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ABSTRACT
Background  A usual interstitial pneumonia (UIP) 
pattern of lung injury is a key feature of idiopathic 
pulmonary fibrosis (IPF) and is also observed in up to 
40% of individuals with rheumatoid arthritis (RA)-
associated interstitial lung disease (RA-ILD). The RA-UIP 
phenotype could result from either a causal relationship 
of RA on UIP or vice versa, or from a simple co-
occurrence of RA and IPF due to shared demographic, 
genetic or environmental risk factors.
Methods  We used two-sample bidirectional Mendelian 
randomisation (MR) to test the hypothesis of a causal 
effect of RA on UIP and of UIP on RA, using variants 
from genome-wide association studies (GWAS) of RA 
(separately for seropositive (18 019 cases and 991 604 
controls) and seronegative (8515 cases and 1 015 471 
controls) RA) and of IPF (4125 cases and 20 464 
controls) as genetic instruments. Sensitivity analyses 
were conducted to assess the robustness of the results to 
violations of the MR assumptions.
Findings  IPF showed a significant causal effect on 
seropositive RA, with developing IPF increasing the 
risk of seropositive RA (OR=1.06, 95% CI: 1.04 to 
1.08, p<0.001) which was robust under all models. 
For the MR in the other direction, seropositive RA 
showed a significant protective effect on IPF (OR=0.93; 
95% CI: 0.87 to 0.99; p=0.032), but the effect was not 
significant when sensitivity analyses were applied. This 
was likely because of bias due to exclusion of patients 
with RA from among the cases in the IPF GWAS, or 
possibly because our genetic instruments did not fully 
capture the effect of the complex human leucocyte 
antigen region, the strongest RA genetic risk factor.
Interpretation  Our findings support the hypothesis 
that RA-UIP may be due to a cause–effect relationship 
between UIP and RA, rather than due to a coincidental 
occurrence of IPF in patients with RA. The significant 
causal effect of IPF on seropositive RA suggests that 
pathomechanisms involved in the development of 
UIP may promote RA, and this may help inform future 
guidelines on screening for ILD in patients with RA.

INTRODUCTION
Interstitial lung disease (ILD) is common in rheu-
matoid arthritis (RA) and is considered an extra-
articular manifestation of RA that may occur at 
different stages of the disease and significantly 
influences prognosis.1 2 Studies in US populations 
with RA show cumulative incidence estimates of 
clinically significant ILD in RA in 5% of patients at 

10 years, 6.3% at 15 years and 6.8% over 30 years 
of follow-up.3 In a study looking at over 40 million 
US death certificates, ILD was listed as a contrib-
utor to death in 6.8% of women and 9.8% of men.1 
Though several histopathological/high-resolution 
CT (HRCT) patterns of lung damage in RA-ILD 
have been described, usual interstitial pneumonia 
(UIP) is the most frequent, seen in 40% of indi-
viduals with RA-ILD4 (where it is termed RA-UIP), 
followed by non-specific interstitial pneumonia 
(NSIP) which is seen in 30%.1 2

UIP is also the histopathological pattern of idio-
pathic pulmonary fibrosis (IPF), a progressive and 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Interstitial lung disease (ILD) is common 
in rheumatoid arthritis (RA) with a usual 
interstitial pneumonia (UIP) pattern of lung 
injury, a key feature of idiopathic pulmonary 
fibrosis (IPF), being observed in up to 40% of 
individuals with RA-related ILD. The existence 
of causality or its direction (whether UIP is in 
the causal pathway of RA or the opposite) is 
however unknown as observational studies 
cannot be used to provide evidence of causal 
relationships.

WHAT THIS STUDY ADDS
	⇒ We use a method that can be used to infer 
causality, known as Mendelian randomisation, 
to test if there is a causal relationship between 
RA (seropositive and seronegative) and IPF in 
either direction, as opposed to a coincidental 
occurrence of IPF in individuals with RA. 
We identified a robust causal relationship 
between IPF and seropositive RA (developing 
IPF increases the risk of seropositive RA) and 
a statistically weaker protective effect of 
seropositive RA on IPF.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Further research is needed to define the 
mechanisms by which UIP might promote 
development of RA. Given the availability of 
treatments for progressive pulmonary fibrosis, 
earlier assessment for ILD in patients with RA, 
particularly those at high risk of pulmonary 
fibrosis, should be considered.
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fatal scarring disease of the lungs. RA-UIP and IPF share several 
clinical features such as a male sex predominance, older age at 
onset (around the sixth and seventh decade, respectively), indis-
tinguishable patterns of ILD on HRCT, a poor prognosis5 and a 
similar magnitude of response to antifibrotic therapy.6 7

RA-UIP and IPF also share risk factors, including smoking and 
the MUC5B rs35705950 genetic variant (T risk allele), suggesting 
common pathogenic pathways.8 Indeed, the association between 
RA-ILD and MUC5B rs35705950 is restricted to the RA-UIP 
subtype of RA-ILD with a similar magnitude and direction to 
that reported in IPF.8 9 Of note, MUC5B rs35705950 was not 
found to contribute to the risk of RA without ILD.8 However, 
the restricted association of MUC5B rs35705950 with RA and a 
UIP pattern of injury (but not NSIP) raises the hypothesis that 
RA-UIP might in fact be a coincidental occurrence of IPF in 
individuals who also have RA, rather than UIP being a direct 
consequence of RA.10 In spite of these similarities, extrinsic risk 
factors such as metal and wood dust exposure and comorbid-
ities such as gastro-oesophageal reflux disease and obstructive 
sleep apnoea that have been associated with IPF have not been 
reported in RA-ILD.11

Observational studies cannot provide strong evidence on 
causal relationships, nor the direction of causation, as they are 
vulnerable to confounding and reverse causation. Mendelian 
randomisation (MR) is a statistical approach that can infer causal 
relationships between two traits and the direction of causality 
using genetic variants as instrumental variables (IVs). MR can be 
considered as a ‘natural’ randomised control trial as the genetic 
variants an individual holds are randomly assigned at conception 
and do not vary during their lifetime, thus not being subject to 
confounding or reverse causation (online supplemental figure 1). 
For an MR study to be valid, three key assumptions about the 
IVs should hold: (1) they should be associated with the expo-
sure (risk factor) of interest, (2) they should not be associated 
with confounders of the exposure and outcome relationship, and 
(3) they should not be associated with the outcome other than 
through the exposure (ie, no horizontal pleiotropy). MR results 

can be biased by horizontal pleiotropy, but there are methods 
available to detect and allow for pleiotropy.

We undertook a bidirectional MR analysis to test whether 
there is a causal relationship between RA and IPF in either 
direction (RA increasing the risk of IPF or IPF increasing the 
risk of RA), as opposed to a coincidental occurrence of IPF in 
individuals with RA. We used a two-sample approach where we 
derived causal estimates from separate studies of RA and IPF 
(where we consider IPF as a proxy for UIP in the absence of UIP 
genome-wide association studies (GWAS)). We undertook sepa-
rate analyses for seropositive for rheumatoid factor (RF) and/
or anticitrullinated protein/peptide antibody (ACPA) RA and 
seronegative.

METHODS
For our bidirectional MR analysis, we used a two-sample 
approach where summary statistics (ie, effect estimates and SEs) 
for the gene–exposure (‘G-X’) and gene–outcome (‘G-Y’) asso-
ciations were obtained from separate studies. For the MR of the 
effect of RA on IPF, G-X refers to genetic associations with RA 
and G-Y to genetic associations with IPF, and vice versa for the 
MR of IPF on RA (figure 1).

Study populations
Genetic association estimates for seropositive and seronegative 
RA were taken from a published study of RA12 that reported 
separate GWAS of seropositive (18 019 cases and 991 604 
controls) and seronegative (8515 cases and 1 015 471 controls) 
RA of European ancestry (online supplemental table 1). 135 
autosomal single nucleotide polymorphisms (SNPs) that were 
associated with RA (either seropositive, seronegative or both) in 
previous GWAS were selected as IVs for RA13 (online supple-
mental figure 2). These IVs were used for testing the causal effect 
of RA as the exposure and on IPF as the outcome.

Genetic association estimates for IPF were obtained from 
a previously published GWAS comprising 4125 IPF cases and 

Figure 1  Directed acyclic graphs illustrating MR analyses and the number of instrumental variables (IVs) used for (A) RA (exposure) onto IPF 
(outcome) MR analysis and (B) IPF (exposure) onto RA (outcome) MR analysis. IPF, idiopathic pulmonary fibrosis; MR, Mendelian randomisation; RA, 
rheumatoid arthritis.
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20 464 controls of European ancestry.14 19 common SNPs 
reported as being genome-wide significantly associated with IPF 
were selected as IVs for IPF.14 These IVs were used for testing the 
causal effect of IPF as the exposure and on RA as the outcome.

SNPs were excluded from the analyses if they were not present 
in the relevant outcome dataset and no suitable proxy (linkage 
disequilibrium r2>0.8) could be found. For palindromic SNPs 
(ie, A/T, C/G SNPs), non-palindromic proxies (r2>0.8) were 
selected. For correlated SNPs (r2>0.01, determined using 1000 
Genomes Project EUR population using LDlink (https://ldlink.​
nih.gov/), the SNP with the least significant association with the 
exposure was excluded.

As the use of ‘weak’ instruments can bias the results of MR, 
SNPs with an F-statistic <10 were excluded, where the F-sta-
tistic represents a measure of instrument strength.

Statistical analyses
The inverse-variance weighted15 fixed-effect (IVW-FE) method 
is a fixed-effect meta-analysis of MR estimates across SNPs, 
where SNP-specific MR estimates are obtained using the Wald 
estimator (G-Y/G-X). This was used for the primary analysis for 
the MR in both directions, as it is the most powerful MR method 
in the absence of pleiotropy.

To investigate presence and magnitude of pleiotropy, the 
Cochran’s Q statistic and I2 statistic were used, respectively. 
Individual variant contributions to Cochran’s Q heterogeneity 
statistic were plotted to identify pleiotropic SNPs. In the pres-
ence of pleiotropy, a series of sensitivity analyses were conducted 
to account for it: inverse-variance weighted random-effect 
(IVW-RE) method, MR-PRESSO (MR Pleiotropy RESidual Sum 
and Outlier), weighted median, weighted mode-based estima-
tion and MR-Egger. These different methods perform better in 
different scenarios as they make different assumptions about the 
nature of the underlying pleiotropy.16

IVW-RE is an inverse-variance weighted method where the 
fixed-effect meta-analysis model of IVW-FE is substituted by a 
random-effects model to allow for heterogeneity (as a proxy for 
pleiotropy). In particular, this method allows for balanced plei-
otropy (random effects have a mean of zero), in the presence 
of which the point estimate is equivalent to the IVW-FE point 
estimate, but IVW-RE will have wider 95% CIs.

MR-Egger allows all SNPs to have pleiotropic effects; 
however, pleiotropic effects should be independent of the 
G-X associations. The method is affected by outliers, particu-
larly when the G-X estimates are similar across different SNPs, 
which in turn can cause there to be low power to detect a causal 
effect. When the variation in the strength of the instruments is 
limited, MR-Egger is susceptible to dilution bias, which biases 
the MR results towards the null. The I2 of a meta-analysis of 
G-X estimates (I2

GX) can be used to assess this, with lower values 
suggesting stronger dilution. Ideally, the I2

GX measure should be 
>90%; when this is not the case, MR-Egger should be performed 
using simulation extrapolation (SIMEX) to correct for the dilu-
tion bias.17

The weighted median method makes weaker assumptions 
about valid IVs, as it only assumes that at least half of the vari-
ants are valid instruments. This method is robust to outliers and 
is not as affected by the presence of a small number of pleio-
tropic variants as the IVW and MR-Egger methods.

The weighted mode method is also robust to outliers and it 
makes even weaker assumptions, only assuming that the largest 
(weighted) contribution of similar SNP-specific MR estimates 
comes from valid instruments.

MR-PRESSO can be used to identify and remove possible 
pleiotropic SNPs which have been detected in the MR analysis 
as outliers. However, the outlier test requires at least 50% of the 
genetic variants used as valid IVs.

We performed MR-Steiger directionality test to test the causal 
direction between the exposure and the outcome. We also 
performed a leave-one-out analysis, where each IV is excluded 
in turn and the analysis repeated to identify whether the results 
are highly influenced by a single IV, to determine whether any 
of the causal estimates were heavily influenced by individual 
instruments. All analyses were performed using packages in R 
(V.4.1.0), specifically ‘MendelianRandomization’ (for IVW-FE, 
IVW-RE, MR-Egger, weighted mode and weighted median), 
‘MRPRESSO’ (for MR-PRESSO), ‘simex’ (for MR-Egger with 
SIMEX extension) and ‘TwoSampleMR’ (to harmonise the RA 
and IPF summary data, perform the leave-one-out analyses and 
perform MR-Steiger directionality test). Estimates for Cochran’s 
Q test and I2 were obtained using IVW-FE analysis.

RESULTS
Selection of genetic instruments
Of the 135 IVs initially selected as IVs for RA, 2 were associated 
with seronegative RA only, 1 was associated with seronegative 
and combined RA (both seronegative and seropositive RA), 93 
were associated with combined RA and 39 were associated with 
seropositive RA. For the seropositive analysis, we selected IVs 
associated with seropositive RA or combined RA and for the 
seronegative analysis IVs associated with seronegative RA or 
combined RA. In total, 70 were strong instruments (F-statistic 
≥10) for seropositive RA (online supplemental table 2) and 16 
were strong instruments for seronegative RA (online supple-
mental table 3). For IPF, all 19 association signals reported by 
Allen et al14 were strong instruments for IPF (online supple-
mental tables 4 and 5).

Causal estimate for seropositive RA on IPF
The primary IVW-FE analysis gave a nominally significant result 
for a protective causal effect of seropositive RA on IPF (OR 0.93; 
95% CI 0.87 to 0.99; p=0.032) (figure 2A and online supple-
mental table 6A). Although there was statistically significant 
evidence of pleiotropy (Q test p<0.001 and MR-PRESSO global 
test p<0.001), this was of moderate magnitude (I2=41.3%, 
95% CI=22% to 56%) and no SNPs were highlighted as outliers 
when using MR-PRESSO or when plotting individual contribu-
tions to Cochran’s Q heterogeneity (online supplemental figure 
3). Moreover, statistically significant estimates of a protective 
causal effect of seropositive RA on IPF were also obtained using 
the weighted median, weighted mode and MR-Egger analyses, 
and in the leave-one-out analysis, no exclusions resulted in a 
change in the direction of effect (online supplemental figure 4). 
When performing the MR-Steiger directionality test, the vari-
ance in the outcome was observed to be less than the exposure, 
therefore suggesting the causal direction observed is true (Steiger 
test p<0.05).

Causal estimate for seronegative RA on IPF
While the IVW-FE point estimate was similar to that of sero-
positive RA, the CIs were very wide and the result was non-
significant (95% CI 0.82 to 1.11, p=0.556) (figure 2B and 
online supplemental table 6A). The MR-Steiger directionality 
test result suggested that the causal direction observed is true 
(Steiger test p<0.05). The SNP rs6910071 was identified as an 
outlier by MR-PRESSO and there was statistically significant 
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evidence of pleiotropy (Q test p=0.002 and MR-PRESSO 
global test p=0.0087, I2=57.8%, 95% CI=27% to 76%). 
Even after removing the SNP rs6910071 (positioned in the 
human leucocyte antigen region of chromosome 6) from the 
MR analysis (leave-one-out analysis), the results remained 
null (online supplemental figure 5).

Causal estimate for IPF on seropositive RA
The primary IVW-FE analysis suggested that developing IPF 
increases the risk of seropositive RA (OR 1.06, 95% CI 1.04 to 
1.08, p<0.001) (figure 2C and online supplemental table 6B). 
There was evidence to suggest that the causal direction observed 
is true (Steiger test p<0.05). There was significant evidence 
of pleiotropy (Q test p=0.008 and MR-PRESSO global test 
p=0.0313; I2=49.4%, 95% CI=14% to 70%). Two outliers 
were detected and removed by MR-PRESSO (rs112087793 and 
rs12912339); however, the causal effect of IPF on seropositive 
RA remained statistically significant (OR 1.07, 95% CI 1.05 to 
1.09, p<0.001). The point estimates for the IVW-FE, weighted 
median, weighted mode and MR-Egger were also consistent and 
all results were statistically significant. In the leave-one-out anal-
yses, no individual variant exclusions substantially attenuated 
the original result (online supplemental figure 6).

Causal estimate for IPF on seronegative RA
None of the analyses suggested a statistically significant causal 
effect of IPF on seronegative RA (figure 2D and online supple-
mental table 6B), although all point estimates were greater than 
one, consistent with the seropositive analysis. There was no 
evidence of pleiotropy, MR-PRESSO did not detect any outliers 
and the leave-one-out analysis did not suggest that the result was 
influenced by any single IV (online supplemental figure 7). The 

MR-Steiger directionality test result suggested that the causal 
direction observed is true (Steiger test p<0.05).

DISCUSSION
This bidirectional two-sample MR study did not support the 
hypothesis that RA-UIP is a coincidental occurrence of IPF in 
patients with RA, and instead provides significant evidence of 
a causal effect of IPF on the development of seropositive RA 
(developing IPF increases the risk of seropositive RA) and a 
statistically weaker protective effect of RA on IPF. We note that 
the causal effect of IPF on RA was consistent under different 
models, while the protective effect of RA on IPF was more sensi-
tive to violations of the assumptions of MR.

The rationale for a causal effect of RA on UIP has been driven 
by the temporal relationship between the two conditions with 
RA often being diagnosed before pulmonary fibrosis. However, 
several arguments could suggest a causal effect of IPF on RA. 
The loss of immune tolerance that occurs when the lungs are 
chronically damaged may suggest that IPF could be a risk factor 
for RA, as suggested by RA developing after IPF diagnosis.18 
An independent study, the Multi-Ethnic Study of Atheroscle-
rosis, measured RA-related autoantibodies and obtained cardiac 
CT scans which were assessed for subclinical ILD. This study 
demonstrated an association between elevated RF, ACPA and 
subclinical ILD, suggesting autoantibody production and pulmo-
nary inflammation develop prior to clinical RA.19 However, as 
it was unknown if participants had RA, this may represent an 
association of antibodies with subclinical ILD. An assessment of 
patients with ILD who did not fulfil the classification criteria for 
RA revealed one-third of patients who were ACPA positive devel-
oped RA less than 3 years of their ILD diagnosis.20 Furthermore, 
there is a significant proportion of patients with RA (27–48%) 

Figure 2  Forest plots of results of Mendelian randomisation (MR) to estimate the causal effect of (A) seropositive RA (exposure) on IPF (outcome), 
(B) seronegative RA (exposure) on IPF (outcome), (C) IPF (exposure) on seropositive RA (outcome) and (D) IPF (exposure) on seronegative RA 
(outcome). IPF, idiopathic pulmonary fibrosis; IVW-FE, inverse-variance weighted fixed effect; IVW-RE, inverse-variance weighted random effect; MR-
PRESSO, MR Pleiotropy RESidual Sum and Outlier; RA, rheumatoid arthritis; SIMEX, simulation extrapolation.
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for whom the diagnosis of ILD precedes or occurs at the same 
time as the onset of RA.2 21 Of note, a majority of individuals 
who developed ILD prior to RA were found to have a radio-
logical UIP pattern.21 Finally, it has been shown that IgA-ACPA 
are elevated in up to 25% of patients with IPF and associated 
with changes in pathology (ie, lymphoid aggregates) also seen in 
established RA-UIP.22

The mechanism by which pulmonary fibrosis may promote 
RA is likely via breaching immune tolerance against citrullinated 
peptides. Indeed, several indirect arguments have led to the 
hypothesis of a mucosal origin of seropositive RA,23 positioning 
the lung as the site of initiation of the loss of tolerance against 
citrullinated peptides: (1) most of the environmental risk actors 
in seropositive RA are inhaled (smoking, silica exposure), (2) in 
patients with early ACPA positivity (up to 15 years before the 
onset of the first joint manifestations),24 the IgA isotype predom-
inates,25 (3) the presence of peptidyl arginine deiminase 2 in 
lung tissue, an enzyme responsible for citrullination, and local 
production of ACPA,26–28 and (4) the existence of shared citrul-
linated peptide targets in lungs and joints of patients with RA.29 
These data suggest the possibility that in a subset of patients, the 
citrullinated protein targets of ACPA are lung specific, leading to 
lung injury and fibrosis and, through a broadening of the ACPA 
repertoire, eventual synovitis and clinical RA.30 31

Mucosal inflammation has long been considered the source of 
ACPA associated with seropositive RA, particularly IgA isotypes, 
and lymphoid follicles are common in both IPF and RA.23 28 It 
is thought that chronic infection or changes in the microbiome 
can promote protein citrullination via chronic inflammation and 
NETosis.32 Indeed, the predominant microbiota of both IPF and 
RA has been found to be the phyla Firmicutes.33–35

A fundamental principle of clinical management is to treat 
the underlying cause of any disease. Therefore, understanding 
the direction of causality between two associated conditions is 
crucial. RA has been considered causal for UIP for many years 
and has guided therapeutic decisions such as prioritising the use 
of immunomodulatory therapy in patients with RA-UIP. Our 
data would suggest re-evaluating the therapeutic paradigm for 
treating RA-UIP. Indeed, the first randomised, double-blind, 
placebo-controlled trial dedicated to patients with RA-ILD iden-
tified that pirfenidone had a greater effect on slowing the decline 
of forced vital capacity in patients with a UIP pattern on HRCT.6 
Second, our findings raise the intriguing hypothesis that early 
identification and treatment of UIP in patients with RA may offer 
a novel strategy for managing RA. Historically, rheumatologists 
have been reluctant to screen asymptomatic patients with RA for 
ILD at point of diagnosis and these results would suggest that 
this approach should be reconsidered. Lastly, our findings also 
suggest that pulmonologists should carefully follow the outcome 
of patients with IPF, paying attention to the apparition of an 
RA-specific autoimmunity as well as articular manifestations.

While MR provides a framework to assess causality by using 
genetic instruments to remove the effects of confounders and 
reverse causation, it does have limitations. Possible pleiotropy 
was detected in most of our MR analyses, although the consis-
tency of the results across different methods allowing for pleiot-
ropy suggests robustness of our findings. The limited number of 
IVs and sample size of the source GWAS that were used to derive 
the causal estimates for IPF and seronegative RA, compared with 
the seropositive RA GWAS, may have impacted power to detect 
a causal relationship. However, ILD is less common in seronega-
tive RA than in seropositive RA.36 Our hypothesis motivating this 
study was that there is causal relationship between RA and UIP in 
either direction and so we used SNP IVs derived from IPF GWAS 

to model this. Having detected a causal relationship between 
IPF and seropositive RA, it would be relevant to understand 
whether the causal effect was due to mechanisms promoting the 
UIP pattern of lung damage. However, no GWAS specifically for 
UIP exists and so the IPF SNP IVs are the best proxies for UIP 
IVs at this time. While restricting the IPF GWAS to individuals 
with definite UIP may increase the strength of the instruments, 
the necessary HRCT or histopathology data to do this are not 
available in those studies. Two-sample MR assumes that the two 
samples are homogeneous and have the same gene–exposure 
association,37 but this may be difficult to achieve in practice 
when using available GWAS summary data. In our study, there 
are more males than females in the IPF GWAS,14 while females 
may be over-represented in the RA GWAS given that RA is more 
prevalent in females. Also, only the RA GWAS was adjusted for 
sex. A difference in the genetic effect of our instruments on the 
exposure by sex might introduce bias, but to our knowledge, 
there is no evidence to suggest that this may be the case for either 
RA or IPF. In addition, both the RA and IPF GWAS comprised 
European individuals but the RA GWAS included those from 
more isolated populations (Iceland and Finland) as well as other 
Northwestern European countries, so it might be considered a 
heterogeneous European population. This restriction to individ-
uals of European ancestry also limits the generalisability of our 
findings to other ancestries and highlights the need for larger 
GWAS of IPF and RA comprising non-European populations.

It is possible that our results may be affected by biases as a 
consequence of the source GWAS used to define instruments. As 
the presence of UIP in the RA cases included in the RA source 
GWAS cannot be excluded, for the MR on the effect of RA on 
IPF, it is possible that some of the RA SNP IVs (‘G-X’) could be 
specifically associated with RA-UIP. These SNPs might also be 
associated with IPF (UIP) in which case they could introduce 
a bias towards a causal effect of RA on IPF; however, this was 
not seen. As for the MR on the effect of IPF on RA, it is also 
possible that RA-UIP cases in the RA source GWAS might lead 
to an association with the IPF SNP IVs (‘G-Y’) thereby intro-
ducing a bias towards a causal effect of IPF on RA. However, 
our leave-one-out analyses show that excluding the MUC5B SNP 
rs35705950, which is known to be associated with RA-UIP8 with 
an effect that is similar in magnitude to the effect on IPF, did 
not change the causal effect estimate (online supplemental figure 
6). We also cannot exclude the possibility that the controls used 
for the IPF GWAS had RA, and as RA was excluded from the 
cases due to the specific diagnostic definition of IPF, this may 
have introduced some bias into the G-Y estimates; this could 
account for our observation of a protective effect of RA for IPF. 
However, this would not explain the finding of a causal effect 
of IPF on RA. Our MR was aimed at testing the hypothesis of 
a causal relationship between RA and IPF in either direction, so 
while our findings support a causal relationship, the magnitude 
of this effect should be interpreted with caution.16 As observa-
tional studies cannot be used to make inferences about causal 
relationships between traits, MR is a useful tool for testing the 
hypothesis that an association might have a causal link. As we 
have used a binary trait (IPF diagnosis as a proxy for presence of 
a UIP pattern of lung damage, or RA) as the exposure, we have 
exercised caution in our interpretation of the causal relation-
ships; our findings suggest that the null hypothesis of no causal 
relationship (in either direction) should be rejected but further 
investigation is required to confirm the causal effect itself.38

In spite of these limitations, our data suggest that patho-
mechanisms involved in the development of UIP may promote 
RA. This has implications for the management of patients with 
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RA-UIP. In addition, the causal effect of IPF increasing the risk of 
developing seropositive RA would provide additional support for 
assessment of ILD in patients with RA, especially in subgroups of 
patients identified as being at high risk of pulmonary fibrosis39 40 
and for whom antifibrotic therapy might be of benefit. While we 
found no support for a causal effect of RA on UIP, the opposite 
finding of a significant protective effect of RA against develop-
ment of UIP was unexpected and requires further investigation.
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