to infer gene networks is the
accessibility of time-series data8–12. Thosemethods are usually referred to as
reverse engineering methods, and they all have particular strengths and
limitations13,14. One of the main limitations most of those methods suffer
from is the lackof computational scalability andhenceof thepossibility to be

applied at the genome-scale, rather than only on small networks. In fact,
those methods usually tackle the challenging problem of inferring gene
regulations within a network of N genes ×N genes, which consequently
constrains their applicability to a relatively small number of genes. This
paper instead addresses the problem of modeling and inferring potential
upstream regulatory genes of one selected gene of particular interest fromall
genes within the genome, i.e., the simplified problem of inferring potential
N × 1 interactions. Thus, our network inference approach is able to address
an unsolved and challenging question: to predict in an unbiased manner
upstream regulatory candidate genes of a critical transcription factor by
searching the whole genome.

Previously, we introduced a reverse engineering computational
method which successfully identified causal regulatory relationships from
time-series data15–17. Thatmethodwas applied to infer small gene regulatory
networks of the circadian clocks of Arabidopsis thaliana16 and Barley
(Hordeum vulgare)17 and it showed similar or even better performance than
several state-of-the-art methods18, including past DREAM challenges win-
ners. Here, to infer potential upstream regulatory genes of a transcription
factor of interest, we extended this method to consider: 1) non-oscillatory
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systems; 2) genome-scale transcriptional data including human datasets;
and 3) delayed dynamical systems, to include indirect regulations via
unmeasured species, e.g., proteins, that can delay the action of a regulatory
gene. Technically, our method fits delayed first-order linear systems to
limited time-series transcriptome data to unbiasedly test whether any gene
regulates theparticular geneunder investigation.The challenge is to tune the
model complexity with enough detail to establish causality and thus reg-
ulation,while at the same time to avoid overfitting, and to scale the approach
to the whole genome.

The aim of this work is to showcase an original successful real-world
application of a method, tailored from our previously published work18, to
human primary T cells (see ref. 18 for comparisons with other state-of-the-
art methods). Here, we illustrate the method on a high-frequency time-
series genome-scale transcriptomic dataset19, to obtain candidates regulat-
ing a key transcription factor in a specific immune cell type. These data were
obtained from a type of primary human immune cells known as
CD4+CD25+FOXP3+ regulatoryT cells (Tregs)20,21.Our goal is to identify
potential upstream regulatory genes of the master regulator of Tregs, i.e.,
FOXP3. The transcription factor FOXP3 plays a decisive role for the
development and function of Tregs22. Tregs perform immunosuppression
of effector cells to induce immunological self-tolerance and maintain
homeostasis23–25. Tregs are involved in different types of diseases, such as
autoimmune diseases26–28, cancer29–31, infectious diseases32,33, neurodegen-
erative diseases34,35 and others36.

Target genes of FOXP3 have been identified through intensive
studies37–39, together with insights into genetic and epigenetic mechanisms
regulating expression or protein stability of FOXP340–45. The majority of
known upstream regulators of the expression of FOXP3 are general reg-
ulatory genes, e.g., those controlling interleukin signaling pathways (IL-2,
IL-4, IL-6 and so on) and cell surface receptors (TGFB)46. Those genes tend
to regulate a large number of targets far beyond FOXP3, whichmight cause
significant unwanted off-targeting effects when being targeted.

Identifying more specific regulatory genes of the master regulator
FOXP3 may be crucial for developing new immunotherapeutics against
autoimmune and other related diseases. In fact, targeting master regulators
of other cell types in other diseases, e.g., cancer, has demonstrated to be very
promising in the development pipeline47–49. FOXP3 is the Treg lineage
transcription factor that plays a decisive role in both Treg development and
suppressor function. However, like other transcription factors, FOXP3 is
located intracellularly and it is not easily targetable by classical methods.
Hence, it is important to identify upstream genes of FOXP3 to see whether
one could alternatively modulate the expression of FOXP3 via its upstream
regulatory genes. Of particular interest is to identify extracellular candidate
regulatory genes as more druggable hits for promising treatment
developments.

The goal of identifying novel upstream regulatory genes of FOXP3 is
challenging. A recent study onTregs fromhuman single-cell RNA-seq data50

could only identify potential genes co-expressed with FOXP3, but not its
upstream regulatory genes. In fact, with data very limited in the number of
timepoints it canbehard to establish causality, thus often simpler alternatives
are employed, such as correlation, mutual information or other basic
statistics6,51. These methods mainly identify co-expression of genes, rather
than causal interactions52, i.e., regulations. Also, mathematical models of
Tregs’dynamicsorwiderparts of the immunesystemarenotuseful infinding
novel regulatory genes of FOXP3 because they mainly included known
regulations53–60. Thus, novel upstreamgenes regulatingFOXP3are still largely
unknown. A very recent study61 addressed this problem experimentally,
screening around five hundred predefined nuclear factors by CRISPR to
identify gene regulatory programs promoting or disrupting FOXP3 expres-
sion. However, unbiased experimental screening of the whole genome for
such upstream regulatory genes in a rare-frequency primary immune subset,
i.e., Tregs, is still impossible even with state-of-the-art experimental
approaches62 and available resources. Instead, such a screening task could be
first performed computationally to facilitate the candidate short-list selection
for followup experimental investigations. This is the goal of this work.

In summary, this paper shows that a simple dynamical model can
efficiently (genome level) and unbiasedly predict upstream regulatory genes
of specific targets. It suggested five genes that potentially regulate FOXP3
expression, three of which were subsequently experimentally validated. At
the genome level and in primary human cells, where high heterogeneity
exists among different individuals relative to the scenario in murine cells,
our method exhibits a high level of predictive accuracy.

Results
The unbiased computational screening approach used in this work is based
on a method rooted in the engineering field of systems identification of
dynamical systems. Here, we illustrate the use of this tool to predict reg-
ulatory genes of the Treg master regulator FOXP3 from the whole genome.
The method can be applied to various types of time-series data from dif-
ferent organisms, including transcriptomic, proteomic and metabolomic
data and others. Ideally, the time-series input data should have constant
time intervals betweenmeasurements. Otherwise, data can be, for example,
interpolated.

This paper used published time-series microarray transcriptomic
measurements from isolated primary human Tregs19. The datasets
consist of Tregs from two different healthy donors that were stimulated
at time zero with anti-CD3/-CD28/IL-2, andmeasurements were taken
at time zero followed by sampling every twenty minutes over a period
of six hours (19 time points in total). The transcript expression was
then analyzed in Affymetrix HG-U133 plus 2.0 oligonucleotide arrays
(see ref. 19 for details). Although the number of 19 time points is
already quite large and rare in biological experimental settings, this
number is still limited from our engineering-based dynamical mod-
eling perspective.

After pre-processing, as outlined in column 1 of Fig. 1a and described
inMethods, there were 13,601 transcripts left, corresponding to 7826 genes.
A gene can correspond tomultiple transcripts, eachmeasured by a separate
probeset; unless otherwise stated, from now on for simplicity we will only
use the term “transcript” to replace “probeset”.

The next step is to build dynamical models that capture causality.
However, there are many choices on model classes and complexity. With
rich data, models can be complex, providing detailed information of
mechanisms of action. In our case, with only a single time-series experiment
limited to 19 time points and with limited resources for validation, we
considered one of the most minimalistic classes of dynamical models: first-
order linear time-invariant (LTI) systems, a well established modeling
strategy in small scale systems15–18,63,64. This simple class avoids overfitting
and introducing biases.

In this particular study, we are only interested in predicting upstream
regulatory candidates of one gene, i.e., FOXP3. Hence, the models take as
single inputs the time-series expression values of each of the 13,601 tran-
scripts, andFOXP3as the single output (target). This leads to a largenumber
of pairwise dynamical models (one per transcript), testing whether each
transcript on its own could regulate FOXP3. A model associated with a
particular transcript is given by

d FOXP3ðtÞ
dt

¼ a � FOXP3 ðtÞ þ b � transcriptðtÞ: ð1Þ

The left-hand side of the equation is the derivative over time (i.e., the rate of
change) of themRNA concentration of FOXP3. The first term on the right-
hand sidemostly corresponds to degradation; it can also capture negative or
positive feedback from FOXP3 itself, in case of autoregulation. The second
term describes the regulation of FOXP3 gene expression by another
transcript.Given the simplicity of themodel, the twoparametersa and bwill
be adjusted to best fit the data and, hence, they are more likely to represent
an abstraction rather than a physical meaning. Based on this equation, we
searched for parameters a, b that best fitted the data. This procedure was
repeated for all 13,601 transcripts. We excluded any transcript leading to
inconsistentmodels between the two donors in terms of its role as activator/
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repressor. These steps were summarized in column 2 of Fig. 1a and further
details were provided in Methods.

If a potential candidate is a transcription factor, the corresponding
transcript still needs to be first translated to the encoded protein and then
bind to the promoter areas of FOXP3. This results in a time delay from the
activation of the transcript of the candidate regulator to the mRNA
expression of FOXP3.Very often, the upstream regulatory candidate is not a
transcription factor, which has to go through several intermediate

molecules/proteins to be able to modulate the expression of FOXP3 and
therefore requires even a longer delay. To capture the dynamics of inter-
mediate steps and avoid significantly increasing model complexity, we
therefore introduced a time delay τ in the input signal

d FOXP3ðtÞ
dt

¼ a � FOXP3 ðtÞ þ b � transcriptðt � τÞ: ð2Þ
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Fig. 1 | Causal dynamical modeling pipeline resulting in hypothesized upstream
regulatory genes of FOXP3 for subsequent experimental testing. a Overview of
the different stages of the computational approach, from raw time-series tran-
scriptomic data to the resultant top ranking of genes likely to regulate FOXP3
expression in primary human Tregs. The abbreviation ACT stands for activator,
REP for repressor. In the third column, the red signal A and B represents the original
input signal and a delayed version, respectively. b The number of models that reach

the given fitness score or higher. Two regimes are visible: a group ofmodels showing
a steep decrease in fitness scores, and a much larger group showing an almost linear
decrease in fitness scores. The zooming-in view on the top right corner of this panel
shows a magnification of the region with the top ranked models. The list of the top-
ranked 176 transcripts is reported in Table 1. c Overview of predicted top-ranked
upstream regulatory candidate genes of FOXP3 which were tested in vitro.
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Overall, the model has only a total of three parameters and lower chance of
overfitting when applied to the few time points available. Moreover, this
simple model can scale to the whole genome. In contrast, other more
complex models such as higher dimensional systems, nonlinearities, or
linear combinations of multiple inputs with penalty on complexity, have a
higher risk to overfit and typically lead to combinatorial optimizations (not
scalable). Nevertheless, it is possible that other existing models would also
lead to useful predictions.

Fitness of each model to the data was quantified by the fitness score
defined in the second equation of column 2 of Fig. 1. Higher fitness values
corresponded to transcripts more likely to regulate FOXP3 (fitness ranges
from 0 to 100, with 100 being perfect fit). For each model, we considered
several possible delays τ and selected the delay leading to the highest fitness.
Next, all 7030models left at this point were ranked according to this fitness.
This is illustrated in column 3 of Fig. 1a and described inMethods in detail.

Next, we decided to focus on the top ranked 2.5% genes of our list, i.e.,
176 transcripts (Table 1) out of 7030. Fitness scores decreased rather steeply
for the top rankedmodels, and thendecreasedmuch slower.While any cut-
off is somewhat arbitrary, we decided to focus on genes at the top of the list,
since those are more likely to regulate FOXP3 (additional details in Meth-
ods). Those 176 genes included a wide variety of cell functions and allowed
an individual investigation of their biological functions and dynamics.

Of those 176 models, there were 161 distinct genes. These genes cov-
ered fitness values ranging from 46 (lowest) to 62 (highest). Among these
remaining 161 top ranked genes, FOXP3 is known to bind to the promoters
of 59 genes65, and 38 genes are reported to be differentially expressed in
human Tregs compared to CD4+CD25− effector T cells (Teffs)65. For 15
genes, both statements were true. As a literature validation test, this shows
that the predicted top ranked genes are indeed involved in the pathways
related to FOXP3 regulation, supporting the relevance of our predictions in
general.

Focusing on specific examples, in the list of top ranked genes, our
algorithm has predicted some candidate genes which have already been
shown to play an important role in regulating FOXP3 expression or Treg
suppressive function. For example, as shown in Table 1, our algorithm
ranked IKZF4 as the top 52th candidate regulatory gene that could regulate
FOXP3 expression. Excitingly, selective deletion of IKZF4 in Tregs leads to
loss of suppressive function and development of systemic autoimmunity66.
ARG2 was ranked 55th. It has been shown that ARG2 enhances Treg
suppressive capacity in vitro and confers a selective advantage for accu-
mulation in inflamed tissues in vivo67. CD44 was ranked 84th in our list.
Tregs from CD44-knockout mice demonstrate impaired regulatory func-
tion ex vivo and depressed production of IL-10 and cell-surface TGF-beta68.
IRF1was predicted by our algorithm as one of the top ranked genes (107th).
It has been reported that IRF1 negatively regulates Treg differentiation by
repressing FOXP3 expression69.

The next step was to experimentally validate some of the 161 top
ranked genes. Due to capacity constraints, it was only possible to experi-
mentally validate five of them. Since the fitness scores of those top ranked
161 geneswere relatively close, we performed the selection also based on the
following additional considerations. First, probesets corresponding tomore
than one gene were excluded, since it is not possible to distinguish which
genes produce the resulting expression profile (i.e., cannot determine exact
candidates). Second, we excludednoisy time-series signals and focused only
on relatively smooth time-series signals, with clearly visible rise and fall
dynamics ahead of FOXP3. Third, we gave preference to transcripts with
optimal delays τ in Eq. (2) between 20 and 60min, considering the typical
amount of time taken to translate mRNA of the regulatory transcript into
protein, bind to the promoter of FOXP3 and consequentially regulate its
expression. Fourth, we performed a final selection based on potential bio-
logical relevance.We gave preference to transcription regulatory genes with
encoded proteins located in the nucleus, since the known regulatory path-
ways of FOXP3 are predominantly occurring there (see e.g., ref. 46).

Following these additional considerations, the top five previously-
unrecognized candidates selected for experimental validationwere:NCOA7,

NRBF2, PDE4D,MAP1LC3B and RNF12 (also known as RLIM) (Fig. 1c).
The first three encoded proteins located in the nucleus. More details on this
selection are provided in Methods.

Our experimental results showed a successful knockdown of
MAP1LC3B,NCOA7 andNRBF2 using siRNA specifically targeted against
the corresponding gene relative to a control scrambled siRNA in sorted
primary human Tregs (refer to Methods, Supplementary Fig. 1 and
Fig. 2a–d). The potential off-target risk for the used siRNA was minimized
through the implementation of the Qiagen HP onGuard siRNA Design
pipeline. Furthermore, no universal effects were observed for the employed
siRNA against any of these five candidate regulatory genes onmRNA levels
of an irrelevant gene, e.g.,CD4, in Tregs (Supplementary Fig. 2).We also did
not observe a significant effect on cell viability following transfection of
those specific siRNAs inourproject (as exampled in SupplementaryFig. 5a).
As predicted by our method, partial knockdown of MAP1LC3B, NCOA7
and NRBF2 already significantly down-regulated the transcript expression
of FOXP3 in Tregs (Fig. 2b–d). The dynamics of FOXP3 expression fol-
lowing siRNA treatment was slightly different for the three candidates. For
the other two candidates, PDE4D and RNF12, although we successfully
knocked down their mRNA expression, there was no clear effect on the
mRNA expression of FOXP3 (data not shown here).

Next, we tested the potential effect on protein levels of FOXP3,
althoughwemadenomodel or prediction for protein levels (allmodelswere
built frommRNAdataonly, not topredict protein expression).Weused two
different protein analysis techniques, immunoblotting and flow cytometry
(Supplementary Figs. 3–5). Due to the limited availability of reliable anti-
bodies ofMAP1LC3B,we performedWestern blotting (WB) analysis to test
the effects of knockdown of only NCOA7 and NRBF2. We observed a
downregulation of NRBF2 protein levels following NRBF2 siRNA knock-
down (also refer to Supplementary Note 1), which resulted in expression
reduction of certain FOXP3 isoforms using WB (Supplementary Fig. 3).
Since WB can only measure averaged results in bulk protein samples, we
also employed single-cell based flow cytometry. In other donors, however,
flow cytometry analysis exhibited no reduction in FOXP3 protein expres-
sion among gated living cells, although the same donors still showed a
significant reduction on FOXP3 transcripts in Tregs with NRBF2 knock-
down at 5h following stimulation as quantified by quantitative real-time
PCR (qPCR) (Supplementary Figs. 4 and 5). Nevertheless, Tregs were
successfully stimulated as the protein expression of another key Treg gene
CTLA4 was indeed increased following stimulation in both groups (Sup-
plementary Fig. 5c). In summary, we were unable to demonstrate whether
NRBF2 could also regulate FOXP3 protein expression or not due to the
results inconsistencybetween the twoproteinanalysismethods. It is possible
that complicated post-transcriptional and post-translational regulations
explain the observed difference between mRNA and protein results.

These experiments have been repeated in Tregs isolated from per-
ipheral blood on 8 adult healthy donors. The number of analyzed donors
varied depending at which level (protein or mRNA or both) the validation
was performed. The effect was not observed in up to two of the tested
donors, possibly due to the heterogeneous nature of human individuals.

Discussion
The purpose of this work is to demonstrate that applying a systems
identification-engineering basedcomputationalmethodcanunbiasedly and
effectively predict upstream regulatory candidates of a gene of interest. The
predictive accuracy was presented with the analysis of the top ranked can-
didate genes through proof-of-concept experiments. We illustrated the
method with human Treg transcriptomic time-series data to identify
potential regulatory genes of the master regulator FOXP3 from the whole
genome. Then,we testedfive selected top ranked genes via proof-of-concept
experiments. Of those, three candidates were successfully validated.

Although NRBF2 knockout mice do not show spontaneous auto-
immune phenotypes, NRBF2 positively regulates the autophagy process70,
which has been widely associated with autoimmune diseases71. Moreover,
an integrative meta-analysis from around 72 million genome-wide
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Table 1 | Highest ranked 176 transcripts according to our approach

Ranka Gene nameb Delayc Fitnessd Rank Gene name Delay Fitness Rank Gene name Delay Fitness

1 ZNF331 100 62.14 60 TMEM186 0 50.46 119 SRSF7 100 47.79

2 C16orf72 40 61.91 61 FARS2 40 50.43 120 MAPKAP1 100 47.62

3 ANKRD49 40 61.40 62 CEP57 100 50.26 121 KLF4 100 47.60

4 ZNF331 100 60.49 63 APC 40 50.15 122 ZNF559 100 47.56

5 EXOC3L2 0 59.49 64 DPH5 80 50.14 123 LPIN2 40 47.53

6 SKI 40 58.27 65 LINC00909 40 50.08 124 NPRL2 100 47.53

7 PDE4D 80 58.19 66 IRS2 100 50.07 125 KIAA0391 100 47.53

8 RNF6 40 58.09 67 FLJ31306 20 49.91 126 TIPARP 100 47.52

9 BBX 40 58.06 68 SNRK 60 49.87 127 ING3 80 47.37

10 RNF144A 40 57.28 69 ZNF331 100 49.84 128 CBX4 100 47.36

11 PRKAR2A 40 57.25 70 MRPS31 100 49.76 129 FOCAD 100 47.30

12 MEF2D 100 57.17 71 C11orf21 100 49.73 130 FAM63B 40 47.25

13 IRS2 100 57.12 72 OSBPL7 100 49.72 131 OSBPL2 40 47.18

14 CCDC109B 40 56.79 73 ZSCAN16 40 49.72 132 DFFA 100 47.17

15 MTMR12 40 56.73 74 FAM13A 100 49.71 133 GCFC2 80 47.12

16 EHBP1 40 55.84 75 ZNF764 40 49.59 134 BCL11B 100 47.11

17 AGGF1 40 55.19 76 CYP2R1 40 49.52 135 RLIM 100 47.09

18 MEF2D 100 55.05 77 BCL11B 100 49.41 136 229447_x_at 100 47.00

19 DUSP7 100 54.88 78 RNF113A 100 49.32 137 PCYOX1 100 46.99

20 SRXN1 0 54.87 79 COA5 100 49.31 138 R3HDM2 100 46.98

21 OTUD4 0 54.77 80 CITED2 100 49.22 139 MKKS 100 46.96

22 RLIM 80 54.63 81 RIPK2 40 49.06 140 HINT1 100 46.94

23 MTHFD1 100 54.56 82 EGR1 80 49.01 141 HERC4 100 46.84

24 FAM162A 100 54.32 83 C1orf132 100 49.01 142 ATPAF1 100 46.79

25 TIPARP 100 54.10 84 CD44 40 48.99 143 UGP2 100 46.79

26 PAM 100 53.98 85 TM2D2 100 48.97 144 BUD13 40 46.75

27 CLUAP1 100 53.93 86 OXNAD1 100 48.90 145 FAM213B 100 46.74

28 C11orf73 100 53.89 87 DERA 100 48.87 146 RPL34 20 46.60

29 PEX19 100 53.61 88 PPIL3 100 48.84 147 CD33 100 46.60

30 ATF3 80 53.42 89 SNX20 100 48.75 148 203359_s_at 100 46.60

31 PRKAR2A 40 53.29 90 PEX19 100 48.63 149 METTL5 100 46.53

32 DUSP10 80 53.22 91 ZNF331 100 48.63 150 217317_s_at 100 46.45

33 FOCAD 100 52.88 92 C14orf166 100 48.63 151 FAM13A 100 46.44

34 FAM213B 100 52.87 93 FAM162A 100 48.63 152 SLC35F6 0 46.42

35 1562056_at 0 52.69 94 SLC46A3 40 48.60 153 DBR1 40 46.39

36 KIAA0232 40 52.26 95 CD164 20 48.56 154 MAP1LC3B 20 46.39

37 CBX4 100 52.13 96 NRBF2 60 48.55 155 ACYP2 0 46.35

38 MRPS22 40 51.66 97 ZNF350 60 48.54 156 NUDT15 100 46.34

39 PHF17 40 51.64 98 DERA 100 48.48 157 PDE4D 80 46.33

40 SNX18 80 51.57 99 THEM4 100 48.47 158 GOLGB1 40 46.32

41 CGRRF1 100 51.47 100 ZMYM4 100 48.42 159 SETD7 100 46.31

42 ABHD13 40 51.46 101 RPF1 100 48.39 160 NSMCE2 100 46.25

43 GLT8D1 100 51.40 102 CFLAR 0 48.36 161 MORF4L1 80 46.16

44 KIAA2018 40 51.32 103 PCYOX1 100 48.35 162 CASP6 100 46.15

45 MPPE1 40 51.29 104 DUSP1 100 48.33 163 ATG2A 100 46.13

46 GGNBP2 40 51.27 105 ACOX1 100 48.32 164 RBBP6 100 46.09

47 MOAP1 100 51.20 106 ING3 80 48.29 165 UBFD1 100 46.05

48 PTGER4 40 51.14 107 IRF1 100 48.23 166 222021_x_at 100 46.05

49 ZNF273 80 51.13 108 PIK3R1 100 48.17 167 KLF6 80 46.04

50 ENO2 20 50.98 109 KLF6 80 48.14 168 GDE1 80 45.99

51 HERPUD1 100 50.91 110 NCOA7 40 48.09 169 KDM2A 80 45.98
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Table 1 (continued) | Highest ranked 176 transcripts according to our approach

Ranka Gene nameb Delayc Fitnessd Rank Gene name Delay Fitness Rank Gene name Delay Fitness

52 IKZF4 0 50.80 111 BNIP3 100 48.08 170 FAM162A 100 45.93

53 CGRRF1 100 50.77 112 SQRDL 100 48.04 171 GIMAP4 100 45.92

54 231061_at 40 50.76 113 S100A10 80 48.02 172 NCF2 100 45.91

55 ARG2 100 50.72 114 RNF6 40 48.02 173 DUSP7 100 45.90

56 CDS2 40 50.67 115 RBBP6 100 48.01 174 MRPL39 40 45.88

57 LPIN2 40 50.63 116 ZADH2 100 47.98 175 COQ5 100 45.83

58 FAM162A 100 50.61 117 KIF11 100 47.97 176 INPP4A 100 45.78

59 KLF4 100 50.55 118 TGS1 0 47.95
aRanking in descending order based on fitness scores; 176 transcripts correspond to 161 genes.
bGene symbol name or Affymetrix probe-ID (a unique identifier).
cTime delay (inmin) in themodel which received the highest fitness score among different possible time delays for the corresponding transcript as a possible upstream regulatory candidate gene of FOXP3
for the second donor.
dFitness score (in percentage) as defined in Eq. (4) for that model.
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Fig. 2 | Experimental validation of predicted upstream regulatory
candidate genes. a Schematic of the proof-of-concept validation experiments. The
predicted candidate genes were knocked-down by siRNA transfection in primary
human Tregs for 24 h, followed by anti-CD3/-CD28/recombinant human IL-2 sti-
mulation for different periods. bQuantitative real-time PCR (qPCR) results for the
knockdown ofMAP1LC3B in human primary Tregs and the corresponding FOXP3
expression. Control scrambled non-specific knockdown (si_NS) is shown in black
and the specific knockdown (si_MAP1LC3B) in red. c qPCR results for the
knockdown of NCOA7 and the corresponding FOXP3 expression. Control

knockdown (si_NS) is shown in black and the specific knockdown (si_NCOA7) in
red. d qPCR results for the knockdown of NRBF2 and the corresponding FOXP3
expression. Control knockdown (si_NS) is shown in black and the specific knock-
down (si_NRBF2) in red. Of note, the NCOA7 andNRBF2 knockdown experiments
were performed together with the same control samples for the same donor. Sta-
tistical significance (P-value) was determined using two-tailed unpaired Student’s t
test without multiple comparison correction. Unlabeled, non-significant. Displayed
data are mean ± standard deviation (s.d.) for four technical replicates. Experiments
have been independently repeated in 8 adult healthy donors.
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functional associations shows that NRBF2 is ranked as the sixth candidate
gene related to juvenile rheumatoid arthritis72, one of the classic auto-
immune diseases. NRBF2 is also known to regulate the activity of VPS3470.
Moreover, T-cell specific depletion of VPS34 significantly impairs the
maintenance and the suppressor function of Tregs73. Our results, together
with these published works, indicate that NRBF2 might be a promising
upstream regulatory gene that modulates the expression of FOXP3. To
understand the physiological and pathological effects of NRBF2 on Tregs
in vivo requires further investigation using NRBF2 whole-body or Treg-
specific knockout mice. However, under homeostatic conditions, NRBF2-
deficient mice do not develop spontaneous autoimmune phenotypes70.
Hence, additional efforts are required to investigate the effects under
induced inflammatory, infection or autoimmune disease animal models
and/or during the aging process74 in future experiments. If successful, our
workwill pave theway for identifyingnewpotential regulatory candidates to
modulate the expression of FOXP3 in Tregs and various complex diseases,
in which Tregs are heavily involved.

The models in this paper were fitted to transcriptional data. Hence, the
models can possibly only make reliable predictions at the mRNA level. Not
surprisingly, we observed that protein levels do not always follow the same
dynamics as mRNA due to tight post-transcriptional and post-translational
regulations of various proteins (e.g., that of FOXP3 as reviewed
elsewhere75,76). Furthermore, owing to the existence of possible compensa-
tory in-parallel pathways regulating FOXP3 protein expression, the partial
knockdown of NRBF2 at the mRNA level might be sufficient to down-
regulate FOXP3 transcript expression, but not to the extent of decreasing
FOXP3protein levels. Although the siRNAweusedwas based on theQiagen
HP onGuard siRNA Design pipeline that has implemented various sophis-
ticated algorithms to minimize off-target risks, it might be still worth to test
different siRNAs against the same candidate genes. Furthermore, as the three
candidate regulatory genes (e.g., MAP1LC3B, NCOA7 and NRBF2) are not
among known transcription factors77,78, it is very likely that the three can-
didate genesmight regulate the expressionof FOXP3via intermediate factors
or regulations, e.g., protein-protein interactions, rather thandirect promoter-
binding mechanisms. Future experimental data that also measure high-
resolution time-course protein, phosphorylation, acetylation and methyla-
tion levels could be included in themodeling pipeline to help shedmore light
on more complex regulatory mechanisms, together with more efficient
genetic perturbation approaches, e.g., CRISPR knockout systems.

From the computational perspective, one limitation is that, being based
on linear dynamics, our approach might miss complex non-linear interac-
tions. Moreover, since our method checks one transcript at a time as a
potential regulatory gene of FOXP3, it might miss interactions requiring
cooperativity among several transcription factors or co-activators or co-
repressors at a time. Regulations with multiple regulators controlling the
same target gene are indeedbiologically relevant79.Our approach could easily
be extended to consider both non-linearities and multiple regulators con-
trolling the same target gene. Non-linear and multiple-input single-output
models could be included using regularization techniques to promote
sparseness. However, this would likely lead to computationally-complex
inferencemethods, limiting the applicability of themethod to a considerably
smaller number of genes. Moreover, due to typically limited availability of
time-series data, a higher model complexity risks overfitting and increases
false positives, which we aimed to minimize. This is the reason why we
preferred a low number of parameters and higher confidence models.

Further potential developments include the following: (1) to experi-
mentally testMAP1LC3B,NCOA7 andNRBF2 in vivo in animalmodels, for
example using corresponding conventional or T-cell-specific conditional
knockout mice under homeostatic and pathological conditions; (2) to
experimentally investigate additional regulatory genes of FOXP3 from the
predicted list of top ranked genes; (3) to apply the same computational
approach to identify upstream regulatory genes of other important genes
(e.g., CTLA4) for Tregs; (4) to combine available protein-protein interac-
tions and directed regulatory interactions from public or commercial
databases to infer complex regulatory interactions80–83; and (5) to use more

complex models capturing mechanistic details if new types of time-series
data under different experimental conditions become available, including
single-cell RNA-seq data84,85.

This work presented the application of our approach to perform
inference of potential regulatory candidates of a target geneof interest across
thewhole genome from time-series data. In particular, the use of timedelays
allowed us to search for hidden andmore complex dynamics, while keeping
the method scalable with just one additional parameter. The method was
illustrated to rank thewhole genome for themost likely upstream regulatory
genes of FOXP3 inprimaryhumanTreg cells. To support this ranking, three
out of five selected candidate genes were validated via proof-of-concept
experiments at the transcriptional level, showing consistency across mul-
tiple donors. Silencing any of the following three genes, MAP1LC3B,
NCOA7 and NRBF2, down-regulated the transcript expression of FOXP3.

Overall, our results further enhanceourunderstandingof theupstream
regulatory networks of FOXP3, with the potential to develop new immu-
notherapeutics to modulate the expression of the master regulator FOXP3
in Tregs using either small molecular compounds or biologics, whichmight
have important implications in many complex diseases. Although we only
tested several intracellular candidate regulatory genes, the top ranked lists
indeed contained some extracellular cell-surface candidates that could be
relatively easily targeted, upon various layers of successful validations. Our
results are solely derived from human primary T cells and therefore guar-
antee their translational potential. Computationally, our study showcases
the power of dynamical modeling to unbiasedly infer the upstream reg-
ulatory genes of transcription factors of interest in primary cells, via
screening the whole genome. The applied method could facilitate the
otherwise long-lasting and resource-demanding laboratory process to
identify upstream regulatory genes.

Methods
Time-series data normalization and filtering
As shown in Fig. 1, we obtained the raw data generated from primary
human Tregs as described in ref. 19. Therein, microarray measurements
were performed for every 20min over the period of 6 h, after stimulation by
anti-CD3/-CD28/human rIL-2 at time 0 h on Tregs from two donors (here
referred to as donor-1, donor-2). This data contained 54676 transcripts/
probesets for each donor, mapping various transcript variants of almost
each gene in the whole genome. For simplicity, we only used the term
“transcript” and skip the more technical term “probeset”, keeping in mind
that they are in a one-to-one relation, thus exchangable. AlthoughRNA-seq
outperforms microarray in detecting low-abundant transcripts86, typically
these techniques are concordant in identifying differentially expressedgenes
or enriched pathways87. Since we do not focus on low-abundant transcripts,
we can safely employ this microarray data set.

Before applying any system identification technique, these time-series
data need to be pre-processed. This involves normalizing the data using the
gcrma algorithm88, a standard bioinformatics tool to remove as much noise
and bias as possible from the data, which is implemented inMATLAB. For
this and all the other computational aspects of thiswork,MATLABversions
R2016a, R2016b andR2017awere used.Afternormalizationwith the gcrma
algorithm, the data were transformed to 2x (with x representing the nor-
malizeddata), to get back to absolute natural values, in linear scale,whichwe
used hereafter. The so transformed natural data were then subject to fil-
tering. Firstly, we applied Affymetrix flag filter, where any transcript was
removed if marked as absent in every measurement taken at each instant of
time. Conversely, we kept all the transcripts for which at least one mea-
surement takenat any instant of timewasmarkedwithmarginally presentor
present. The second filter applied removed the transcripts for which the
average intensity (of the mRNA expression, which depends on the nor-
malization used above) is <50, or the largest intensity amongmeasurements
performed at any time is <100 (in the arbitrary units used by the gcrma
algorithm). After this filtering, 14712 transcripts were left for donor-1 and
14472 transcripts fordonor-2.The intersectionof these two ensembles led to
a common set of 13601 transcripts left.
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One-2-one method
Here, we used the methodology presented in ref. 16 to identify candidate
regulatory genes for FOXP3. This modeling strategy uses Linear Time-
Invariant (LTI) models to capture the dynamics describing the rate of
change of the selected transcript with respect to another input transcript.
One-2-one refers to this model that takes a single input and a single output.
A linear modeling paradigm offers advantages when data are scarce. In
particular, although linear models do not provide detailed structure of the
whole network, they are capable of identifying regulatory interactionswith a
reliable degree of precision (see below). A LTI model can be generally
represented by the following set of equations:

dx
dt ðtÞ ¼ AxðtÞ þ BuðtÞ

yðtÞ ¼ CxðtÞ: ð3Þ

Themodel investigateswhether the rate of changeof the gene expressionof a
particular transcript y(t) depends on the gene expression of another tran-
script u(t). In particular, u(t) and y(t) represented the time series of the gene
expression over time of a potential regulator of FOXP3 and FOXP3,
respectively. The variable x(t) represented internal dynamics (translation,
transcription, etc...) that interacted with the modeled output and were
required for the behaviors observed, but were not explicitly included in the
model. The dimension of the vector x(t) defines themodel order: in general
it can be a 1-dimensional vector (direct regulation or relatively slow
dynamics compared to internal dynamics), or a multi-dimensional vector
(the regulation happens through intermediate steps that introduce delays
and cannot be ignored).

Estimating amodel involvesfindingA, B andCwhichproduce a vector
y(t) as close aspossible to the real expressiondata.On theonehand, complex
nonlinear models have the potential to capture the dynamical relationships
between geneswith great precision.On the other hand, high complexity can
lead to overfitting (fitting noise instead of dynamics) without sufficient data
or detailed knowledge such as the network topology or types of nonlinear
interactions. Here, we restricted the model order to one as it was optimally
estimated in16. Hence, A, B and C were scalars. Furthermore, since y is the
measurement of a single state, C then consists of a scalar of value 1. System
identification was performed using the function ’pem’ implemented in
MATLAB to minimize the prediction error89.

A linear model can approximate certain nonlinear systems, often lin-
earized around an equilibrium point. It captures how relatively small
changes in inputs lead to small changes in outputs compared to the equi-
librium point. However, the location of equilibrium points are unknown
and depend on the gcrma algorithm removal of background noise. Hence, a
constant term was added to each pairwise gene interaction modeling and
estimated simultaneously with other model parameters. Technically, this
was implemented as linearmodels with two states, where the second state is
constant (i.e., it has no dynamics) and its contribution is multiplied by a
single parameter. This allowed the main part of the model to focus on the
most relevant dynamical information between genes, while the constant
deals with the constant bias.

To remove as much as possible bias from noise, we used a standard
methodology known as Prediction Error Method (PEM): determine the
model parameter θ such that the error e t; θð Þ ¼ y tð Þ � ŷ tjt � 1; θð Þ has
minimal variance. In other words, PEM minimises the mismatch between
the predictions made by the model with current parameters and the
observed data.

Each model was characterized by a performance index that represents
the capability of the model to describe the input-output relationship. To do
so, we used the fitness:

fitness ¼ 100 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
k¼1 ðyk � ŷkÞ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
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@

1

C

A

ð4Þ

where yk represented the data (output), �y the average value of the data, and
ŷk the estimated output. MATLAB function compare can be used to com-
pute the fitness of the model. A fitness equal to 100% corresponds to a
perfect identification. A high fitness suggests that most of the dynamics was
captured.

Then, to investigate the potential regulatory genes of FOXP3, a col-
lection of 1st order LTImodelswas estimated fromeach of the transcripts to
FOXP3. In each case, the parameters were estimated so that they together
provided the best possible fit to FOXP3 time course data. This step took the
following form:

d½FOXP3�ðtÞ
dt ¼ a1½FOXP3�ðtÞ þ b1u1ðtÞ

d½FOXP3�ðtÞ
dt ¼ a2½FOXP3�ðtÞ þ b2u2ðtÞ

:::
d½FOXP3�ðtÞ

dt ¼ an½FOXP3�ðtÞ þ bnunðtÞ

ð5Þ

where n corresponds to the amount of possible candidates. Eachmodel was
characterized by a fitness metric that ranges from 0% to 100%, representing
its capability of describing the original regulatory system between genes. A
gene, therefore, would be further considered as a hypothetical regulator for
FOXP3 if the model obtained using one of its transcripts was capable of
reproducing the expression profile of FOXP3 with a sufficient degree of
precision, which should be characterized by a high goodness of fit, as
defined above.

Additionally, we derived themathematical expression of the dynamics
of FOXP3 to explicitly include a delay in the modeling, such that it took the
following form:

d½FOXP3�ðtÞ
dt

¼ a½FOXP3�ðtÞ þ bu1ðt � μu1 Þ ð6Þ

where μu1 is a delay chosen between 0min and 100min, with steps of
20min. The choice μu1 ¼ 0 min reduces the models to the particular case
employed above.

A systematic comparison of our methodology against state-of-the-art
methods with data simulating similar experimental conditions can be
found in18.

Applying the one-2-one to our data: all-2-one method
For the system identification we only considered the transcripts that were
left after filtering, as described above. Since, the number of remaining
transcripts differed between the two donors, we collected the common
transcripts between the 14,712 and 14,472 transcripts (last step of column 1
of Fig. 1a).OurAll-2-one algorithmused these remaining transcripts, one at
a time, as an input potential regulatory candidate gene, represented by the
variable ui tð Þ in Eq. (5)), for the system identification technique described
above as One-2-one (first step of column 2 of Fig. 1a). As the output target,
the two FOXP3 transcriptswere used separately, one at a time. In fact, out of
3 measured transcripts of FOXP3, only two were considered here, because
the third transcript associated to FOXP3 got discarded by the average
intensityfilter described earlier because of its very lowexpression.TheAll-2-
one was repeated for each donor which gave us a total of 4 sets of All-2-one
results (i.e. each input towards the same FOXP3 transcript, for each of the
two donors). The results contained fitness score of each input towards each
output (second step of column 2 of Fig. 1a) and an indication whether the
regulatory gene was tentatively an activator or a repressor of the target gene
(i.e. if increases in its expression lead to respectively increases or decreases in
the expression of the target gene). This last information was derived from
the sign, respectively positive or negative, of the parameter capturing this
regulation, i.e. the parameter b in e.g. Eq. (1).

Out of the 4 sets of All-2-one results, we now combined the results of 2
FOXP3 transcripts within each donor (third step of column 2 of Fig. 1a).
Then we discarded any input transcript which corresponded to twomodels
(one in each donor) being inconsistent in showing activation or repression
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towards any of the FOXP3 transcripts (fourth step of column2of Fig. 1a). In
fact, this would reflect an inconsistency between the inferred mathematical
models. This yielded 3515 transcripts of inputs in each donor. Since there
were two outputs, that meant 7030 models identified left (each with an
associated fitness score) in each donor.

Typically, the time passing between the expression of a regulatory gene
and that of its target gene is around 20–60min. The One-2-one method
tended to attribute higher fitness tomodels where the output signal follows
the input signal pattern with one time-point delay, which in our case cor-
responded to 20min. Thus, in order to identify regulations occurring longer
than 20min, we needed to modify the One-2-one method by introducing
time delays in the input signals only, Eq. (6). Thus, we ran a new round of
All-2-one, with delays of 0, 20, 40, 60, 80 and 100min, i.e. equivalent to
moving each input signal to the right by 20–100min (first step of column 3
of Fig. 1a). Here, for each input-output combination (i.e. model), only the
highest fitness score among all 6 possible delay cases was retained (second
stepof column3of Fig. 1a). Eventually, thesefitness scoreswereused to rank
the 7030 models in a descending order (last step of column 3 of Fig. 1, see
Table 1 for the high ranking part of the list of genes). This ranking was the
main result of our computational method and the higher the ranking of a
gene, the more likely it is to be involved in FOXP3 regulation.

Selection of genes for wet-lab experiments
The above mentioned results corresponded to several hypothetical regula-
tions, in particular the higher the ranking of a gene, the more likely it is to
regulate FOXP3 expression. Genes, which received a high fitness score and
thus were ranked high in our list, were considered as those with the high
potential to be upstream transcriptional regulators of FOXP3.

Plotting the fitness score against the accumulative model number (Fig.
1b), ranked from highest to lowest fitness, we remarked that initially the
fitness decreased steeply, and then the slope slowed down and the fitness
decreased almost linearly.We thus focused on this initial fast drop and kept
the top ranked 2.5%models out of 7030models, namely, 176models (Table
1)withhighfitness values ranging from62.14 to45.78.These 176 transcripts
corresponded to161 genes, since in 15 cases two transcripts corresponded to
the same gene. This represents a number small enough that still allowed an
investigationof thebiology anddynamics of eachgene in the list,while being
large enough to consider a wide variety of cell functions.

However, testing all of these 161 genes is very difficult, due to the
intrinsic limitations of available resources, and in practicewe could test only
up to five of these regulations in vitro. We thus only selected five such
promising regulatory candidate genes for further laboratory experimental
validation. Since the fitness scores of these genes were very close, we needed
to choose which one to test based on other criteria, knowing that any
criterion to select potential regulatory genes will be somewhat arbitrary.
Thus, we proceeded with the goal of selecting genes that were both likely to
be upstream regulatory candidates of FOXP3 and of potential biological
relevance.We selected five candidates from a variety of scores, but all within
the two extremes of 62.14 and 45.78 of the top part of our ranking.

Weperformed this selection offive genes potentially regulating FOXP3
to be tested in vitro by means of the following additional considerations.
First, transcripts were excluded when corresponding to more than one
Entrez gene ID (more than one gene name due to the shared transcripts
among genes) based on the HG-U133 plus 2.0 array annotation file (http://
www.affymetrix.com/, version 24, 7 March 200819). Further, as already
mentioned, thedata of donor-2wereof higher quality (less affectedbynoise)
w.r.t. those of donor-1, thus we only considered the data for donor-2 for
selection purposes. Next, we required a reasonably clean dynamics of the
time series signals, and a reasonable visually assessed dynamic behavior.
Furthermore, as mentioned we introduced a time delay, and retained for
each transcript only the model corresponding to the time delay providing
the highest fitness for each transcript. We also considered this delay infor-
mation while performing our selection. We observed the time difference
between the peak of the candidate regulatory transcript and the peak of
FOXP3 transcripts of donor-2. The reason behind this was that usually

between the peak in mRNA production for a regulating transcript, and the
peak of mRNAproduction of the regulated transcript, there usually need to
be a certain amount of time which we considered to be reasonable between
about 20–60min in consideration of the required intermediate biological
processes.

Having in these ways lowered down the 161 genes to a pool of 20, we
performed a final selection on the basis of biological relevance (e.g., gene
ontology, based on http://amigo.geneontology.org/amigo, and protein
location inside/outside the nucleus, based onhttps://www.uniprot.org/). On
one hand, we preferred genes related to transcription and located in the
nucleus, since the transcriptional regulatory process of FOXP3 is supposed
to predominantly occur in the nucleus (see e.g. ref. 46). Using these criteria,
we selected 3 genes: NRBF2, NCOA7 and RNF12. On the other hand, we
also did not want to limit ourselves to these predefined hypothesized
functions and subcellular locations, so for the remaining two slots we
selected genes representing different functions and with encoded proteins
located outside the nucleus, namely PDE4D and MAP1LC3B.

Thus basedonall the criteria abovewe selectedfive potential regulatory
genes for subsequent in vitro experimental tests, namely NCOA7, NRBF2,
RNF12, PDE4D and MAP1LC3B.

Regulatory T cell isolation and culture
Informed consent was obtained from healthy blood donors through the
Red Cross Luxembourg and study procedures were approved with the
reference number (LIH-2022-004) by the ethic committee of the Red
Cross Luxembourg. Buffy coats from adult healthy donors of unknown
age were provided by the Red Cross Luxembourg. For Fig. 2, Supple-
mentary Figs. 2 and 3, isolation of human Tregs was performed using
similar methods as described in ref. 74. The RosetteSepac Human CD4+
T cell Enrichment Cocktail (15062, Stemcell) was added to undiluted
blood at a concentration of 50 μl/ml and incubated for 30min at 4 °C. The
blood was then diluted two times with the FCM buffer [Ca2+ free
PBS+ 2% heat-inactivated fetal bovine serum (FBS)] and the CD4+ cells
were isolated by gradient centrifugation at 1200 × g for 20 min, using
Lympoprep (07801, StemCell) and SepMateac-50 tubes (85450, Stemcell).
Primary natural regulatory T cells (CD4+CD25highCD127low) were then
sorted on a BD Aria III cell sorter (BD Biosciences) following the gating
strategy (Supplementary Fig. 1). Before sorting, CD4+Tcellswere stained
for 30min with mouse monoclonal [RPA-T4] anti-human CD4 FITC
(555346, BD Biosciences) (dilution 1:20), mouse monoclonal [M-A251]
anti-human CD25 APC (555434, BD Biosciences) (dilution 1:20) and
mouse monoclonal [HIL-7R-M21] anti-human CD127 V450 (560823,
BDBiosciences) (dilution 1:20) at 4 °C followed by twowashing stepswith
the FCM buffer (200 × g, 10 min). Of note, no live/dead staining was
added for sorting. The major used reagents or kits were provided in
Supplementary Table 1. For experiments analyzing the effect on FOXP3
expression with flow cytometry (Supplementary Figs. 4 and 5), Treg
isolation procedurewas slightly different. Briefly, humanperipheral blood
mononuclear cells (PBMC) of three independent donors were isolated by
gradient centrifugation, using SepMate-50 tubes (85450, StemCell) and
Lymphoprep (07811, StemCell) according to the manufacturer’s
instructions. Peripheral blood was diluted with an equal volume of the
FCM buffer and centrifuged at 1200 × g, room temperature (RT) for
20min in SepMate-50 tubes filled with Lymphoprep. After three washing
steps at 200 × g, 4 °C, 10min, 100 × 106 of isolated PBMC per donor were
used for CD4+ regulatory T cell isolation using CD4+ CD25+
CD127dim/- Regulatory T Cell Isolation Kit II human (130-094-775,
Miltenyi Biotec) following the manufacturer’s recommendations. First,
non-CD4+ and CD127high cells were labeled. Labeled cells were magne-
tically retained on the LD columns attached to the MACS separator. The
unlabeled effluent CD4+ cells were collected, labeled with CD25
MicroBeads II (10 μl per 107 cells) and applied onto the MS column.
Unlabeled flow-through non-Treg CD4+ cells were discarded and the
column was immediately flushed with the FCM buffer using a plunger to
collect magnetically labeled CD4+CD25+CD127dim/- Tregs.
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Sorted Tregs were cultured in IMDM (21980-032, Thermo Fisher
Scientific) completemedium, supplemented with 10% heat-inactivated FBS
(10500-064, Thermo Fisher Scientific), 1× Penicillin+Streptomycin
(15070-063, Thermo Fisher Scientific), 1×MEMnon-essential amino acids
(M7145, Sigma-Aldrich) and 1× β-mercaptoethanol (21985-023, Thermo
Fisher Scientific) in a 37 °C, 7.5% CO2 incubator. The medium was further
supplemented with 100 U/ml of recombinant human IL-2 (PZN 2238131,
Novartis) for the culture of Tregs. For a maximum duration of 6 weeks,
Tregs were restimulated every 7 days with irradiated Epstein Barr virus
(EBV) (strain B95-8, VR-1491,ATCC) transformedB cells (EBV-B cells), at
a 1:1 ratio to expand and maintain the culture. A RS2000 X-Ray Biological
Irradiator was used to irradiate the EBV-B cells (Rad Source Technologies)
for 30minwith a total of 90Gy.On a regular basis, Tregswere characterized
by flow cytometry for their expression of CD4, CD25, FOXP3 and Helios
and discarded if the expression of FOXP3 and/or Helios was apparently
decreased.During experiments involvingflowcytometry analysis of FOXP3
expression (Supplementary Figs. 4 and 5), isolated Tregs were cultured as
described above, except for the cell stimulation with ImmunoCult Human
CD3/CD28 T Cell Activator (10971, Stemcell) soluble antibody (25 μl/ml)
the next day following isolation.

Flow cytometry for Treg characterization
Extracellular markers were stained in FACS buffer for 30 min at 4 °C,
followed by three washing steps (200 × g, 10 min). Fixation, permeabi-
lization and staining of intracellular markers was performed using the
True-Nuclear Transcription Factor Buffer Set (424401, BioLegend) and
following the manufuacturer’s instructions. The antibodies used for the
characterization, as described elsewhere74, are the following: mouse
monoclonal [RPA-T4] anti-human CD4 BUV395 (564724, BD Bios-
ciences) (dilution 1:100), mouse monoclonal [M-A251] anti-human
CD25 FITC (555431, BD Biosciences) (dilution 1:100), Hamster
monoclonal [22F6] anti-human/mouse Helios Pacific blue (137220,
BioLegend) (dilution 1:100) andmousemonoclonal [206D] anti-human
FOXP3 Alexa Fluor 647 (often labeled as APC) (320114, BioLegend)
(dilution 1:20). LIVE/DEAD® Fixable Near-IR Dead Cell Stain (L10119,
Thermo Fisher Scientific) (dilution 1:500). CD127 antibody informa-
tion: mouse monoclonal [A019D5] anti-human CD127 BV711 (351328,
BioLegend) (dilution 1:50).

Treg siRNA knockdown and stimulation
The detailed siRNA based knocking-down approach has already been
described in our previous works74,90. To ease the comprehension, we
described the procedures here again. The P3 Primary Cell 4D-
Nucleofector X Kit L (V4XP-3024, Lonza) was used for the knockdown
of the targeted genes, using 90 μl P3 Primary cell solution plus 100 pmol of
corresponding si_RNA (resuspended in 10 μl RNAse-free H2O): si_Non-
Specific (si_NS or si_CTRL) (sc-37007, Santa Cruz), si_NRBF2
(SI00139118, Qiagen), si_NCOA7 (SI02649668, Qiagen), si_MAP1LC3B
(SI04200735, Qiagen), si_PDE4D (SI05587666, Qiagen), si_RNF12
(SI00113582, Qiagen). Of note, the same control siRNA samples were
shared for the FOXP3 mRNA quantification among different gene
knockdowns of the same donor. The Amaxa 4D-Nucleofector X System
(Lonza) was used to perform the electroporation and siRNA transfection
according to the manufacturers recommended program (E0-115) for
primary human T cells. After transfection, Tregs were transferred into a
12-well plate with pre-warmed complete medium, supplemented with
100 U/ml IL-2, and kept at 37 °C for 24 h before being stimulated with
25 μl/ml of soluble antibodies (Immunocult Human CD3/CD28 T Cell
Activator) (10971, Stemcell) in a 24-well plate for different periods.
During the flow cytometry experiments, knockdown of the NRBF2 gene
was performed as described above, using si_NS and si_NRBF2. 24 h after
the knockdown, Tregs were unstimulated or stimulated for different
periods. Stimulationwasperformedwith 25 μl/ml of humanCD3/CD27T
cell activator soluble antibodies (Immunocult Human CD3/CD28 T Cell
Activator) (10971, Stemcell) plus IL-2.

RNA extraction
RNA was extracted using the RNeasy Mini Kit (74106, Qiagen), following
the manufacturers instructions and including the digestion of genomic
DNA with DNAse I (79254, Qiagen). The cells were lysed in RLT buffer
(Qiagen), supplemented with 1% beta-Mercaptoethanol (63689, Sigma-
Aldrich). The NanoDrop 2000c Spectrophotometer (Thermo Fisher Sci-
entific) was used to measure the RNA concentration and RNA quality was
checked by assessing the RNA integrity number (RIN) using the RNA 6000
Nano kit (5067-1511, Agilent) in the 2100 Bioanalyzer AutomatedAnalysis
System (Agilent), according to the manufacturers protocol. Only the sam-
ples with a RIN of 8 or higher were considered for further analysis.

cDNA synthesis
The detailed qPCR related methods have already been described in our
previous works74,90. For an easier understanding, we described the proce-
dures here again.Amaximumof 500 ng of RNAwas used for human cDNA
synthesis, using the SupersciptTM IV First Strand Synthesis System
(18091050, Thermo Fisher Scientific) and following the manufacturers
instructions. For the first step the mastermix contained following compo-
nents (per sample): 0.5 μl of 50 μM Oligo(dT)20 primers (18418020,
Thermo Fisher Scientific), 0.5 μl of 0.09 U/μl Random Primers (48190011,
Thermo Fisher Scientific), 1 μl of 10mM dNTP mix (18427013, Thermo
Fisher Scientific) and RNAse free water for a final volume of 13 μl in 0.2 ml
PCR Tube Strips (732-0098, Eppendorf). The reaction tubes were trans-
ferred into a C1000 Touch Thermal Cycler (Bio-Rad) or UNO96 HPL
Thermal Cycler (VVR) and subjected to the following program: 5 min at
65 °C, followed by 2min at 4 °C. For the second step, the reaction mix was
supplemented with 40 U RNaseOUT Recombinant Ribonuclease Inhibitor
(10777019, Thermo Fisher Scientific), 200 U SuperScriptTM IV (SSIV)
Reverse Transcriptase (RT) (18090050, Thermo Fisher Scientific), a final
concentration of 5mM Dithiothreitol (DTT) (707265ML, Thermo Fisher
Scientific) and1×SSIV in a total reaction volumeof 20 μl. The thermocycler
program for the second stepwas the following: 50 °C for 10min, then 80 °C
for 10min and 4 °C until further usage. The obtained cDNA was then 5×
diluted with nuclease-free water to a final volume of 100 μl. For the addi-
tional donors with flow cytometry analysis in NRBF2 knockdown experi-
ments, the cDNA synthesis was based on the SuperScriptTM III, rather than
IV. A maximum volume of 8 μl of extracted RNA per donor was used for
cDNA synthesis using the SuperScriptTM III First-Strand Synthesis System
(18080051, Thermo Fischer Scientific) following the manufacturer’s
recommendations. Briefly, 8 μl of extracted RNA per donor was combined
with 0.5 μl of 50 μM oligo(dT)20, 0.5 μl of 50 ng/μl random hexamer pri-
mers and 1 μl of 10 mM dNTP mix. For the first step, reaction tubes were
transferred into the thermo cycler with the following program: 65 °C for
5min, and then cooled on ice for 1min. cDNA synthesis mix was then
prepared by adding the components in the indicated order (per one reac-
tion): 10× RT buffer 2 μl, 25 mMMgCl2 4 μl, 0.1MDTT 2 μl, RNaseOUT™
(40 U/μL) 1 μl, SuperScriptTM III RT (200 U/μL) 1 μl. 10 μl of cDNA
synthesis mix was added to each RNA/primer mixture, mixed and cen-
trifuged briefly. The reaction tubes were transferred into the thermo cycler
with the following program: 25 °C for 10min, followed by 50 °C for 50min.
The reaction was terminated at 85 °C for 5min and the tubes were further
chilled on ice for further analysis.

Quantitative real-time PCR (qPCR)
The reaction mix per sample for quantitative real-rime PCR (qPCR) con-
tained: 5 μl of the LightCycler 480 SYBRGreen IMasterMix (04707516001,
Roche), 2.5 μl cDNA and 2.5 μl primers in a total reaction volume of 10 μl.
The reaction was performed in a LightCycler 480 (384) RT-PCR platform
[LightCycler 480 (384), Roche], using the LightCycler 480 Multiwell 384-
well plates (04729749 001, Roche) and LC 480 Sealing Foil (04729757001,
Roche). The program for qPCRwas the following: 95 °C for 5min; 45 cycles
of (95 °C for 10 s, 55 °C for 10 s, 72 °C for 20 s); melting curve (65–97 °C).
The results were analyzed with the LightCycler 480 SW 1.5 software. Gene
specific primers used for qPCR: RPS9 (QT00233989, Qiagen) as a reference
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gene, NRBF2 (QT00061936, Qiagen), NCOA7 (QT00033922, Qiagen),
FOXP3 (QT00048286, Qiagen), PDE4D (QT00019586, Qiagen) and
MAP1LC3B (QT00055069, Qiagen). Graphpad Prism v10 was used for
statistical significance analysis of qPCR results. P-value was determined
using two-tailed unpaired Student’s t test without multiple comparison
correction, assuming equal variance between two data groups of each
comparison at the given time point.

Western blotting
We performed Western blotting (WB) following the similar procedures as
described previously in other works74,90. Proteins were separated in Novex
WedgeWell 4–20% Tris-Glycine Gels (XP04202Box, Invitrogen), using the
Novex Tris-Glycine SDS Running buffer (LC2675-4, Invitrogen). The
proteins were transferred (dry transfer) using an iBlot2 Gel Transfer Device
(IB21001, Invitrogen) and iBlot2 PVDF stacks (IB24002, Invitrogen). After
the transfer, the membranes were blocked in 5% milk in PBS with 0.2%
Tween20 (PBS-T) for 1 h at RT with gentle shaking before being incubated
overnight at 4 °Cwith the primary antibodies: rabbit monoclonal [15H7L3]
anti-human NRBF2 (702920, Thermo Fisher Scientific) (dilution 1:5000),
rabbit polyclonal [FL-335] GAPDH (sc-25778, Santa Cruz Biotechnology)
(dilution 1:200), mouse monoclonal [206D] FOXP3 (320102, Biolegend)
(dilution1:100), diluted in 5%BSA inPBS-Twith 0.025%sodiumazide.The
next day themembrane was washed three times for 10min before and after
incubation with secondary goat anti-rabbit HRP-coupled antibodies (172-
1019, Bio-Rad). The proteins were detected using the Amersham ECL
Prime Western Blotting Detection Reagent (RPN2232, GE Healthcare Life
Sciences) andvisualizedon theECLChemocamImager (INTAS). If needed,
the contrast and brightness of the obtained entire picturewas adjusted using
the Fiji ImageJ software. The intensity of bands on the gel was quantified
based on Tiff images and the background signal was removed before nor-
malization. The intensity as quantified in the identified corresponding peak
area of each target band using the ImageJ function (Analyze/Gels) was first
normalized to that of the loading control (GAPDH in this work). Following
thefirst normalization to the loading control, the valueswere furtherdivided
by that of the first sample (i.e., unstimulated siRNA treated sample)
detecting the corresponding target (e.g., NRBF2 or FOXP3 small/large
isoform).

Flow cytometry analysis in NRBF2 knockdown experiments
Extracellular markers were stained in the FCM buffer at 4 °C for 30min in
the dark with the following antibodies: mouse monoclonal (SK3) anti-
human CD4 BUV496 (564651, BD Biosciences) (dilution 1:200), mouse
monoclonal (M-A251) anti-human CD25 BUV395 (740290, BD Bios-
ciences) (dilution 1:50), mouse monoclonal (A019D5) anti-human CD127
BV711 (351328, BioLegend) (dilution 1:50), Zombie NIR™ Fixable Viability
Kit (423106, BioLegend) (dilution 1:500) followed by three washing steps at
300 × g for 5min, 4 °C. Of note, the fluorochrome for some of the markers
was different from that used for Treg sorting or characterization. For
intracellular marker staining, cells were fixed and permeabilized with True-
Nuclear Transcription Factor Buffer Set (424401, BioLegend) according to
themanufacturer’s instructions. The intracellularmarkerswere stainedwith
mouse monoclonal (206D) anti-human FOXP3 Alexa Fluor 647 (often
labeled as APC in the plots) (320114, BioLegend) (dilution 1:20) andmouse
monoclonal (BNI3) anti-human CTLA4 PE-Cy5 (BD biosciences 555854)
(dilution 1:20). Samples were analyzed with LSRFortessa Cell Analyzer.
Results were further analyzed with FlowJo software (version 10.6.2).

Data availability
The time-series microarray dataset analyzed in this study is already
described and published in19 and is available in the Gene Expression
Omnibus repository (GSE11292) at https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE11292. The raw unprocessed WB images for Sup-
plementary Figure 3 are deposited in Mendeley accessible via https://doi.
org/10.17632/7g3t3cjj7f.1.

Code availability
The codes developed in MATLAB (versions R2016a, R2016b and R2017a)
which implemented our computational approach and performed the
described ranking of transcripts are available on the GitHub repository via
https://github.com/StefanoMagni/ModellingRegulatorsFOXP3.
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