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Abstract

Generalized linear mixed models (GLMMs) are widely used in research for their ability to model 

correlated outcomes with non-Gaussian conditional distributions. The proper selection of fixed 

and random effects is a critical part of the modeling process, where model misspecification 

may lead to significant bias. However, the joint selection of fixed and random effects has 

historically been limited to lower dimensional GLMMs, largely due to the use of criterion-based 

model selection strategies. Here we present the R package glmmPen, one of the first to select 

fixed and random effects in higher dimension using a penalized GLMM modeling framework. 

Model parameters are estimated using a Monte Carlo expectation conditional minimization 

(MCECM) algorithm, which leverages Stan and RcppArmadillo for increased computational 

efficiency. Our package supports the Binomial, Gaussian, and Poisson families and multiple 

penalty functions. In this manuscript we discuss the modeling procedure, estimation scheme, and 

software implementation through application to a pancreatic cancer subtyping study. Simulation 

results show our method has good performance in selecting both the fixed and random effects in 

high dimensional GLMMs.

Introduction

Generalized linear mixed models (GLMMs) are widely used in scientific research, 

with applications spanning the social sciences (Schmidt-Catran and Fairbrother, 2016), 

biomedical sciences (Fitzmaurice et al., 2012), public health and epidemiology 

(Szyszkowicz, 2006; Kleinman et al., 2004; Dean and Nielsen, 2007), natural sciences 

including ecology and evolution (Bolker et al., 2009), and economics (Langford, 1994). 

GLMMs are generalized linear models where the predictors within the model can have 

“fixed” or “random” effects. Coefficients corresponding to fixed effects predictors can be 

considered to describe population-level relationships between the predictor and the outcome. 

Random effects predictors pertain to variables whose relationships with the outcome are 

presumed to vary randomly across “groups” of observations within the data, leading to 

group-specific coefficient estimates (Fitzmaurice et al., 2012). In practical applications, 
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these “groups” may pertain to clusters of samples, repeated measures within the same 

individual, or observations resulting from nested designs. Multiple studies have shown that 

omitting important random effects can lead to bias in the estimated variance of the fixed 

effects, and including unnecessary random effects may lead to computational difficulties 

(Thompson et al., 2017; Gurka et al., 2011; Bondell et al., 2010). As a result, proper 

specification of fixed and random effects is an important and critical step in the application 

of GLMMs.

In many low dimensional settings, researchers may have advanced knowledge about which 

variables are fixed or random. For instance, researchers may reasonably expect treatment 

effects in certain multi-site clinical trials to vary by site (Feaster et al., 2011). However, in 

high dimensional settings, it is often unknown a priori which variables should be specified 

as fixed or random in the model. In such settings, the feature space may also be sparse 

with many variables unrelated to the outcome. Therefore, variable selection approaches are 

employed to evaluate candidate models. R packages such as lme4 (Bates et al., 2015), 

mcemGLM (Archila, 2020), and MCMCglmm (Hadfield, 2010) allow users to fit a set of 

pre-specified models, which may then be compared using model selection criteria such as 

the profile conditional AIC (Donohue et al., 2011), the BIC-ICQ criterion (Ibrahim et al., 

2011), the hybrid Bayesian information criterion, BICh (Delattre et al., 2014), or criteria 

developed for mixed effects models. However, criterion-based all-subsets selection or direct 

model comparison strategies are not feasible even in small dimensions, as with p predictors 

there are 22p possible combinations of fixed and random effects to be evaluated.

Packages such as glmnet (Friedman et al., 2010), ncvreg (Breheny and Huang, 2011), and 

grpreg (Breheny and Huang, 2015) avoid this limitation for GLMs via coordinate-descent 

based penalized likelihood methods for variable selection, and are therefore much more 

scalable with respect to p. Unfortunately, none of these methods can account for random 

effects during their variable selection procedure. Other packages such as glmmLasso (Groll, 

2017) and glmmixedLASSO (Schelldorfer et al., 2014) alternatively allow the inclusion of 

random effects in the model while performing variable selection, but only allow for variable 

selection on the fixed effects. Prior work has shown that simultaneous selection of fixed and 

random effects is advantageous because improper specification of the random effects can 

significantly affect the selection of the fixed effects, and vice versa (Bondell et al., 2010). In 

addition, there may not be a priori knowledge of which variables may vary randomly across 

groups in their effects. Therefore, the specification of random effects may be difficult in 

practical applications, particularly as the dimension of the data grows.

To address these limitations in performing variable selection in high-dimensional GLMMs, 

we present the glmmPen R package. This package allows for the simultaneous selection 

of fixed and random effects predictors in higher dimensions through the use of penalized 

generalized linear mixed models (pGLMMs). Similar to ncvreg and glmnet, this 

package focuses on variable selection for the purpose of creating prediction models, and 

does not provide statistical inference. The package leverages Monte Carlo expectation 

conditional minimization (MCECM) in combination with several techniques to improve 

the computational efficiency of the algorithm. In the MCECM E-step, glmmPen utilizes the 
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Stan software implemented in the rstan package to efficiently sample from the posterior 

distribution of the random effects, and a Majorization-Minimization coordinate descent 

algorithm is utilized to update model parameters in the M-step. The glmmPen package 

utilizes the fast looping capabilities within Rcpp and RcppArmadillo in order to recalculate 

large matrices pertaining to intermediate quantities without necessitating their storage, 

improving memory usage and scalability. The glmmPen package is also able to improve 

the speed of the overall variable selection procedure by strategic coefficient initialization 

(see Section “Initialization and convergence”) and strategic restriction of random effects (see 

Section “Tuning parameter selection strategy”).

The main estimation functions of the package are glmmPen and glmm, where the latter can 

be used to fit traditional generalized linear mixed models without penalization. The user 

interface and output of the glmmPen and glmm functions were designed to be very similar 

to those from the functions lmer and glmer to facilitate ease of use. Specifically, glmmPen 

outputs a pglmmObj object which, like the merMod object from lme4, can facilitate the 

application of common S3 method functions used by lme4 such as logLik, fixef, ranef, 

and others. In addition, multiple types of penalties and information criteria for selecting 

optimal penalties are available in the package, and the package supports the Binomial, 

Gaussian, and Poisson distributional families.

Our manuscript is organized as follows. We begin by reviewing the pGLMMs modeling 

framework, first described in Rashid et al. (2020). The second section describes the 

MCECM algorithm used by glmmPen to fit pGLMM models. The third section describes 

the variable selection procedure of the package and the Bayesian information criterion 

(BIC) type selection criteria available for use. The fourth section illustrates a practical 

application of the glmmPen R package using data from a recent cancer subtyping study. The 

fifth section provides some simulation results. Finally, we provide concluding comments. 

The package is available from the Comprehensive R Archive Network (CRAN) at https://

cran.r-project.org/package=glmmPen. The replication of all code content, tables, and figures 

presented in this paper can be found in the GitHub repository https://github.com/hheiling/

paper_glmmPen_RJournal. Supplementary results mentioned but not reported in this paper 

can also be found in this GitHub repository.

Generalized linear mixed models

We review the notation and model formulation of our approach, first introduced in Rashid et 

al. (2020). We consider the case where we want to analyze data from K independent groups 

of any kind. For instance, we could be interested in analyzing data from K different studies, 

or we could be interested in analyzing longitudinal data from K individuals. For each group 

k = 1, …, K, there are nk observations for a total sample size of N = ∑k = 1
K nk. For the ktℎ

group, let yk = yk1, …, yknk
⊤ be the vector of nk independent responses, let xki = xki, 1, …, xki, p

⊤

be the p-dimensional vector of predictors, and let Xk = xk1, …, xknk
⊤. Although the glmmPen 

package allows for different nk for the K groups, we will set nk k = 1
K = n for simplicity of 
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notation in future equations. In GLMMs, we assume that the conditional distribution of yk

given Xk belongs to the exponential family and has the following density:

f yk|Xk, αk; θ = ∏
i = 1

n
c yki exp τ−1 ykiηki − b ηki ,

(1)

where c yki  is a constant that only depends on yki, τ is the dispersion parameter, b( ⋅ ) is a 

known link function, and ηki is the linear predictor. The glmmPen algorithm currently allows 

for the Gaussian, Binomial, and Poisson families with canonical links.

In the GLMM, the linear predictor has the form

ηki = xki
⊤β + zki

⊤Γαk,

(2)

where β = β1, …, βp
⊤ is a p-dimensional vector for the fixed effects coefficients (including 

the intercept), αk is a q-dimensional vector of unobservable random effects (including the 

random intercept), zki is a q-dimensional subvector of xki, and Γ is a lower triangular matrix. 

In this notation, zki represents the random effects predictors, i.e. the subset of the total 

predictors (xki) that have predictor effects that randomly vary across levels of the grouping 

variable.

In Rashid et al. (2020), the random effects vector αk is assumed to follow Nq(0, I) so that Γαk

follows N 0, ΓΓ⊤ . In this way, the random component of the linear predictor has variance 

Var Γαk = ΓΓ⊤.

To simplify the procedure of estimating Γ, we consider a vector γ containing all of the 

nonzero elements of Γ such that γt is a t × 1 vector consisting of nonzero elements of the 

ttℎ row of Γ and γ = γ1
⊤, …, γq

⊤ ⊤. We can then reparameterize the linear predictor (Chen and 

Dunson, 2003; Ibrahim et al., 2011) to

ηki = xki
⊤β + zki

⊤Γαk = xki
⊤ αk ⊗ zki

⊤ Jq
β
γ

(3)

where Jq is a matrix that transforms γ to vec(Γ) such that vec(Γ) = Jqγ. Jq is of dimension 

q2 × q(q + 1)/2 when the random effects covariance matrix ΓΓ⊤ is unstructured; alternatively, 

Jq is of dimension q2 × q when the random effects covariance matrix has an independence 

structure (i.e., diagonal). The vector of parameters θ = β⊤, γ⊤, τ ⊤
 are the main parameters 

of interest. We denote the true value of θ as θ∗ = β ∗ ⊤ , γ ∗ ⊤ , τ∗ ⊤ = argminθEθ[ − ℓ (θ)]
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where ℓ (θ) is the observed marginal log-likelihood across all K groups such that 

ℓ (θ) = ∑k = 1
K ℓk (θ), ℓk (θ) = (1/n)log∫ f yk|Xk, αk; θ ϕ αk dαk.

Let us consider the high dimensional case where we want to select the true nonzero fixed 

effects and true nonzero random effects. In other words, we aim to identify the set

S = S1 ∪ S2 = j:βj
∗ ≠ 0 ∪ t : γt

∗
2 ≠ 0 ,

where the set S1 represents the selection of true nonzero fixed effects and the set S2

represents the selection of true nonzero random effects. When γt = 0, this sets row t of Γ
entirely equal to 0, indicating that effect of covariate t is fixed across the K groups.

We aim to solve the following penalized likelihood:

θ = argminθ − ℓ (θ) + λ0 ∑
j = 1

p
ρ0 βj + λ1 ∑

t = 1

q
ρ1 γt 2 ,

(4)

where ℓ (θ) is the observed marginal log-likelihood for all K groups defined earlier, ρ0(t)
and ρ1(t) are general folded-concave penalty functions, and λ0 and λ1 are positive tuning 

parameters. In the glmmPen package, the ρ0(t) penalty function options include the least 

absolute shrinkage and selection operator (LASSO) L1 penalty, the smoothly clipped 

absolute deviation (SCAD) penalty, and the minimax concave penalty (MCP) (Friedman 

et al., 2010; Breheny and Huang, 2011). For the ρ1(t) penalty, we treat the elements of γt

as a group and penalize them in a groupwise manner using the group LASSO, group MCP, 

or group SCAD penalties presented by Breheny and Huang (2015). These groups of γt are 

then estimated to be either all zero or all nonzero. In this way, we select covariates to have 

varying effects γ t ≠ 0  or fixed effects γ t=0  across the K groups.

Similar to other variable selection packages such as package ncvreg (Breheny and Huang, 

2011), in glmmPen we standardize the fixed effects covariates matrix X = X1
⊤, …, XK

⊤ ⊤ such 

that ∑k = 1
K ∑i = 1

nk xki, j = 0 and N−1∑k = 1
K ∑i = 1

nk xki, j
2 = 1 for j = 1, …, p; this process is performed 

automatically within the algorithm. Although the package grpreg (Breheny and Huang, 

2015) orthogonalizes grouped effects, we have found through simulations during early 

package testing that first standardizing the fixed effects and then using subsets of these 

standardized fixed effects for the random effects (recall: zki is a q-dimensional subvector of 

xki) is sufficient. During the selection procedure, the fixed effects intercept and the variance 

of the random effects intercept remain unpenalized.

MCECM algorithm

We solve Equation 4 for a specific λ0, λ1  penalty parameter combination using a Monte 

Carlo expectation conditional minimization (MCECM) algorithm (Garcia et al., 2010). 

The MCECM algorithm described in this section uses many of the steps and assumptions 
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described in Rashid et al. (2020), but here we provide further practical details about the 

E-step, M-step, initialization, and convergence. Additionally, the implementation outlined in 

this paper has several improvements to the implementation used in Rashid et al. (2020). In 

glmmPen, the E-step allows for several possible sampling schemes, including the fast and 

efficient No-U-Turn Hamiltonian Monte Carlo sampling procedure (NUTS) from the Stan 
software (Carpenter et al., 2017; Hoffman and Gelman, 2014). The glmmPen package was 

also able to reduce the required memory usage of the MCECM algorithm. In the M-step, we 

utilized the fast looping capability of packages Rcpp and RcppArmadillo to allow for fast 

recalculation of large matrices (see Step 3 of the M-step presented in Algorithm 1) and avoid 

their storage, improving model scalability.

During the MCECM algorithm, we aim to evaluate (E-step) and minimize (M-step) the 

following penalized Q-function in the stℎ iteration of the algorithm:

Qλ θ|θ(s) = ∑
k = 1

K
E −log f yk, Xk, αk; θ|D0; θ(s) + λ0 ∑

j = 1

p
ρ0 βj + λ1 ∑

t = 1

q
ρ1 ∥ γt ∥2

= Q1 θ|θ(s) + Q2 θ(s) + λ0 ∑
j = 1

p
ρ0 βj + λ1 ∑

t = 1

q
ρ1 ∥ γt ∥2 ,

(5)

where yk, Xk, αk  gives the complete data for group k, Do represents the entirety of the 

observed data, and Dk, o = yk, Xk  gives the observed data for group k. In other words, we aim 

to evaluate and minimize the penalized expectation of the negative joint log-likelihood with 

respect to the observed data. From Rashid et al. (2020), the expectation can be written as the 

sum of the following terms:

Q1 θ|θ(s) = − ∑
k = 1

K ∫ log f yk|Xk, αk; θ ϕ αk|Dk, 0; θ(s) dαk,

(6)

Q2(θ(s)) = − ∑
k = 1

K ∫ log ϕ αk ϕ αk|Dk, 0; θ(s) dαk

(7)

The Q1 θ|θ(s)  function expresses the conditional model of the observed data given the latent 

(random) variables and integrates over the latent variables. Using the Q1 θ|θ(s)  function, we 

aim to derive the fixed and random effect coefficient estimates during the M-step of the 

algorithm. During the E-step, we aim to approximate the integral in the Q1 θ|θ(s)  function by 

incorporating samples from the posterior distribution of the latent variables.
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Monte Carlo E-step

The integrals in the Q-function do not have closed forms when f yk|Xk, αk
(s, m); θ  is assumed 

to be non-Gaussian, and become difficult to approximate as q increases. Consequently, 

we approximate these integrals using a Markov chain Monte Carlo (MCMC) sample of 

size M from the posterior density ϕ αk|Dk, o; θ(s) . The glmmPen package can draw samples 

from this posterior using one of several techniques: the No-U-Turn Hamiltonian Monte 

Carlo sampling procedure (NUTS) implemented by the Stan software, which glmmPen 
calls using the rstan package (Carpenter et al., 2017) (default, and strongly recommended 

for its speed and efficiency); Metropolis-within-Gibbs with an adaptive random walk 

sampler (Roberts and Rosenthal, 2009); and Metropolis-within-Gibbs with an independence 

sampler (Givens and Hoeting, 2012). Each sampler type uses a standard normal candidate 

distribution. Let αk
(s, m) be the mtℎ simulated value, m = 1, …, M, at the stℎ iteration of the 

algorithm for group k. The integral in Equation 6 can then be approximated as

Q1 θ|θ(s) ≈ − 1
M ∑

m = 1

M
∑

k = 1

K
logf yk|Xk, αk

(s, m); θ .

Although the optimal number of MCMC samples M(s) in the E-step at EM iteration s is not 

well defined, the general consensus is that a smaller sample size of the posterior is suitable 

for the start of the algorithm but larger sample sizes are needed later in the algorithm (Booth 

and Hobert, 1999). We set the default number of MCMC samples in the first iteration of 

the MCECM algorithm M(1) = 250 when q ≤ 10, and M(1) = 100 otherwise. (We decrease 

the initial sampling size when the number of random effects predictors is large in order 

to help speed up the algorithm). Then, in a manner similar to the mcemGLM package 

(Archila, 2020), the MCMC sample size is increased by a multiplicative factor v at each 

step of the algorithm such that M(s) = v × M(s − 1) until either the value of M(s) reaches its 

maximum allowed value or the EM algorithm converges. In glmmPen, the default maximum 

allowed value is dependent on the the number of random effects in the model, q; see the 

documentation of optimControl for more details. For the first 15 iterations of the EM 

algorithm, the value of v is set to 1.1. For the remaining steps of the algorithm, v is set to 1.2.

M-step

In the M-step of the algorithm, we aim to minimize

Q1, λ θ|θ(s) = Q1 θ|θ(s) + λ0 ∑
j = 1

p
ρ0 βj + λ1 ∑

t = 1

q
ρ1 ∥ γt ∥2

(8)

with respect to θ = β⊤, γ⊤, τ ⊤
. The minimization of Equation 8 with respect to β and γ is 

performed using a Majorization-Minimization approach. For the general exponential family, 

Rashid et al. (2020) suggested minimizing with respect to τ using the standard optimization 

algorithm Newton-Raphson. In glmmPen, the only family implemented with a dispersion 
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parameter is the Gaussian family, and the variance σ2 can be estimated directly from a 

derivation of the Q function conditional on the most recent updates of β(s) and γ(s):

σ2 = 1
M × N ∑

m = 1

M
∑

k = 1

K
∑

i = 1

nk
yki − ηki

(s, m) 2,

(9)

where ηki
(s, m) is the linear predictor ηki evaluated with β(s), γ(s), and sample αk

(s, m).

Let s represent the iteration of the MCECM algorithm, and ℎ represent the iteration within a 

particular M-step of the MCECM algorithm. The M-step of the stℎ iteration of the MCECM 

algorithm proceeds as in Algorithm 1.

Algorithm 1 M‐step of the s‐th iteration of the MCECM algorithm

1. The parameters θ(s, 0) forM‐step iteration ℎ = 0 are initialized using the results from

the previous M‐step, θ(s − 1).
2. Conditional on γ(s, ℎ − 1) and τ(s − 1), each βj

(s, ℎ) for j = 1, …, p is given a single update
using the Majorization‐Minimization algorithm specified by Breheny and Huang 2015 .

3. For each group k in k = 1, …, K the augmented matrix   zki = αk
(s) ⊗ zki Jq is created

for i = 1, …, nk where αk
(s) = αk

(s, 1) ⊤, …, αk
(s, M) ⊤ ⊤

. This augmented matrix is used in

the random effect portion of the linear predictor specified in Equation 2. The dimension of
  zki is M × q(q + 1)/2 for an unstructured covariance matrix and M × q for an independent

covariance matrix. This augmented matrix is used to calculate Equation 2.9 in Breheny
and Huang 2015 .

4. Conditional on the τ(s − 1) and the recently updated β(s, ℎ + 1), each  γt
(s, ℎ) or t = 1, …, q

is updated using the Majorization‐Minimzation coordinate descent grouped variable
selection algorithm specified by Breheny and Huang 2015 , except the residuals are not
updated after every γt

(s, ℎ) coefficient update .
5. Steps 2 through 4 are repeated until the M‐step convergence criteria are reached

Equation10 or until the M‐step reaches its maximum number of iterations:

max max
j

βj
(s, ℎ + 1) − βj

(s, ℎ) , max
t, l

γtl
(s, ℎ + 1) − γtl

(s, ℎ) < δ, (10)

where γtl is an individual element of γt. The default value of δ is 0.0005.

6. Conditioning on the newly updated β(s) and b(s), τ(s) is updated (generically, using
the Newton‐Raphson algorithm; for Gaussian family, using Equation 9).

Algorithm 1 recomputes the augmented matrices zki for k = 1, …, K and i = 1, …, nk in step 3 

of every M-step iteration ℎ for several reasons. These repeat calculations prevent the M-step 

from having to store the augmented matrix Z = Z1
⊤, …, ZK

⊤ ⊤   where Zk = zk1
⊤ , …, zknk

⊤ ⊤. This 

full augmented matrix is of dimension (M × N) × q(q + 1)/2 or (M × N) × q depending on 

whether the random effect covariance matrix is unstructured or independent, respectively. 

As the MCMC sample size increases throughout the MCECM algorithm and as q increases, 

saving this Z becomes more and more memory prohibitive even when utilizing large matrix 
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implementation tools such as the package bigmemory (Kane et al., 2013). During testing, 

we found that recomputing the zki matrices during each M-step iteration utilizing Rcpp 

(Eddelbuettel and François, 2011) and RcppArmadillo (Eddelbuettel and Sanderson, 2014) 

significantly reduced the time and memory required to compute each M-step.

In step 4 of the M-step, the residuals are not updated after every update to the random 

effects coefficients γt
(s, ℎ) for t = 1, …, q in order to speed up computation. Otherwise, this 

would require re-calculation of the augmented matrix specified in step 3 for each random 

effect (q) for each M-step iteration. When q is large, this makes the M-step prohibitively 

time-consuming. Based on early package testing, simplifying step 4 with no residual 

updates speeds up the computation time in high dimensional settings and was found to 

have negligible impact on estimation accuracy.

The full MCECM algorithm then proceeds in Algorithm 2.

Algorithm 2 Full MCECM algorithm for single λ0, λ1 penalty combination

1. Fixed and random effects β(0) and γ(0) are initialized as discussed in Section ″Initializa‐
tion and convergence″ .
2. E‐step: In each E‐step for EM iteration s, a burn‐in sample from the posterior distribution

of the random effects is run and discarded. A sample of size M(s) from the posterior is
then drawn and retained for the M‐step (see Section ″Monte Carlo E‐step″).

3. M‐step: Parameter estimates β(s), γ(s), and τ(s) are then updated as described in
Algorithm  1.
4. Steps   2 and 3 are repeated until the convergence condition is met a pre‐specified
consecutive number of times or until the maximum number of EM iterations is reached
(see Section ″Initialization and convergence″).
5. Using the estimates of β, γ, and τ at EM convergence, a final sample from the posterior
distribution of the random effects is drawn for use in the calculation of the marginal
log‐likelihood as well as for diagnostics of the MCMC chain. The marginal log‐likelihood
is used for model selection and is discussed in detail in Section 2.4.

Initialization and convergence

The initial values of the fixed effects β(0) and the Cholesky decomposition of the random 

effects covariance matrix γ(0) for iteration s = 0 are chosen in one of two ways. We discuss 

first the initialization procedure used when the package glmmPen is used to fit a single 

model (glmm function) or the first model in the sequence of models fit for variable selection 

(glmmPen function). In this scenario, the fixed effects β(0) are initialized by fitting a ‘naive’ 

model using the coordinate descent techniques of Breheny and Huang (2011) assuming no 

random effects, and the random effects covariance matrix is initialized as a diagonal matrix 

with positive variance. This approach is similar to the mcemGLM package.

By default, this starting variance is initialized in an automated fashion. First, a GLMM 

composed of only a fixed and random intercept is fit using the lme4 package. The random 

intercept variance from this model is then multiplied by 2, and this value is set as the starting 

values of the diagonal of the random effects covariance matrix. We use this approach so 
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that the starting variance of the random effects is sufficiently large, which helps improve the 

stability of the algorithm (Misztal, 2008).

The E-step MCMC chain, used to approximately sample from the posterior density 

ϕ αk|Dk, 0; θ(s)  for groups k = 1, …, K , is initialized in iteration s = 1 with random draws 

from the standard normal distribution. For all following iterations s > 1, the MCMC chain is 

initialized with the last draw from the previous EM iteration s − 1.

When the algorithm performs variable selection using the glmmPen function, the model 

pertaining to the first tuning parameter combination evaluated is initialized using approach 

described above. For all subsequent tuning parameter combinations evaluated in the 

sequence, the fixed effects, random effects covariance matrix, and random effects MCMC 

chain are initialized using results from a previous tuning parameter fit. More details about 

initialization for variable selection is discussed in Section “Tuning parameter selection”.

The EM algorithm is considered to have converged when the following condition is met 

at least 2 consecutive times (default) or until the maximum number of EM iterations is 

reached:

∥ β(s) ⊤ , γ(s) ⊤ ⊤ − β(s − t) ⊤ , γ(s − t) ⊤ ⊤ ∥2
2 /cs − t < ϵ

(11)

where the superscript s − t  indicates the EM iteration t iterations prior, ∥ ⋅ ∥2
2 represents 

the L2 norm, and cs − t equals the total number of non-zero β⊤, γ⊤ ⊤
 coefficients in iteration 

s − t . In other words, the algorithm computes the average Euclidean distance between the 

current coefficient vector β⊤, γ⊤ ⊤
 and the coefficient vector from t EM iterations prior 

(default t = 2) and compares it with ϵ, which has a default value of 0.0015.

This MCECM algorithm is able to handle much larger dimensions of p and q relative to prior 

methods for simultaneous fixed and random effects variable selection (Bondell et al., 2010; 

Ibrahim et al., 2011). When the number of random effect predictors is greater than or equal 

to 10, we recommend approximating the random effect covariance matrix ΓΓ⊤ as a diagonal 

matrix. In the mixed model setting, Fan and Li (2012) demonstrated both theoretical and 

empirical advantages to estimating the random effects covariance matrix in this manner as 

q grows. Empirically, they found that this approximation had a relatively low impact on the 

overall bias of the coefficients and resulted in a relatively large reduction of accumulated 

estimation error since many fewer covariance parameters needed to be estimated. This 

simplification also has the advantage of enabling the package to have greater computational 

efficiency when fitting higher-dimensional models. The above-mentioned recommendation 

to switch from an unstructured to an independent random effect covariance matrix at the 10 

random effect predictor mark is an ad hoc recommendation determined by our experience 

creating and testing this package.
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The MCECM algorithm outlined in Algorithm 2 describes how the glmmPen package 

estimates the model parameters for a single set of penalty parameters (λ0, λ1). Section 

“Tuning parameter selection” discusses how the package chooses optimal set of tuning 

parameters during the model selection procedure.

Tuning parameter selection

This section provides details on how the glmmPen function selects the set of optimal tuning 

parameters from a prespecific grid of values. Section “Software” provides further details on 

how to use both the glmmPen and glmm functions, where the latter function allows the user 

to fit a single model without performing variable selection on the fixed and random effects.

For glmmPen, we generally recommend that the user specify the ‘full model’, i.e., set 

the random effects predictors equal to the total considered fixed effects predictors, and 

let the algorithm select the best fixed and random effects using the procedure outlined 

in this section. However, if the user has some prior knowledge about the form of the 

random effects, they can restrict the random effects considered to an appropriate subset. As 

discussed in the previous section, the package requires that the random effects be a subset of 

the fixed effects.

Penalty sequence specification

The glmmPen package calculates default sequences of penalty values for λ0 (penalizing the 

fixed effects β) and λ1 (penalizing the random effects γ), but allows users to enter their 

own penalty sequences if desired. We define the penalty parameter sequences for the fixed 

and random effects as λ0 = λ0, 1, …, λ0, ω0  and λ1 = λ1, 1, …, λ1, ω1 , respectively, where ω0 and 

ω1 are the length of the fixed and random effect penalty sequences. These sequences are 

ordered from the minimum penalty (λ0, 1 = λ0, min and λ1, 1 = λ1, min) to the maximum penalty 

(λ0, ω0 = λ0, max and λ1, ω1 = λ1, max). By default, these sequences are calculated in a similar manner 

to the approach used by the package ncvreg (Breheny and Huang, 2011). The maximum 

penalty parameter λmax is calculated using the same procedure as ncvreg; this value is 

assumed to penalize all fixed and random effects coefficients to 0. We then set the sequence 

of penalty parameters λ0 = λ1 such that λ0, max = λ1, max = λmax and λ0, min = λ1, min = λmin, where the 

minimum penalty parameter λmin is a small portion of the λmax. More details about these 

default sequences are given in Section “Software”. In Section “Tuning parameter selection 

strategy”, we consider a generic case where the λ0 and λ1 sequences do not need to be equal.

Tuning parameter selection strategy

By default, the algorithm runs a computationally efficient two-stage approach to pick the 

optimal set of tuning parameters. In the first stage, the algorithm fits a sequence of models 

where the fixed effect penalty is kept constant at the minimum value of λ0, λ0, min, and the 

random effects penalty proceeds from the minimum value of λ1, λ1, min, to the maximum value 

λ1, max. The optimal tuning parameter from this first stage is then identified using Bayesian 

inforamation criterion (BIC) type selection criteria, described in more detail later in this 

section. This first stage identifies the optimal random effect penalty value, λ1, opt. In the 
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second stage, the algorithm fits a sequence of models where the random effects penalty is 

kept fixed at λ1, opt and the fixed effects penalty λ0 proceeds from λ0, min to λ0, max. The overall best 

model is chosen from the models in the second stage. In both stages, the results from each 

model are used to initialize the coefficients in the subsequent model in the sequence.

Unlike other packages that perform variable selection, such as ncvreg and grpreg, we 

run the λ0 and λ1 sequences from their minimum value to their maximum value and not 

the traditional progression from their maximum value to their minimum value. In this 

mixed model setting, this approach provides better initialization of subsequent models in 

the tuning parameter sequence, giving an overall better performance to the algorithm and 

improving algorithm speed. This progression of penalty sequences also speeds up the overall 

variable selection procedure by restricting the random effects considered during later penalty 

combinations within the variable selection procedure. In stage one, if a previous tuning 

parameter in the grid penalized out a set of random effects from the model, the following 

model in the tuning parameter sequence will automatically ignore these random effects. In 

stage two, the random effects considered are restricted to the non-zero random effects from 

the best model in stage one.

In the original MCECM algorithm implementation given in Rashid et al. (2020), the 

authors searched for the best model by performing a ‘full grid search’ and evaluating all 

possible combinations of λ0 and λ1. (We sometimes refer to the two-stage approach as the 

‘abbreviated grid search’). While the glmmPen package can perform this full grid search, 

we strongly recommend the two-stage abbreviated grid search. Compared with the full grid 

search, the two-stage grid search significantly reduces the required time to complete the 

algorithm, particularly when the number of random effects predictors is large. Furthermore, 

we have found that the two-stage grid search works very well in practice (see Section 

“Simulations” for performance results).

If users wish to perform a full grid search, the path of solutions is initialized by 

fitting a model using the minimum penalty for both the fixed and random effects 

λ0, 1 = λ0, min, λ1, 1 = λ1, min . The algorithm then proceeds to estimate models over the full grid 

of λ0 and λ1. For each value of λ1, ℎ ∈ λ1 that penalizes the random effects, the fixed effects 

penalty parameter sequence proceeds from the minimum value λ0, min to the maximum value 

λ0, max while keeping λ1, ℎ fixed. Each model is initialized using the result from the model 

fit with the previous tuning parameter combination in the sequence. The algorithm then 

updates the penalty parameter to the next λ1, ℎ + 1 and repeats the process. The model with the 

penalty parameter combination (λ0, min, λ1, ℎ + 1) is initialized using the model from the previous 

(λ0, min, λ1, ℎ) penalty parameter combination.

Optimal tuning parameter selection

Once models have been fit pertaining to all tuning parameter combinations within the 

first and second stages of the tuning parameter search strategy (or over the full tuning 

parameter grid search), the glmmPen package chooses the best model from one of several 

BIC-type selection criteria options. For simplification of notation, consider the generic 

penalty parameter combination λ = λ0, λ1  that penalizes the fixed and random effects, 
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respectively. By default, the package uses the BIC-ICQ criterion (Ibrahim et al., 2011), 

where the abbreviation ICQ stands for “Information Criterion based on the Q-function”. 

This BIC-ICQ criteria is expressed below:

BICq θλ = 2 Q1 θλ|α0 + Q2 α0 + dλlog(N)

≈ − 2
M ∑

m = 1

M
∑

k = 1

K
logf yk|Xk, α0, k

(m); θλ + logϕ α0, k
(m) + dλlog(N),

(12)

where θλ are the coefficients of the model fit with the penalty λ = λ0, λ1 , α0 are the posterior 

samples from a “minimal penalty model”—the model with either no penalty (when the 

number of random effects predictors is less than 5) or a minimum penalty used on the fixed 

and random effects—and α0, k
(m) is the mtℎ posterior sample for group k from such a minimal 

penalty model, Q1 and Q2 were defined in Section “MCECM algorithm”, dλ is the number 

of nonzero coefficients for the model (all nonzero β plus all nonzero γ), and N is the total 

number of observations in the data (Nobs).

The package can also calculate the traditional BIC criterion as specified below:

BIC θλ = − 2 ℓ θλ + dλlog(N),

where θλ are the coefficients of the penalization model, ℓ (θλ) is the marginal log-likelihood 

for the model, dλ is the number of nonzero coefficients for the model, and N can be either 

the total number of observations in the data (Nobs) or the total number of independent 

observations (i.e., number of levels within the grouping factor, Ngrps) in the data. The 

marginal log-likelihood is as follows:

ℓ (θ) = ∑
k = 1

K
ℓk (θ) = ∑

k = 1

K 1
nk

log∫ f yk|Xk, αk; θ ϕ αk dαk .

(13)

There is a lack of consensus regarding the use of log(Nobs) versus log(Ngrps) in the BIC penalty 

term for mixed models. For instance, the log(Nobs) penalty is used in the R package nlme 

(Pinheiro et al., 2021), and the log(Ngrp) penalty is used in SAS proc NLMIXED (SAS 

Institute Inc., 2008; Delattre et al., 2014). In practice, the performance of the different 

versions of the BIC penalty term may depend on the true underlying model (Lorah and 

Womack, 2019; Delattre et al., 2014), with Delattre et al. (2014) observing that the log(Nobs)
penalty performed better when the true model had very few random components, and the 

log(Ngrp) penalty performed better when the true model had a large number of random 

components. Both Delattre et al. (2014) and Lorah and Womack (2019) suggest using some 

combination of these sample size definitions.

To this point, the package also allows the best model to be selected using a ‘hybrid’ BICh 

selection criteria developed by Delattre et al. (2014):
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BICh θλ = − 2 ℓ θλ + dλ, βlog Nobs + dλ, γlog Ngrps ,

(14)

where dλ, β and dλ, γ are the number of nonzero fixed and random effect coefficients, 

respectively.

In simulations not shown here (see content in GitHub repository https://github.com/

hheiling/paper_glmmPen_RJournal for details), we found that the BIC-ICQ gave the best 

performance in choosing the correct set of fixed and random effects. The BIC and BICh 

methods tended to underestimate the number of true fixed effects compared to BIC-ICQ 

in the simulations we considered. However, in order to calculate the BIC-ICQ, a minimal 

penalty model needs to be fit using a small penalty (i.e., λmin) on the fixed and random 

effects. Posterior samples from this minimal penalty model are then used to calculate the 

BIC-ICQ value for each model fit in the variable selection procedure. Depending on the 

size of the full model with all fixed and random effects predictors, this calculation can be 

time-intensive since fitting the model with a small penalty will keep many fixed and random 

effects predictors in the model.

Alternatively, the calculation of the BIC and BICh criteria require a calculation of the 

marginal log-likelihood ℓ (θ) for each model. Since the integrals within ℓ (θ) are intractable, 

we estimate the marginal log-likelihood using the corrected arithmetic mean estimator 

(CAME) described by Pajor (2017). We have found this CAME estimator to be relatively 

quick and easy to calculate, as well as consistent with the marginal log-likelihood estimate 

calculated by the package lme4 (Bates et al., 2015) for a range of conditions (see content in 

GitHub repository https://github.com/hheiling/paper_glmmPen_RJournal for details).

To calculate the CAME, we focus on a single group k and define a set Ak ⊆ Θ as a subset 

of the parameter space of the random effects for group k, where P Ak  and P Ak|yk, Xk; θ  are 

nonzero probabilities. We first start with the knowledge

P Ak|yk, Xk; θ = ∫
Ak

ϕ αk|yk, Xk; θ dαk

= ∫
Θ

1
f yk|Xk; θ f yk|Xk, αk; θ ϕ αk I αk ∈ Ak dαk,

(15)

where I( . ) is an indicator function, f yk|Xk; θ ∫ f yk|Xk, αk; θ ϕ αk dαk is the marginal likelihood 

for group k, and all other terms are described in Section “Generalized linear mixed models”. 

The above relationship allows us to obtain the result:

f yk|Xk; θ = 1
P Ak|yk, Xk; θ ∫

Θ
f yk|Xk, αk; θ ϕ αk I αk ∈ Ak dαk

= 1
P Ak|yk, Xk; θ ∫

Θ

f yk|Xk, αk; θ ϕ αk I αk ∈ Ak s αk dαk
s αk

,
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(16)

where s( . ) is an importance sampling function.

Suppose at the end of the MCECM algorithm we obtain M samples from the posterior 

distribution of the random effects for group k, αk = αk
(1) ⊤, …, αk

(M) ⊤ ⊤
. Let us set Ak = αk; 

this reduces P Ak|yk, Xk; θ  to 1. Let us also set the importance sampling function s( . ) to be 

a multivariate normal distribution with a mean vector equal to the mean of the posterior 

samples 1
M ∑m = 1

M αk
(m) and a covariance matrix equal to the covariance matrix of a thinned 

subset of the posterior samples (to obtain a pseudo-independent set of samples). If we 

draw M⋆ samples αk
⋆ = αk

⋆ (1) ⊤, …, αk
⋆ M⋆ ⊤ ⊤

 from this importance sampling function, then 

Equation 16 indicates that we can estimate the marginal likelihood for group k as

f yk|Xk; θ ≈ 1
M⋆ ∑

m = 1

M⋆
f yk|Xk, αk

⋆ m; θ ϕ αk
⋆ m I αk

⋆ m ∈ Ak

s αk
⋆ m .

(17)

We repeat the estimation in Equation 17 for all K groups in order to calculate the full 

desired marginal log-likelihood ℓ (θ). This final marginal log-likelihood is then used in the 

previously mentioned BIC and BICh calculations for each fitted model across the λ0 and 

λ1 grid search. We refer to this marginal log-likelihood as the Pajor log-likelihood in later 

sections of the paper.

Software

The main function of the glmmPen package is glmmPen, which is used to perform fixed 

and random effects variable selection after specification of a full model with all possible 

fixed and random effects. The glmmPen package is also capable of fitting a GLMM with 

pre-specified fixed and random effects (under no penalization) using the function glmm. 

Here we will use the basal dataset (Rashid et al., 2020) to illustrate the use of the glmmPen 

function in practical applications.

Data example

The basal dataset is composed of four studies that contain gene expression data and 

tumor subtype information from patients spanning three cancer types (Moffitt et al., 2015; 

Weinstein et al., 2013). Two of these datasets contain gene expression data for subjects 

with Pancreatic Ductal Adenocarcinoma (PDAC), one dataset contains data for subjects with 

Breast Cancer, and the last contains data for subjects with Bladder Cancer. While each 

cancer type has separate sets of defined subtypes, all share a common subtype defined as 

“basal-like”, which was shown to be similar in character across cancer types and have an 

impact on survival (Moffitt et al., 2015). The goal of the original study was to select features 
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that are relevant in predicting the basal-like subtype. To increase the sample size, it was 

proposed that samples were merged from each study into one large dataset.

Multiple approaches have been proposed to integrate gene expression data from multiple 

studies to improve the accuracy of downstream prediction models (Riester et al., 2014; Ma et 

al., 2018; Patil and Parmigiani, 2018). The pGLMM methodology from Rashid et al. (2020) 

was originally motivated by the need to select genes that are predictive of cancer outcome, 

where the effects of genes may vary randomly across studies. It was shown that accounting 

for this heterogeneity improved the performance of gene selection after data merging.

Using glmmPen package, we fit a pGLMM that can accommodate a large number of 

features in the model and account the hetereogeneity in gene effects across studies. It is 

unclear a priori which features truly have a non-zero association with the outcome and 

which features truly have variation in their effects across studies. Therefore, we will use the 

glmmPen function to simultaneously select fixed and random effects from a set of candidate 

features. Rashid et al. (2020) integrated gene expression data from each study using a binary 

rank transformation technique (Top Scoring Pairs or TSPs), which we use as our covariates 

in this example. To illustrate the concept of TSPs, let gki, A and gki, B be the raw expression 

of genes A and B in subject i of group k. For each gene pair gki, A, gki, B , the TSP is the 

indicator I gki, A > gki, B  which specifies which gene of the two has higher expression in the 

subject. We denote a TSP predictor as “GeneA_GeneB”. A total of 50 binary TSP covariates 

are provided in the basal dataset available in the package. For illustration purposes, we 

randomly select 10 TSP covariates. Our goal is to identify TSPs that are associated with 

patient tumor subtype while accounting for study-level heterogeneity in gene effects. In 

each study subtype is defined a binary variable with two levels: basal-like or non-basal-like. 

Therefore, for this example, our example dataset consists of our matrix of covariates X, our 

subtype vector y (a factor with two levels), and our study membership vector (a factor with 

four levels).

Summary information about the data is included below.

> library(“glmmPen”)

> data(“basal”)

> y = basal$y

> set.seed(1618)

> idx = sample(1:50, size = 10, replace = FALSE)

> idx = idx[order(idx)]

> X = basal$X[,idx]

> colnames(X)

[1] “GPR160_CD109” “SPDEF_MFI2” “CHST6_CAPN9” “SLC40A1_CDH3”

[5] “PLEK2_HSD17B2” “GPX2_ERO1L” “CYP3A5_B3GNT5” “LY6D_ATP2C2”

[9] “MYO1A_FGFBP1” “CTSE_COL17A1”

> group = basal$group
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> levels(group)

[1] “UNC_PDAC” “TCGA_PDAC” “TCGA_Bladder” “UNC_Breast”

We will fit a penalized random effects logistic regression model using the glmmPen function 

to model patient subtype, as it is unclear which of the 10 TSPs should be included in 

the model, and which may also randomly vary across studies in their effects. We perform 

variable selection using the following code:

> set.seed(1618)

> fitB = glmmPen(formula = y ~ X + (X | group),

+        family = “binomial”, covar = “independent”,

+        tuning_options = selectControl(BIC_option = “BICq”,

+                       pre_screen = TRUE,

+                       search = “abbrev”),

+        penalty = “MCP”, BICq_posterior = “Basal_Posterior_Draws”)

Here we utilize the pre-screening and abbreviated grid search options, as well as select the 

optimal tuning parameter using the BIC-ICQ model selection criteria (denoted “BICq”). 

Further details about the pre-screening procedure is described in the Section “selectControl 

arugments” and the consequences of this pre-screening procedure are illustrated through 

simulations and discussed in Section “Pre-screening performance”. If we were instead 

interested in fitting a GLMM utilizing all 10 TSPs as fixed effects and assuming a random 

effect for each (without penalization), we could run the following code:

> set.seed(1618)

> fit_glmm = glmm(formula = y ~ X + (X | group),

+         family = “binomial”, covar = “independent”,

+         optim_options = optimControl())

The set of random effects specified does not necessarily have to be equal to the set of 

fixed effects as in the above example. Because of the number of random effects that we 

are considering in the model, we approximate the random effects covariance matrix as an 

independent, or diagonal, matrix, which we specify by using the argument option covar 

= “independent”. Our reasoning for such an approximation, as well as a discussion 

of the pros and cons of such an approximation, are given in Section “Initialization and 

convergence.”

In the following subsections, we will discuss in detail the glmmPen (and glmm) arguments 

and relevant output. We will also examine the output from the variable selection procedure 

given by the glmmPen example.

Heiling et al. Page 17

R J. Author manuscript; available in PMC 2024 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Full model specification

The syntax for specifying the full model formula (the model with all relevant fixed and 

random effects predictors) using the formula argument closely follows the formula syntax 

of the lme4 package (Bates et al., 2015). The formula follows the form response ~ 

fix_expr + (rand_expr | factor) where the fix_expr specifies the variables to use 

as the fixed effects, the rand_expr specifies the variables to use as the random effects, and 

the factor specifies the grouping factor of the observations. When a data frame is given for 

the data argument, the fixed and random effects can be specified using the column names 

of the data frame. For higher-dimensional data, users may find it easier to directly specify 

the matrix containing the covariates of interest and the response vector, such as the y ~ X 

+ (X | group) formula given in the earlier glmmPen fit example. No specification of the 

data argument is needed in this case. Similar to ncvreg, an intercept is always assumed and 

required, and therefore an intercept column need not be specified in X or explicitly in the 

model formula.

Regarding the specification of random effects in formula, the glmmPen package currently 

does not allow for multiple grouping factors. In addition, the random effects must be a 

subset of the fixed effects, and a random intercept is always assumed and required in 

the model. Lastly, the structure of the random effects covariance matrix is determined 

by the covar argument, which may take on the value of ‘unstructured’ or ‘independent’ 

(diagonal). By default, the covar parameter is set to NULL. This automatically selects the 

‘independent’ option if the number of random effect predictors is 10 or more and selects 

‘unstructured’ otherwise. For a large number of random effect predictors, it is strongly 

recommend that the covariance structure to ‘independent’ in order to improve computational 

efficiency.

The glmmPen algorithm allows the Binomial, Gaussian, and Poisson families with canonical 

links.

Penalization and optimal tuning parameter selection

In glmm, the default is to fit the single model with user-specified fixed and random 

effects with no penalization. Although it is generally not recommended, users have 

the option to specify a single penalty parameter combination using tuning_options 

= lambdaControl(lambda0,lambda1). In glmmPen, the arguments penalty, 

gamma_penalty, alpha, fixef_noPen, and tuning_options all play a part in the 

variable selection process. The following subsections discuss these argument options in 

detail and how the arguments impact variable selection.

Penalty, gamma penalty, alpha parameters

To perform variable selection, glmmPen allows the fixed effect coefficients to be penalized 

using the minimax concave penalty (MCP) (default), smoothly clipped absolute deviation 

(SCAD), or least absolute shrinkage and selection operator (LASSO) penalties (Breheny and 

Huang, 2015, 2011; Friedman et al., 2010) via the penalty argument, which takes as input 

the character strings “MCP”, “SCAD”, or “lasso”. The glmmPen algorithm restricts both the 
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fixed and random effects to be penalized using the same type of penalty (e.g., MCP used to 

penalize fixed effects and (grouped) MCP used to penalize random effects).

In addition to the previously discussed penalty parameters (λ0, λ1), the MCP and SCAD 

penalties also use a scaling factor (Breheny and Huang, 2011, 2015). The argument 

gamma_penalty specifies this scaling factor, with the default of 3 and 4 for the MCP 

and SCAD penalties, respectively. Additionally, the argument alpha allows for the elastic net 

estimator, controlling the relative contribution of the MCP/SCAD/LASSO penalty and the 

ridge, or L2, penalty. Setting alpha to 1, the default, is equivalent to the regular penalty 

with no L2 contribution.

selectControl arguments

The grid search over the fixed effects and random effects penalty parameters λ0 and λ1

is controlled by the arguments in selectControl(). The user can specify particular 

sequences for λ0 (fixed effects penalty parameters) and λ1 (random effects penalty 

parameters) using the arguments lambda0_seq and lambda1_seq, respectively; by default, 

a sequence of penalty parameters (of length nlambda, default 10) are automatically 

calculated within glmmPen. These default sequences are calculated using the method 

discussed in Section “Tuning parameter selection”. The minimum penalty λmin is a small 

fraction of the λmax value; the argument lambda.min controls what fraction is used. By 

default, lambda.min = 0.01 so that λmin = 0.01 (λmax).

The structure of the optimal tuning parameter search is specified by the argument 

search. If search = “abbrev” (default), the algorithm performs the abbreviated two-stage 

tuning parameter search specified in Section “Tuning parameter selection”. If search 

= “full_grid”, the algorithm looks over the full grid search of length(lambda0_seq)

×length(lambda1_seq) models before picking the best model.

After all of the tuning parameters have been evaluated, the optimal combination of tuning 

parameters can be selected using a BIC-type selection criteria, which can be specified using 

the selectControl() argument BIC_option. Using the BIC_option argument, the user 

can select one of four BIC-type selection criteria, given in Table 1, to select the best model.

Refer to the discussion in Section “Tuning parameter selection” for further details about 

these BIC-type options as well as their respective pros and cons.

The argument pre_screen allows users to screen out some random effects at the start of 

the algorithm. When pre_screen is set to TRUE (the default) and the number of random 

effects predictors is 5 or more, a minimal penalty model is fit using a small penalty for 

the fixed and random effects and relatively lax convergence criteria. If at the end of the 

pre-screening procedure the variance of a random effect is penalized to 0 or is estimated to 

be less than 10−2, that predictor is restricted to have a zero-valued random effect variance 

for all models fit by the algorithm. The pre-screening procedure is not implemented if the 

number of random effects is less than five. This threshold of five random effect predictors 

is an ad hoc choice by the authors; the purpose of the pre-screening procedure is to allow 
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the user to speed up the variable selection procedure when the full model contains a large 

number of random effects.

The argument lambda.min.presc adjusts the value of the random effect penalty parameter 

λ1 used in the pre-screening step and the minimal penalty model fit for the BIC-ICQ 

calculation, where the minimum penalty used for the random effects is lambda.min.presc 

×λmax. See package documentation for further details about this argument and other minor 

arguments not discussed here.

Additional selection arguments in glmmPen

The default variable selection procedure assumes that we have no prior knowledge of which 

fixed effects should not be penalized during the model fitting procedure. In order to indicate 

that a covariate should not be subject to penalization (and therefore always remain in the 

model), one can use the fixef_noPen argument. See the glmmPen function documentation 

for further details.

After running an initial grid search over the default fixed and random effects penalty 

parameters, users may desire to re-run the variable selection procedure using alternative 

settings, such as different penalty sequences (e.g. a finer grid search) or different 

convergence criteria.

The computation of the minimal penalty model for the BIC-ICQ criterion calculation 

can be time-consuming. In order to save the minimal penalty model posterior samples 

to be used for a BIC-ICQ calculation after a subsequent tuning parameter selection grid 

search, the user can save the posterior samples as a file-backed big.matrix using 

the argument BICq_posterior = “file_location/file_name”. This saves the backing file 

and the descriptor file as ‘file_location/file_name.bin’ and ‘file_location/file_name.desc’, 

respectively. If the file name is not specified, then the posterior samples are automatically 

saved to the working directory with the file name “BICq_Posterior_Draws”. These 

saved posterior samples can then be re-loaded in R as a big.matrix using the 

attach.big.matrix function from the package bigmemory (Kane et al., 2013). In 

secondary calculations using glmmPen, the recalculation of this minimal penalty model 

fit can be avoided and these posterior samples can be used by calling BICq_posterior = 

“file_location/file_name”.

Examination of output

The glmm and glmmPen functions all output a reference class object of class pglmmObj. 

A full list of the methods available pertaining to pglmmObj are provided in Table 2. These 

methods and their output were designed to be very similar to the merMod methods and 

output provided by the lme4 package. Further information about the output provided in 

a pglmmObj object and additional methods documentation is available in the glmmPen 
package documentation (see ?pglmmObj).

When the pglmmObj object is created using the glmm function, the output from the 

methods listed in Table 2 pertains to the single model fit specified by the glmm arguments. 
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When the pglmmObj object is created using the glmmPen function, the output from the 

methods pertains to the best model chosen during the model selection procedure. Additional 

information about each model fit can be found in the results_all field of the pglmmObj 

object. Using the basal output object fitB from the glmmPen function, we illustrate the 

use of several of these methods in the remainder of this section.

Model summary

The summary method output the function call information such as the sampler used in the 

E-step (in this case, Stan), the family, the model formula, the estimates of the fixed effects, 

the variance and standard deviation estimates of the random effects, and a summary of 

the deviance residuals. (Note: Due to the style of our formula specification using a matrix 

instead of column names of a data.frame, all variable names begin with the name of the 

matrix, X.)

> summary(fitB)

Penalized generalized linear mixed model fit by Monte Carlo Expectation

 Conditional Minimization (MCECM) algorithm (Stan) [‘pglmmObj’]

 Family: binomial ( logit )

Formula: y ~ X + (X | group)

Fixed Effects:

(Intercept) XGPR160_CD109 XSPDEF_MFI2 XCHST6_CAPN9 XSLC40A1_CDH3

−1.1530 −0.7099 −0.7355 0.5082 −0.5831

XPLEK2_HSD17B2 XGPX2_ERO1L XCYP3A5_B3GNT5 XLY6D_ATP2C2 XMYO1A_FGFBP1

0.4337 −0.5895 0.0000 0.4620 −0.7411

XCTSE_COL17A1

0.0000

Random Effects:

Group Name Variance Std.Dev.

group (Intercept) 0.8193 0.9052

group XGPR160_CD109 0.2036 0.4512

group XSPDEF_MFI2 0.684 0.827

group XCHST6_CAPN9 0 0

group XSLC40A1_CDH3 0 0

group XPLEK2_HSD17B2 0.0804 0.2835

group XGPX2_ERO1L 0.0842 0.2901

group XCYP3A5_B3GNT5 0 0

group XLY6D_ATP2C2 0 0
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group XMYO1A_FGFBP1 0.1551 0.3938

group XCTSE_COL17A1 0.7596 0.8715

Number Observations: 938, groups: group, 4

Deviance residuals:

Min 1Q Median 3Q Max

−2.9338 −0.4026 −0.1512 0.3457 2.9630

We see that the best model included 9 TSPs with non-zero fixed effects and 6 TSPs with 

non-zero random effects (i.e., 6 TSPs with varying predictor effects across the studies). 

The print method supplies very similar information to the summary method minus the 

summary of the residuals.

The individual components of the print and summary outputs can be obtained using 

several accessory functions described in Table 2. Similar to the package lme4, the fixed 

effects can be summarized using fixef and the group-specific random effects can be 

summarized using ranef. The random effect covariance matrix is summarized using sigma. 

In the case of the Gaussian family, sigma also provides the residual standard error.

> fixef(fitB)

> ranef(fitB)

> sigma(fitB)

The residuals for the final model can be called using the residuals method. The different 

type options for the residuals include “deviance”, “pearson”, “response”, and “working”, 

which correspond to the deviance, Pearson, response, and working residuals, respectively.

> residuals(fitB, type = “deviance”)

Predictions and fitted values

Using the predict method, we can make predictions using only the population level 

information (i.e., the fixed effects only) or the group-specific level information (i.e., the 

fixed and random effects results). The glmmPen package restricts predictions on new data to 

only use the fixed effects. The predict method has the following arguments:

• object: an object of class pglmmObj output from glmm or glmmPen.

• newdata: a data frame of new data that contains all of the fixed effects 

covariates from the model fit. The variables provided in newdata must match 

the fixed effects used in the model fit.
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• type: a character string specifying whether to output the linear predictor (“link”, 

default) or the expected mean response (“response”).

• fixed.only: boolean value specifying if the prediction is made with only the 

fixed effects (TRUE, default) or both the fixed and random effects (FALSE). 

Predictions are restricted to fixed.only = TRUE for new data predictions.

The fitted method also includes the fixed.only argument, allowing the fitted values of 

the linear predictor to be estimated with or without the random effects estimates.

> predict(object = fitB, newdata = NULL, type = “link”, fixed.only = TRUE)

> fitted(object = fitB, fixed.only = TRUE)

Diagnostics

The glmmPen package provides methods to perform diagnostics on the final model fit 

object. The plot method plots the residuals against the fitted values. The plot function 

defaults to plotting the Pearson residuals for the Gaussian family, and deviance residuals 

otherwise.

> plot(object = fitB)

The plot_mcmc function performs graphical MCMC diagnostics on the random effect 

posterior samples. This command has six arguments with the first argument specifying 

the pglmmObj output object. The second argument plots is used to specify which 

diagnostics plots to produce. The plots argument is capable of creating sample path 

plots (“sample.path”, default), autocorrelation plots (“autocorr”), cumulative sum plots 

(“cumsum”), and histograms (“histogram”) of the posterior samples. The plots are output 

as faceted ggplots with the graphics arranged by groups in the columns and variables in the 

rows. As ggplots, they are capable of being edited as any other ggplot. The plots argument 

can specify a vector of multiple plot types or the choice of “all”, which automatically 

produces all four types of diagnostic plots. The function outputs a list object containing the 

plots specified. The third and fourth arguments grps and vars allow the user to restrict 

which groups and/or variables are examined in the diagnostic plots. The default values of 

“all” for these arguments give the results for all groups and variables. To request specific 

groups and variables, provide vectors of character strings specifying the variable or group 

names. The argument numeric_grp_order tells the function to order the group levels 

numerically (default FALSE), and bin_width allows the user to manipulate the bin widths 

of the histograms (default NULL results in geom_histogram defaults, only relevant if the 

“histogram” plot is requested).

The example code below specifies the names of three of TSP predictors with non-zero 

random effects across the studies and then uses the plot_mcmc function to produce the 

sample path plots and autocorrelation plots for the corresponding posterior samples. Some 

Heiling et al. Page 23

R J. Author manuscript; available in PMC 2024 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plot aesthetics are adjusted using the ggplot2 package (Wickham, 2016). These sample path 

and autocorrelation plots can be seen in Figure 1.

> TSP = c(“XGPR160_CD109”, “XSPDEF_MFI2”, “XPLEK2_HSD17B2”)

> plot_diag = plot_mcmc(object = fitB, plots = c(“sample.path”,”autocorr”),

+ grps = “all”, vars = TSP)

> library(“ggplot2”)

> plot_diag$sample_path + theme(axis.text.x = element_text(angle = 270))

> plot_diag$autocorr

Optimization

Additional control options can be passed to the glmm and glmmPen functions using the 

optim_options argument and the optimControl() control structure. Some default 

settings in optimControl depend on the family of the data or the number of random 

effects. Descriptions of several of the main optimControl() arguments and their defaults 

are listed below:

sampler: a character string specifying the sampling type used in the E-step of the MCECM 

algorithm. The default sampler is “stan”, which requests the No-U-Turn Hamiltonian Monte 

Carlo sampling performed by the rstan package (Stan Development Team, 2020; Carpenter 

et al., 2017). We strongly recommend using this sampling method due to its speed and 

efficiency. Other options include “random_walk”, which requests the Metropolis-within-

Gibbs adaptive random walk sampler (Roberts and Rosenthal, 2009), or “independence”, 

which requests the Metropolis-within-Gibbs independence sampler (Givens and Hoeting, 

2012).

var_start: either a character string “recommend” (default) or a positive numeric value. 

This argument specifies the initial starting variance of the random effects covariance matrix. 

If var_start is set to “recommend”, the function fits a fixed and random intercept only 

model using the lme4 package and sets the starting variance to the random intercept variance 

multiplied by 2. The random effects covariance matrix is initialized as a diagonal matrix 

with the value of var_start as the diagonal elements.

var_restrictions: either a character string “none” (default) or the character string 

“fixef”. This argument can be used to restrict which random effects are considered at the 

start of the algorithm. If this argument is set to “none”, then all random effect predictors 

are initialized to have a non-zero variance in the random effect covariance matrix. If this 

argument is set to “fixef”, then only the random effect predictors that are initialized to have 

non-zero fixed effects estimates during the fixed effects initialization procedure are given 

non-zero variances when initializing the random effect covariance matrix. In effect, this 

restricts predictors that are initialized with zero-valued fixed effects coefficients to not have 

random effects. See glmmPen simulation results utilizing this feature within the GitHub 

repository https://github.com/hheiling/paper_glmmPen_RJournal. By using this restriction, 

the user assumes that predictors penalized out of the naive model do not have random 
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effects. While this could be a strong assumption, using this restriction can be helpful in 

speeding up the algorithm by removing excessive random effects at the start of the variable 

selection procedure.

conv_EM: a positive numeric value specifying the convergence threshold for the EM 

algorithm. The argument conv_EM specifies the value of ϵ in Equation 11. The default 

value is 0.0015.

t: a positive integer that specifies the value of t in the EM algorithm convergence criteria 

specified in Equation 11. The convergence critera is based on the average Euclidean 

distance between the most recent coefficient estimate and the coefficient estimate from t 

EM iterations back. Default value is set to 2.

mcc: a positive integer indicating the number of times the EM convergence criteria must 

be met before the algorithm is seen as having converged (mcc short for ‘meet condition 

counter’). Default value is set to 2, and mcc is restricted to be no less than 2.

maxitEM: The maximum number of EM iterations allowed by the algorithm. When the 

default value of NULL is input, maxitEM is set to a value that depends on the family type of 

the data. For the Binomial and Poisson families, the default is set to 50. For the Gaussian 

family, the default is set to 100 (we have observed that the Gaussian family data generally 

takes longer to converge).

Additional optimization parameters include M-step convergence parameters (conv_CD, 

maxit_CD), parameters specifying the number of posterior samples to acquire for the 

E-step throughout the algorithm (nMC_burnin, nMC_start, and nMC_max), the number 

of posterior samples needed to calculate the log-likelihood (M), and the number of 

posterior samples to save for diagnostics (nMC_report). Additional details about these 

parameters and their defaults can be found in the glmmPen documentation of the function 

optimControl.

Simulations

In this section, we present results from simulations in order to examine the performance 

of our package. We use the glmmPen package to perform variable selection and examine 

the resulting fixed effects estimates as well as the true and false positives for the fixed 

and random effects. All simulations are performed using the default optimization settings 

discussed in Section “Optimization”. While the performance of the original implementation 

of the pGLMM algorithm was demonstrated in Rashid et al. (2020), here we confirm the 

performance of the computational improvements made since then as well as newer features 

such as the pre-screening procedure.

Simulation set-up

We simulated binary responses from a logistic mixed-effects regression model with p
predictors. Of p total predictors, we assume that two predictors have truly non-zero fixed and 
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random effects, and the other p − 2 predictors have zero-valued fixed and random effects. 

Our aim in the simulations was to select the true predictors.

In these simulations, we consider the following situations: predictor dimensions of 

p = 10, 50 , sample size N = 500, number of groups K = 5, 10 , and standard deviation 

of the random effects σ = 1,   2 . As discussed in Section “Generalized linear mixed 

models”, we approximate the covariance matrix of the random effects as a diagonal matrix 

for these higher dimensions. We further consider the scenarios of moderate predictor effects, 

where the true fixed effects are β = (0, 1, 1)⊤.

For group k, we generated the binary response yki, i = 1, …, nk such that yki ∼ Bernoulli pki

where pki = P yki = 1|xki, zki, αk, θ = exp xki
⊤β + zki

⊤αk / 1 + exp xki
⊤β + zki

⊤αk , and αk ∼ N3 0, σ2I3 . 

The fixed effect coefficients were set to β = (0, 1, 1)⊤ (moderate predictor effects). We also 

simulated imbalance in sample sizes between the groups. Of the N samples, N/3 samples 

were given to study k = 1 and the remaining 2N/3 samples were evenly distributed among 

the remaining studies. Each condition was evaluated using 100 total simulated datasets.

For individual i in group k, the vector of predictors for the fixed effects was 

xki = 1, xki, 1, …, xki, p
⊤, and we set the random effects zki = xki, where xki, j ∼ N(0, 1) for 

j = 1, …, p.

Setting the input random effects equal to the fixed effects represents the worst-case scenario 

where we have no idea what predictors do or do not have random effects. This is an extreme 

assumption; in many real-world scenarios, users will have reason to set the input random 

effects to a strict subset of the fixed effects.

In all of these simulations, we use the default settings discussed earlier, which includes 

using the default λ0 and λ1 penalty sequences, BIC-ICQ for the selection criteria, pre-

screening, and the MCP penalty. For all simulations, we performed the abbreviated two-

stage grid search as described in Section “Tuning parameter selection”. The results for these 

simulations are presented in Table 3. These results include the average coefficients, the 

average true positive and false positive percentages for both fixed and random effects, and 

the median time for the simulations to complete. The true positive percentages reflect the 

average percent of the true predictors included in the best models chosen by the BIC-ICQ 

model selection criteria, which should ideally be near 100%. Likewise, the false positive 

percentages reflect the average percent of the false predictors included in the best models, 

which should ideally be near 0%. All simulations were completed on the UNC Longleaf 

computing cluster (CPU Intel processors between 2.3Ghz and 2.5GHz).

By examining the simulation results, we can observe that the performance of the variable 

selection procedure in glmmPen is impacted by the underlying structure of the data. As 

the magnitude of the random effect variance increases, the true positive percentage of the 

fixed effects decreases and the true positive percentage of the random effects increases. 

Additionally, as the number of groups K increases, the true positive percentage of both the 

fixed and random effects increases. We see that as the dimension of the total number of 
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predictors increases (p = 10 to p = 50), the true positive percentages of both the fixed and 

random effects decreases. In regards to the run time, Table 3 shows that increases in the 

number of groups and increases in the variance of the random effects generally increases the 

time for the algorithm to complete.

In simulations not shown, we saw that increases to the magnitude of the fixed effects (e.g., 

increasing the true slope to 2, see content in GitHub repository https://github.com/hheiling/

paper_glmmPen_RJournal for details) increased the true positive fixed effects and generally 

decreased the true positive random effects.

Pre-screening performance

The time it takes the package to complete the tuning parameter selection procedure depends 

strongly on the number of random effects considered by the algorithm. Therefore, the 

pre-screening procedure, which reduces the number of random effects considered within the 

variable selection algorithm, speeds up the algorithm. Table 4 summarizes the performance 

of the pre-screening algorithm for the variable selection simulations described above. 

This table reports the average percent of true positive and false positive random effect 

predictors that remain under consideration within the variable selection procedure after 

the pre-screening step has completed. The pre-screening settings were the default settings 

described in Section “Software”, which include specifying lambda.min.presc = 0.01 for 

p = 10 and lambda.min.presc = 0.05 for p = 50 such that the minimum penalty on the 

random effects is lambda.min.presc ×λmax. We note that there are currently no methods 

that are capable of scaling to values of q evaluated in our simulation for estimating and 

performing variable selection in GLMMs.

Using this higher penalty in the p = 50 simulations helps reduce the false positive percentage 

of the random effects after pre-screening and consequently helps speed up the time of 

the algorithm to complete. However, we can see by comparing the p = 50 and p = 10
simulations that this approach can also slightly decrease the true positive percentage. In 

general, increasing lambda.min.presc will help decrease the number of false positive 

non-zero random effects in the pre-screening step, but it may also decrease the number 

of true positive non-zero random effects. Decreasing lambda.min.presc will generally 

have the opposite effect. We also see that the true positive percentage for the selection of 

the random effects after pre-screening is generally higher when the magnitude of the true 

random effect variance is higher.

Conclusion

This paper introduces the R package glmmPen for fitting penalized generalized linear 

mixed models, including Binomial, Gaussian, and Poisson models. The glmmPen package’s 

main advantage over other packages that estimate GLMMs is that it can perform variable 

selection on the fixed and random effects simultaneously. The algorithm utilizes a Monte 

Carlo Expectation Conditional Minimization (MCECM) algorithm. Several established 

MCMC sampling techniques are available for the E-step, and a Majorization-Minimization 

coordinate descent algorithm is used in the M-step. The package utilizes the established 
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methods of Stan and RcppArmadillo to increase the computational efficiency of the E-step 

and M-step, respectively. As a result, the glmmPen package can fit models with higher 

dimensions compared to other packages that fit GLMMs, supporting models with 50 or more 

fixed and random effects.

The glmmPen package employs several additional techniques to improve the speed of the 

algorithm. Such techniques include initialization of subsequent models with the coefficients 

from the previous model fit and pre-screening to remove unnecessary random effects.

The glmmPen package has several attributes that make it user-friendly. For one, the 

package was designed to have an interface that is similar to the well-known lme4 package. 

Additionally, the glmmPen package has several automated processes that make it user-

friendly. The package provides automated data-dependent initialization of the random 

effect covariance matrix. The package also provides automated recommendations for the 

penalization parameters.

A unique aspect of the package is the calculation of the marginal log-likelihood. The 

corrected arithmetic mean estimator (CAME) calculation described by Pajor (Pajor, 2017) 

is relatively simple and fast to calculate, and we have found that it performs well when 

compared with the log-likelihood estimate used in the lme4 package (see content in 

the GitHub repository https://github.com/hheiling/paper_glmmPen_RJournal). This marginal 

log-likelihood calculation allows the algorithm to perform tuning parameter selection using 

traditional BIC selection criterion as well as other BIC-derived selection criteria. This gives 

users the option to forgo calculating the BIC-ICQ selection criterion, which requires the 

minimal penalty model fit where a minimum penalty is applied to both the fixed and random 

effects.

In its current implementation, the glmmPen R package can apply to Binomial, Gaussian, 

and Poisson families with canonical links. In the future, we plan to extend the application of 

this package to survival data, the existing families with non-canonical links, and additional 

families such as the negative binomial family.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
MCMC diagnostic plots for the basal best model results, created using the plot_mcmc 

function. Top: Sample path plots for the random slopes of three TSP covariates. Bottom: 

Autocorrelation plots for the random slopes of three TSP covariates.
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Table 1:

BIC-type model selection criteria options for argument BIC_option.

Selection criteria Description

BICq (Default) BIC-ICQ selection criteria (Ibrahim et al., 2011); requires fitting the minimal penalty model

BICh Alternative BICh selection criteria specified by Delattre, Lavielle, and Poursat (2014)

BIC Traditional BIC whose penalty term sets N to the number of total observations in the data

BICNgrp Traditional BIC whose penalty term sets N to the number of independent observations (i.e., number of levels of the 
grouping factor)
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Table 2:

List of currently available methods for objects of class pglmmObj.

Generic Brief description of return value

BIC Numeric vector returning the BIC, BICh, BICNgrp, and, if specified for model selection, BIC-ICQ selection criteria evaluations 
for a fitted glmm model or model pertaining to the optimal tuning parameters in glmmPen

coef Matrix reporting the sum of the fixed effects coefficients and the posterior modes of the random effects for each variable at 
each level of the grouping factor

fitted Numeric vector of fitted values (the values of the linear predictor) based on either the fixed effects only (recommended for 
most applications) or both the fixed effects and the posterior modes of the random effects for each level of the grouping factor 
(potentially useful for diagnostics)

fixef Numeric vector of the fixed effects coefficient estimates β
formula The mixed-model formula of the fitted model

logLik Estimated log-likelihood for the best model of the glmmPen procedure or the final model from glmm evaluated using the Pajor 
(2017) marginal likelihood calculation discussed in Section “Tuning parameter selection”

model.frame A data.frame object containing the output and predictors used to fit the model

model.matrix The fixed-effects model matrix

ngrps Number of levels in the grouping factor

nobs Number of total observations

plot Diagnostic plots for mixed-model fits

predict Predicted values based on either the fixed effects only (recommended) or the combined fixed effects and posterior modes of the 
random effects for each variable and each level of the grouping factor

print Basic printout of mixed-model objects

ranef Matrix of posterior modes of the random effects for each variable and each level of the grouping factor

residuals Numeric vector of residual values: deviance (default), Pearson, response, or working residuals

sigma Random effect covariance matrix (ΓΓ⊤)

summary Summary of the mixed model results
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Table 3:

Variable selection simulation results with moderate predictor effects (slopes equal to 1). Results include the 

estimated coefficients for true non-zero fixed effects, true positive (TP) percentages for fixed and random 

effects, false positive (FP) percentages for fixed and random effects, and the median time in hours for the 

algorithm to complete.

N p K σ β 1 β 2
TP % Fixed FP % Fixed TP % Random FP % Random T median(hours)

500 10 5 1 1.02 1.12 89.0 2.1 90.5 3.5 0.20

2 1.12 1.18 83.0 1.4 96.0 3.6 0.26

10 1 0.99 1.04 99.0 3.0 95.0 4.8 0.24

2 1.02 1.11 91.0 1.8 99.5 7.0 0.32

500 50 5 1 1.18 1.14 84.5 1.2 83.5 2.2 8.07

2 1.42 1.43 75.5 2.5 89.0 2.5 12.20

10 1 1.12 1.11 95.0 1.8 93.0 3.9 10.67

2 1.33 1.31 84.5 2.4 95.5 6.2 15.75

R J. Author manuscript; available in PMC 2024 May 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Heiling et al. Page 36

Table 4:

Pre-screening results for variable selection simulations with moderate predictor effects (slopes equal to 1). 

Results include the true positive percentages and false positive percentages of the random effects remaining 

after pre-screening.

N p K σ TP % FP %

500 10 5 1 98.0 25.8

2 100.0 26.1

10 1 100.0 33.0

2 100.0 32.2

500 50 5 1 96.0 24.6

2 96.5 25.7

10 1 97.5 25.9

2 98.5 27.3
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