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Abstract

While it is known that vitamin D deficiency is associated with adverse bone outcomes, it remains 

unclear whether low vitamin D status may increase the risk of a wider range of health outcomes. 

We had the opportunity to explore the association between common genetic variants associated 

with both 25 hydroxyvitamin D (25OHD) and the vitamin D binding protein (DBP, encoded by 

the GC gene) with a comprehensive range of health disorders and laboratory tests in a large 

academic medical center. We used summary statistics for 25OHD and DBP to generate polygenic 

scores (PGS) for 66,482 participants with primarily European ancestry and 13,285 participants 

with primarily African ancestry from the Vanderbilt University Medical Center Biobank (BioVU). 

We examined the predictive properties of PGS25OHD, and two scores related to DBP concentration 

with respect to 1322 health-related phenotypes and 315 laboratory-measured phenotypes from 

electronic health records. In those with European ancestry: (a) the PGS25OHD and PGSDBP scores, 

and individual SNPs rs4588 and rs7041 were associated with both 25OHD concentration and 

1,25 dihydroxyvitamin D concentrations; (b) higher PGS25OHD was associated with decreased 

concentrations of triglycerides and cholesterol, and reduced risks of vitamin D deficiency, 

disorders of lipid metabolism, and diabetes. In general, the findings for the African ancestry 

group were consistent with findings from the European ancestry analyses. Our study confirms the 

utility of PGS and two key variants within the GC gene (rs4588 and rs7041) to predict the risk 

of vitamin D deficiency in clinical settings and highlights the shared biology between vitamin 

D-related genetic pathways a range of health outcomes.
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While there is no doubt that vitamin D deficiency is causally associated with adverse 

bone outcomes (e.g., rickets in children, osteoporosis in adults), the influence of vitamin 

D on other health outcomes remains poorly understood (Holick, 2007). Cross-sectional 

observational studies often report an association between vitamin D deficiency (as defined 

by serum 25 hydroxyvitamin D [25OHD] concentration less than 25 nmol/L) and an 

increased risk of many different health outcomes, such as cancer, autoimmune disease, 

cardiovascular disease, and psychiatric disorders (Holick & Chen, 2008; Manson, Cook et 

al., 2019). In most instances, these associations merely reflect the well-accepted finding 

that poor general health can lead to low 25OHD concentration because of reduced outdoor 

activity and reduced exposure to bright sunshine. In addition, prior risk factors such as 
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obesity and smoking can confound the apparent association between vitamin D deficiency 

and adverse health outcomes.

Recently, large, randomized controlled trials of vitamin D supplementation have not 

supported a causal role for vitamin D in health outcomes related to cancer, cardiovascular 

disease and bone outcomes (Chou et al., 2020; de Boer et al., 2019; LeBoff et al., 2020; 

Lucas & Wolf, 2019; Manson, Bassuk, Buring et al., 2020; Manson, Bassuk, Cook et al., 

2020; Manson, Cook et al., 2019; Manson, Mora et al., 2019; Neale et al., 2022). These 

findings have lowered expectations about the role of vitamin D deficiency as a causal risk 

factor for many adverse health outcomes. However, because randomized controlled trials 

rarely extend beyond a few years, they are less able to detect exposure-risk relationships that 

have a long latency (e.g., suboptimal vitamin D status over many decades may contribute 

to the gradual loss of bone mineral density, and result in later-life osteoporosis; Heaney, 

2003). In these scenarios, Mendelian randomization (MR) studies may be informative, as 

it is assumed that common genetic variants that influence phenotypes such as 25OHD 

concentrations would operate in a stable fashion across the entire lifespan. To date, MR 

studies related 25OHD have found evidence to support causal pathways with (a) multiple 

sclerosis (Jiang et al., 2021; Manousaki et al., 2017; Mokry et al., 2015; Rhead et al., 

2016), (b) ovarian cancer (Ong et al., 2016), and (c) dyslipidemia (Revez et al., 2020). On 

the other hand, MR analyses by Revez and colleagues (2020) showed evidence supporting 

a causal effect of range of other health outcomes on 25OHD levels, but 25OHD only 

had an apparent causal effect on such health outcomes in the presence of horizontal (or 

biologically) pleiotropic variants, which influence both 25OHD concentration and health 

outcomes through independent pathways.

The analysis of other key elements of the vitamin D pathway may help clarify these 

findings. Recently, Albiñana and colleagues (2023) published a genomewide association 

study (GWAS) of the concentration of the vitamin D binding protein (DBP), a circulating 

protein involved in the transport and storage of 25OHD. Based on the genetic correlates 

of DBP, MR studies confirmed a strong positive and unidirectional association between 

DBP concentration and 25OHD concentration. Furthermore, there was a robust association 

between the genetic variants associated with higher DBP (higher polygenic score of DBP, 

PGSDBP) and higher (measured) concentration of 25OHD in the UK Biobank (UKB) 

sample. This study also used a set of genetic instruments adjusted for the prominent 

cis-protein quantitative trait loci (cis-pQTLs) in the GC gene (which encodes the DBP 

protein). Based on this subset of genetic variants, additional associations were found with 

a range of clinical phenotypes in the UKB, including reduced risk of hypertension, reduced 

pulse rate, reduced risk of gastritis and duodenitis, and an increased risk of allergic rhinitis 

and agranulocytosis). To the best of our knowledge, no studies have used both the GWAS 

findings from 25OHD and DBP to help clarify the role of vitamin D status across a wide 

range of health outcomes.

Phenome-wide association studies (PheWAS) and laboratory-wide association studies 

(LabWAS) (Goldstein et al., 2020) have the ability to explore the associations between (a) 

the genetic correlates of potential risk factors such as 25OHD and DBP concentration, and 

(b) a wide range of disease and laboratory phenotypes in clinical settings (Dennis, Sealock, 
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Straub et al., 2021; Denny et al., 2010; Wei et al., 2017). A previous PheWAS examined 

the association between a polygene risk score PGS for 25OHD based on 6 independent 

genetic loci and a wide range of phenotypes available in the UKB (Meng et al., 2019). 

This study found no evidence of an association between 25OHD concentration and over 

900 different clinical outcomes, but the authors noted that the study may have lacked the 

power to detect small effect sizes. We had the opportunity to conduct a PheWAS using the 

more powerful GWAS based on the UKB (n = 417,580), which identified 143 independent 

variants (Revez et al., 2020). In addition, we used the GWAS findings related to DBP 

(n= 65,589, 26 independent variants) from Albiñana and colleagues (2023), which allowed 

us to look for convergent evidence from these two key vitamin D pathway components. 

The summary statistics from these two GWAS analyses were used to predict a wide range 

of diseases and laboratory phenotypes available within the Vanderbilt University Medical 

Center (VUMC) electronic health record (EHR) in conjunction VUMC’s DNA repository, 

BioVU. Importantly, the VUMC cohort also represents a healthcare-seeking population, 

compared to the volunteer ascertainment of UKB, which provides additional opportunities to 

investigate the relationship between Vitamin D and illness across the medical phenome.

Methods

Study Population and Data Access Approval

Data for this study were obtained with permission from the Vanderbilt University Medical 

Center Biobank (VUMC BioVU) DNA databank in conjunction with the de-identified 

version of the VUMC EHR called the Synthetic Derivative. The study was approved by 

the VUMC IRB (IRB#190418). The study population included only patients genotyped 

on the Illumina Expanded Multi-Ethnic Genotyping Array (MEGAex). The database 

includes demographics, vital measurements, ICD9 and ICD10 codes, Current Procedural 

Terminology (CPT) codes, laboratory test results, medications, and clinical notes recorded 

from 1994 to 2021. Detailed information about BioVU’s data management and quality 

control, ethical considerations, and continuing patient engagement has been previously 

published (Bowton et al., 2014; Denny et al., 2010; Pulley et al., 2008; Ritchie et al., 2010; 

Roden et al., 2008). Of note, date shifting within a 1-year timeframe was adopted as a 

strategy to reduce potential identifiability. While dates are shifted by a consistent number 

of days within an individual’s medical record (i.e., birthday and all visits are shifted by the 

same number of days), the selected interval for the date-shifting differs between individuals. 

This practice limits our ability to detect seasonal associations with 25OHD concentrations 

because we lack precise dates for laboratory testing and code assignment.

Genotyping and Quality Control

Genotypes for 94,474 individuals who received care at VUMC were obtained through 

BioVU. Genotypes were measured on the MEGAex array (Zhao et al., 2018), and ancestral 

clusters for individuals of inferred European or African ancestry were selected as previously 

described (Dennis, Sealock, Straub et al., 2021). Genotyping data within each ancestry 

group were imputed and underwent quality control checks as previously described. Briefly, 

European and African ancestry boundaries were calculated using Eigenstrat (Price et al., 

2006). Data were imputed using the Michigan Imputation Server with the Haplotype 
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Reference Consortium reference panel (McCarthy et al., 2016). Genotyping data was then 

subjected to a series of ancestry-specific QC filters, including minor allele frequency <0.05, 

imputation quality R^2 <0.3 thresholding, and π <0.2. The resulting dataset contained 

6,360,678 variants from 66,917 people of European ancestry and 12,897,448 variants from 

13,329 people of African ancestry.

We filtered samples to only those individuals with complete data on EHR reported sex 

and median age in the database (respectively 66,482 and 13,285 for European and African 

ancestry individuals). From these subsets we calculated the principal components (PCs) of 

genetic ancestry on a randomly selected subset of 250,000 SNPs using Flash PCA (Abraham 

& Inouye, 2014) and an in-house script (Abraham et al., 2017).

Phenotype Data

PheWAS.—Phenotypic data were represented using phecodes generated by hierarchical 

clustering of related ICD codes (Denny et al., 2013). ICD-9 and 10 codes were mapped 

to 1664 phecode categories according to the Phecode Map v1.2 (https://phewascatalog.org/

phecodes), as implemented in the PheWAS R package v0.12 (Carroll et al., 2014). Patients 

were assigned to the case group for a given phecode if they had at least two different ICD-9 

or 10 codes that mapped to a given phecode, or if they had at least two separate occurrences 

(i.e., on different days) of a single ICD-9 or 10 code that mapped to the given phecode, 

both of which are validated strategies to improve the positive predictive value of phecodes 

(Denny et al., 2013). The control group excluded patients with only one component ICD-9 

or 10 code, or with one or more ICD-9 or 10 codes that mapped to related phecodes (as 

defined by the Phecode Map v1.2).

LabWAS.—We used the previously described QualityLab and LabWAS pipelines to 

perform quality control and analysis of quantitative clinical laboratory (lab) tests data in 

the EHR (Dennis, Sealock, Straub et al., 2021). We extracted data on all lab tests collected 

in the routine clinical care of VUMC patients, resulting in data from 939 lab tests after 

the QualityLab pipeline was applied (Dennis, Sealock, Straub et al., 2021). SNP-based 

heritability of lab values was previously calculated and described in detail. As we are using 

polygenic risk scores to predict lab values, we restricted the analysis to tests with a non-zero 

estimated SNP-based heritability. This resulted in 318 labs available for analysis. In this 

primary analysis, we used the median lab values adjusted for cubic splines of median age 

at lab ascertainment (4 knots). We transformed lab values to fit the normal distribution to 

improve the performance of the linear regression models (McCaw et al., 2020). We applied 

the rank-based inverse normal quantile transformation (RINT) to all labs, which ensured trait 

normality by replacing the value of each observation with its quantile from the standard 

normal distribution.

Vitamin D can be measured clinically in a variety of forms. Overall vitamin D status is 

routinely assessed by assaying the transport and storage forms such as 25 hydroxyvitamin 

D3 and the closely related 25 hydroxyvitamin D2. Typically, the more abundant form, the 

D3 type, is the product of actinic pathways (i.e., the action of ultraviolet light on the skin). 

Both D3 and D2 can be obtained via supplements. The active hormonal form of vitamin D 
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is 1,25 dihydroxyvitamin D (1,25OHD; either D2 or D3), which has a short half-life and is 

typically measured in picogram level concentrations. The assays for 25OHD and 1,25OHD 

were based on chemiluminescent magnetic microparticle immunoassays or quantitative 

chemiluminescent immunoassays respectively. The VUMC pathology laboratory participates 

in quality-assurance programs organized by DEQAS (the Vitamin D External Quality 

Assessment Scheme) and the National Institute of Standards and Technology (NIST; Dai 

et al., 2018). Here, we have included measurements for 25OHD by two different assays 

(25OHD_a2, n = 9,472; 25OHD_a3, n = 9,450) and 1,25OHD by three different assays 

(1,25OHD_a1, n = 18,247; 1,25OHD_a4, n = 3,227; 1,25OHD_a5, n = 2,672).

Statistical Analysis

Polygenic score model training.—We generated several PGSs based on GWAS of 

25OHD and DBP concentration. For 25OHD, we used the original 25OHD GWAS summary 

statistics reported by Revez et al. (2020). An additional GWAS of 25OHD was conducted 

in a sample of 8306 UKB participants with 25OHD concentrations available and genetically 

inferred predominant African ancestry. Ancestry was inferred based on a two-step approach 

described elsewhere (Wang et al., 2020). GWAS was conducted as described in Revez 

et al. (2020). Briefly, 25OHD concentrations were normalized with RINT and genetic 

variants were tested for association with RINT 25OHD using fastGWA (Jiang et al., 2019). 

Covariates included in the model were age, sex, month of assessment, supplement intake, 

and the first 10 within-ancestry PCs.

For DBP, we used the two scores provided by Albiñana et al. (2023), based on neonatal 

dried blood spots from the iPSYCH case-cohort sample (n = 65,589; Pedersen et al., 2018). 

The first score (PGSDBP), which is based on the entire genome, is dominated by the very 

large effect cis-pQTLs within the GC gene (which encodes the DBP protein). The second 

score (PGCDBP_GC) excludes variants within the GC gene and is better able to identify 

trans-pQTLs variants. The iPSYCH sample did not have sufficient sample size with African 

ancestry to generate ancestry-specific DBP-summary statistics.

All PGSs were calculated with PRS-CS (Polygenic Risk Score – Continuous Shrinkage), 

a Bayesian polygenic prediction method that imposes continuous shrinkage priors on SNP 

effect sizes (Ge et al., 2019). These priors can be represented as global-local scale mixtures 

of normals, which allow the model to flexibly adapt to differing genetic architectures and 

is computationally efficient. The shrinkage parameter was automatically learnt from the 

data (i.e., using PRS-CS-auto). SNP effect estimates were obtained from GWAS summary 

statistics, and the score was calculated using a linkage disequilibrium reference panel from 

503 European samples from the 1000 Genomes Project phase 3 (1000 Genomes Project 

Consortium et al., 2015) for the European and African ancestry analyses. For the score 

generated using the GWAS summary statistics for 25OHD from samples of predominantly 

African ancestry, the shrinkage parameter was set to 1e-2 due to the small GWAS sample 

size and the score was calculated using a linkage disequilibrium reference panel from 661 

African ancestry samples from the 1000 Genomes Project phase 3 (1000 Genomes Project 

Consortium et al., 2015). PGS estimates were scaled to have a mean of zero and a standard 
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deviation (SD) of 1 within ancestry strata before testing for association with any outcome 

variables.

LabWAS of PGS25OHD, PGSDBP and PGSDBP_GC.—After QC, we applied RINT 

to the median (across longitudinal measures within a person) lab values, to account for 

skewness and non-normality in the subsequent LabWAS. In this analysis, we tested the 

association between the predictor variables (PGS25OHD, PGSDBP and PGSDBP_GC) against 

all heritable clinically measured laboratory tests. Additionally, we imposed a minimum 

sample size requirement of 100 for a laboratory test to be included in the LabWAS analysis, 

bringing the number of labs tested in each scan to 315 in the European ancestry set and 

230 in the African ancestry set. We examined the influence of each of the three PGS on 

each of the validated LabWAS variables controlling for sex, median age across all ICD 

codes in medical record, and the top 10 principal components to adjust for genetic ancestry. 

Results are reported as beta coefficients and their standard errors per SD increase in the 

PGS. The Bonferroni-corrected threshold for statistical significance across labs for the 

European ancestry samples was 0.05/315 = 1.59e-04 and for the African ancestry samples 

was 0.05/230 = 2.17e-4 (based on the number of labs tested).

PheWAS of PGS25OHD, PGSDBP and PGSDBP_GC.—The PheWAS analysis was 

conducted using the PheWAS R package v0.12 (Carroll et al., 2014). As with LabWAS, 

we required phecodes to include at least 100 cases (leading to 1322 tested phecodes in 

the European ancestry set, 688 in the African ancestry set), and we included covariates for 

sex, median age, and the first 10 PCs of estimated from genetic data. Results are reported 

as odds ratios (ORs) and their 95% confidence intervals (CIs) SD (either 25OHD or DBP 

concentrations) increase in each of the three PGS scores. The Bonferroni-corrected threshold 

for statistical significance across all tested phecodes was 0.05/1,322 = 3.78× 10−5 for the 

European ancestry set and 0.05/688 = 7e-5 for the African ancestry samples.

Post-hoc analyses of PGSDBP and PGSDBP_GC PheWAS findings.—The study by 

Albiñana et al. (2023) included PheWAS analyses of PGSDBP and PGSDBP_GC based on 

the UKB, examining 25OHD concentration and a subset of UKB phenotypes (i.e., 1149 

phenotypes, including 1027 diseases and a range of anthropometric, brain imaging and 

infectious disease antigens phenotypes). Based on the findings from the current study, we 

attempted to replicate selected findings in the other UKB phenotypes not examined in the 

earlier study. The PheWAS analysis was conducted in the UKB using the same models as 

outlines in Albiñana et al. (2023). The quantitative traits were normalized using RINT with 

mean zero and variance 1. The PRSs were generated using SBayesR (Lloyd-Jones et al., 

2019) with the reference LD matrix estimated from 1,145,953 HapMap3 SNPs in the UKB. 

PRSs were computed for 348,501 individuals of European ancestry. The individuals were 

genetically unrelated (relationship < .05). The covariates included in the model were sex, 

age and the first 20 PCs.

The influence of rs4588 and rs7041 on PheWAS and LabWAS.—In addition to 

the polygene scores, we examined the influence of two missense variants with the GC 
gene (rs4588, rs7041) on the variables of interest. Albiñana et al. (2023) had previously 
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demonstrated that the rs7041 variant explained 54% of the variance of DBP concentration in 

neonatal dried blood spots. For the individual SNPs, we examined an additive model (i.e., 0, 

1, 2 coding for effect allele).

Results

Our analyses included 88,019 BioVU patients of European (n = 66,483) or African ancestry 

(n = 13,285). In the European ancestry (EA) sample, 56% of patients were female and the 

mean age was 48.71 years. In the African ancestry (AA) sample, 61% of patients were 

female and the mean age was 38.6 years. See Table 1 for additional characteristics of 

patients included.

European Ancestry — PGS25OHD

With respect to PheWAS (i.e., clinical phenotypes) in those with European ancestry, higher 

PGS25OHD was associated (as expected) with lower odds of vitamin D deficiency (OR = 

0.84, 95% CI [0.82, 0.86]; n cases = 5768, n controls = 45,960). Within the phenotypes 

that met the Bonferroni-adjusted threshold, of the nine top phenotypes (Figure 1), five were 

associated with altered lipid concentrations (e.g., reduced odds of hypercholesterolemia, OR 
= 0.92, 95% CI [0.90, 0.95]; n cases = 6925, n controls = 41,747). Two of the top nine 

phenotypes were related to a reduced risk of diabetes (e.g., reduced odds of Type 2 diabetes, 

OR = 0.95, 95% CI [0.93, 0.97], n cases = 10,202, n controls = 46,320) (Supplementary data 

1).

LabWAS results (Figure 2) were consistent with the clinical diagnoses, with higher 

PGS25OHD associated with both increased 1,25OHD concentration (β = 0.16, 95% CI [0.14, 

0.17], n total = 18,247, r2 = .03) and increased 25OHD concentration (β = 0.18, 95% 

CI [0.16, 0.20]; n total = 9472, r2 = .03). Laboratory tests related to the measurement of 

cholesterol (β = −0.04, 95% CI [−0.05, −0.03], n total = 30,329, r2 = .002) and triglycerides 

(β = −0.06, 95% CI [−0.07, −0.05], n total = 30, 534, r2 = .003) had small but significant 

inverse associations with PGS25OHD, in keeping with the disease phenotypes described 

above. Finally, higher PGS25OHD was associated with a small but significant reduction in 

glucose concentration (β = −0.015, 95% CI [−0.02, −0.008], n total = 62,280, r2 = .0003) 

(Supplementary data 2).

European Ancestry — PGSDBP and PGSDBP_GC

No PheWAS associations with PGSDBP exceeded the Bonferroni adjusted p-value threshold 

in those with European ancestry (Figure 3). However, vitamin D deficiency was nominally 

significant (OR = 0.96, 95% CI [0.93, 0.98], n cases = 5768, n controls = 45,960) (Figure 4, 

Supplementary data 3).

With respect to LabWAS, in those with European ancestry, the two PGS related to DBP 

identified distinct findings (Figure 4). For PGSDBP (which is strongly influenced by cis-

pQTLs within the GC gene, which encodes for the DBP protein), there were small but 

significant associations with both 25OHD (e.g., β = 0.08, 95% CI [0.06, 0.10], n total = 

9472, r2 =.006), and 1,25OHD (β = 0.04, 95% CI [0.03, 0.06], r2 = .002) (Supplementary 

data 4).
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For the PGSDBP_GC (which adjusts for variants within the GC gene to identify trans-

pQTLs), there were no significant findings in the PheWAS analyses (Supplementary data 5). 

However, for the PGSDBP_GC LabWAS analyses, we found small but significant reductions 

in white blood cell counts (leukocytes/lymphocytes, monocytes, neutrophils, eosinophils). 

For example, leukocyte counts were reduced in those with higher PGSDBP_GC values 

(β=−0.044, 95% CI [−0.051, −0.037], n total = 64775, r2 = .002) (Supplementary data 6). As 

post-hoc analyses, we examined blood count related phenotypes in the UKB and confirmed 

a reduction in a range of comparable blood count related variables (Supplementary data 

7). For example, higher PGSDBP_GC values were significantly associated with reduced 

lymphocyte (i.e., leukocyte) count with a similar effect size as found in the main analysis (β 
= −0.039, 95% CI [−0.042, −0.035], n total = 291,968, r2 = .002).

African Ancestry — PGS25OHD

We performed the PheWAS and LabWAS of the primarily African ancestry sample using 

summary statistics derived from the UKB African-ancestry population. The African ancestry 

derived PGS25OHD identified one significant PheWAS finding, with higher genetically 

predicted 25OHD concentration being associated with a reduced risk of type 2 diabetes with 

renal manifestations (OR = 0.61, 95% CI [0.49, 0.78], n cases = 589, n controls = 9455). 

With respect to LabWAS findings, none were significant based on the Bonferroni-adjusted 

threshold (Supplementary data 8 and 9).

We also conducted the PheWAS and LabWAS of primarily African ancestry individuals 

using the PGS25OHD trained on European derived summary statistics. Despite the much 

larger discovery sample size, no association exceeded the Bonferroni-corrected p-value 

threshold, but several of the diagnoses that associated with PGS25OHD in the larger European 

target sample were nominally significant (p < .05) in the African ancestry target sample. For 

example, within the top 16 hits for the PGS25OHD LabWAS analyses, three were for vitamin 

D-related measures (i.e., 25OHD or 1,25OHD). Those with higher PGS25OHD scores had 

higher concentration of 1,25OHD (β = 0.05, 95% CI [0.02, 0.09], n total = 3279, r2 = 

.003). Also in the top 16 were two measures related to cholesterol (e.g., cholesterol [mass/

volume] in serum or plasma, β = −0.04, 95% CI [−0.07, −0.02], n total = 5979, r2 = 0.002) 

(Supplementary data 10 and 11).

African Ancestry — PGSDBP and PGSDBP_GC

With respect to PGSDBP and PGSDBP_GC, we were restricted to using the PGS based on 

the original European-ancestry derived summary statistics. Based on these PGS scores, 

there were no significant PheWAS findings; however, the top hit for PGSDBP_GC was a 

nominally significant protective finding for multiple sclerosis (OR = 0.76, 95% CI [0.65, 

0.90], n cases = 159, n controls = 10,501). With respect to PGSDBP and PGSDBP_GC 

LabWAS findings, there were no significant findings; however, there was a small, nominally 

significant association between PGSDBP and 25OHD concentration (β = 0.09, 95% CI 

[0.002, 0.169], n total = 473, r2 = .008). Full details of these analyses can be found in 

Supplementary data 12, 13, 14 and 15.
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The Influence of rs4588 and rs7041 on PheWAS and LabWAS Variables

The allele frequencies for rs4588 and rs7041 in the BioVU sample are shown in 

Supplementary Table 16. The presence of the G allele in rs4588, and the C allele in rs7041, 

were associated with higher concentration of 1,25OHD in both the European and African 

ancestry groups (Supplementary data 16).

With respect to PheWAS, in the European ancestry sample, for the two individual SNPs 

within the GC gene, rs4588 was significantly associated with the clinical diagnosis of 

Vitamin D deficiency (rs4588, OR = 0.86, 95% CI [0.83, 0.90], p = 1.98E-11, n cases 

= 5767, n controls = 45,944). rs7041 also had a significant association with Vitamin D 

deficiency (rs7041, OR = 0.90, 95% CI [0.87, 0.94], p = 1.77E-7, n cases = 5763, n controls 

= 45,935). However, there were no significant findings in the African ancestry group 

(Supplementary data 17, 18, 19 and 20). With respect to LabWAS in the European ancestry 

group, both individual SNPs were significantly associated with both 25OHD concentration 

and 1,25OHD (e.g., rs4588 and 25OD_a3, n total = 9450, β = 0.22, SE = 0.15, p = 4.36E-46; 

rs4588 and 1,24OHD_a1, n total = 18,247. β = 0.15, p = 1.25E-44. Supplementary data 

21, 22, 23 and 24). With respect to the African ancestry sample, rs4588 was nominally 

significantly associated with both 25OHD and 1,25OHD, while rs7041 was only nominally 

significantly associated with 1,25OHD.

Discussion

It was reassuring that the most recently published PGS for 25OHD (Revez et al., 2020) 

was able to predict 25OHD concentration and vitamin D deficiency. This study confirms 

that the genetic loci associated with 25OHD and DBP concentrations also predict a 

wide range of medical conditions and laboratory measurements within electronic health 

records in a general hospital setting. For example, we found that this same PGS predicted 

the risk of several phenotypes previously linked to vitamin D in observational and MR 

studies, including dyslipidemia and diabetes. In addition, the genetic correlates of DBP 

concentration also predicted 25OHD and 1,25OHD concentrations, and were associated with 

a range of white blood cell related measures. We will expand on these findings below.

Of particular interest, our findings lend weight to the hypothesis that variants associated 

with 25OHD are horizontally (or biologically) pleiotropic (Hemani et al., 2018), and 

influence 25OHD concentration among other biological functions, such as lipid pathways. In 

analyses that excluded potentially horizontally pleotropic variants, Revez and colleagues 

(2020) identified a persistent association between genetically predicted higher 25OHD 

concentration and a lower risk of dyslipidaemia. Many of the variants identified by Revez 

and colleagues were in genes related to lipid and lipoprotein pathways (e.g., DHCR7, 
APOE, APOC1, DOCK7, CELSR2, LIPC, PCSK9). While the mechanisms linking lipid 

and vitamin D pathways are poorly understood, there is evidence that vitamin D can 

inhibit activity of DHCR7, which encodes a key enzyme that diverts 7-dehydrocholesterol 

away from vitamin D biosynthesis and converts it to cholesterol (Prabhu et al., 2016; 

Zou & Porter, 2015). Regardless of the precise biological mechanisms, there is now 

convergent evidence from MR (Revez et al., 2020) and the current PheWAS study linking 

low 25OHD concentrations to an increased risk of dyslipidemia and higher concentrations 
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of (a) triglyceride, (b) cholesterol, and (c) low density lipoprotein cholesterol. However, 

randomized clinical trials of vitamin D supplements have not reported strong effects on 

these phenotypes within their study timeframes (Costenbader et al., 2019; Meng et al., 2020; 

Ohlund et al., 2020). Thus, the clinical implications of these findings should be treated 

cautiously.

Our study also found that variants associated with higher 25OHD were associated with 

a reduced risk of diabetes and plasma glucose concentration. There are several potential 

biological mechanisms that could underpin this association. Revez et al. (2020) found that 

PGS25OHD predicted a range of behaviors measured in the UKB including indoor activities 

(negatively associated with ‘hours spent using a computer’) and outdoor activity (positively 

associated with ‘duration of walks’ and ‘duration of vigorous activity’). Thus, at least some 

of the predictive properties of PGS25OHD may be mediated by genetic variants associated 

with behaviors that influence actinic production of vitamin D. These same variables may 

influence body mass index, and subsequent risk of type 2 diabetes. Thus, the association 

between PGS25OHD and diabetes may operate via pathways other than a direct influence of 

25OHD concentration on the risk of diabetes.

To the best of our knowledge, this work also provides the first evidence to show that the 

PGS for 25OHD predicts 1,25OHD concentration. Studies of 1,25OHD are challenging 

because the half-life of this small molecule is short compared to 25OHD (several hours 

compared to one to two weeks, respectively; Zerwekh, 2008), and the concentration of 

1,25OHD is tightly controlled by parathyroid hormone and calcium homeostasis. Several 

factors can uncouple the association between 25OHD and 1,25OHD. It has been reported 

that in the presence of both vitamin D deficiency (i.e., low 25OHD concentrations), and 

low calcium concentration, 1,25OHD concentrations can rise sharply — thus, this molecule 

is not regarded as a reliable measure of overall vitamin D status (Holick, 2009). From a 

clinical perspective, data from randomized controlled trials found that the use of oral vitamin 

D supplements is associated with an increase in the concentration of 1,25OHD (Zittermann 

et al., 2015). Albiñana et al. (2023) tested bidirectional MR models between the genetic 

correlates of 25OHD and DBP concentrations. They found a unidirectional association, 

which supports the hypothesis that higher DBP concentration may extend the functional 

half-life of 25OHD. Of interest, the two individual SNPs within the GC gene (rs4588 and 

rs7041) were associated with both 25OHD and 1,25OHD in the LabWAS for the European-

ancestry sample. Within the smaller African ancestry sample the two individual SNPs were 

nominally significantly associated with 1,25OHD (rs4588 also had a nominally significant 

association with 25OHD). These findings provide new insights into the genetic architecture 

of vitamin D metabolism.

The vitamin D binding protein has a range of biological functions in addition to the transport 

of 25OHD and 1,25OHD (e.g., T-cell response, C5a-mediated chemotaxis, macrophage 

activation; Bouillon et al., 2019). Albiñana et al. (2023) found evidence from MR that 

increased DBP concentration based on the GWAS findings adjusted for variants in the GC 
gene were associated with a reduced risk of rheumatoid arthritis and multiple sclerosis. 

While we found a nominal association between PGSDBP_GC and multiple sclerosis in the 

African ancestry sample, these disorders were not confidently detected in the current study. 
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We did, however, find a range of decreased white blood cell trait counts associated with 

PGSDBP_GC. Pleotropic variants may account for this finding. A missense variant in SH2B3, 

is both (a) a ‘master regulator’ influencing the concentration of over 50 plasma protein 

(Ferkingstad et al., 2021; Pietzner et al., 2021; Sun et al., 2018), and (b) associated with a 

range of hematological measurements and disorders (Morris et al., 2021). The active form 

of vitamin D (1,25OHD) is a potent driver of cellular differentiation (in keeping with other 

steroid hormones) and in the presence of vitamin D deficiency, the hematological cell lines 

may be less differentiated, which in turn may explain the decrease in mature cell counts 

(Medrano et al., 2018).

The genetic correlations of GWAS summary statistics can be difficult to interpret, as cases 

used to derive the summary statistic may have an increased risk of additional correlated 

phenotypes (compared to non-cases). For example, it is feasible that the individuals in 

the UKB who had lipid-related phenotypes also had low 25OHD as a consequence of 

their impaired health (e.g., diabetes, obesity), and the GWAS methodology and subsequent 

PheWAS studies may detect both the target and correlated phenotypes (previously referred 

to as the ‘phenotypic hitchhiking’ effect; Dennis. Sealock, Levinson et al., 2021). Regardless 

of these issues, the findings of our study lend weight to the hypothesis that vitamin D 

pathways and lipid-related phenotypes may have shared biological pathways.

Finally, despite a much-reduced discovery sample size, the PGS25OHD based on African 

ancestry derived summary statistics, detected an association between PGS25OHD and type 

2 diabetes with renal manifestations in the primarily African ancestry target sample. 

Importantly, this compares to an absence of significant associations in the exact same target 

sample when using the PGS25OHD trained on sumstats from a primarily European ancestry 

sample. These findings illustrate that the absence of associations in the latter analysis is 

largely due to underrepresentation in the European ancestry GWAS and strongly signal the 

need for more ancestrally diverse genetic research in general and in vitamin D genetic 

studies specifically (Sirugo et al., 2019).

The study has several strengths. The electronic health records used in this study included a 

large sample of patients, with extensive information on treated phenotypes and laboratory 

tests. The PGS instrument was based on a more powerful GWAS study compared to 

the previous (null) PheWAS (Meng et al., 2019). However, there were several important 

limitations. The discovery sample for 25OHD was based on the UKB, which is not 

representative of the general community (Fry et al., 2017). As a result, if selective process 

are associated with both the predictor and outcome variable, collider biases may be 

introduced (Munafo et al., 2018), which can subsequently lead to spurious associations. 

Our African ancestry sample was small, and we were not able to examine diverse ancestries 

beyond African and European ancestry groups. Ideally, variant imputation and PRS scores 

generation should be based on appropriate African ancestry samples. Thus, our results are 

unlikely to be generalizable to other ancestries. Additionally, the Vanderbilt health system is 

a tertiary referral center, and may not be representative of population-based samples. Lastly, 

private health insurance is required in most primary care clinics at VUMC, which further 

limits the socioeconomic diversity of the patient population.
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Conclusions

Genetic instruments designed to predict vitamin D status were shown to have face validity 

in the large sample of European and African ancestry patients treated in a specialist health 

setting. The polygene risk score for 25OHD predicted clinical vitamin D deficiency, and 

also predicted the concentration of the active form of vitamin D, 1,25 dihydroxyvitamin 

D. In addition, two missense SNPs within the GC gene (rs4588 and rs7041) independently 

predicted both 25OHD and 1,25OHD concentrations, and thus could act as informative 

genetic instruments in MR models. Other phenotypes associated with our predictors include 

lipid-related diagnoses and diabetes. These findings lend weight to the hypothesis that low 

vitamin D may contribute to these clinical features.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The association between PGS25OHD and disease phenotypes in individuals with primarily 

European ancestry (n = 66,482).

Note: Associations for 1322 phenotypes are shown. On the x-axis, the phenotypes clustered 

according to broad phenotype categories represented by different colors. P values are shown 

on the y-axis, with upturned triangles representing positive associations and downturned 

triangles representing negative associations. The top phenotypes with p values exceeding the 

Bonferroni multiple testing threshold (p < 3.78e-5), are labeled. Full details are provided in 

Supplementary data 1.
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Figure 2. 
The association between PGS25OHD and laboratory results, in individuals with primarily 

European ancestry (n = 66,482).

Note: Associations for 315 laboratory results are shown. On the x-axis, the laboratory tests 

are clustered according to broad organ or pathology categories, represented by different 

colors. P values are shown on the y-axis, with upturned triangles representing positive 

associations and downturned triangles representing negative associations. Laboratory tests 

with p-values exceeding the Bonferroni multiple testing threshold (p < 1.59e-04), shown 

as a pink horizontal reference line, are labeled. Full details are provided in Supplementary 

data 2. 25OHD_a2 and 25OHD_a3 are two different types of 25 hydroxyvitamin D assays. 

1,25OHD_a1 and 1,25OHD_a4 are two different types of 1,25 dihydroxyvitamin D assays. 

Trigs, triglycerides; Chol, cholesterol, LDL.C, low density lipoprotein cholesterol; Gluc, 

glucose.
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Figure 3. 
The associations between PGSDBP, PGSDBP_GC and disease phenotypes in individuals with 

primarily European ancestry (n = 66,482).

Note: Panel A, PheWAS for PGSDBP. Panel B, PGSDBP_GC. Associations for 1322 

phenotypes are shown. On the x-axis, the phenotypes clustered according to broad 

phenotypes represented by different colors. P values are shown on the y-axis, with upturned 

triangles representing positive associations and downturned triangles representing negative 

associations. The five phenotypes with the smallest p values are labeled; however, none 

of phenotypes exceeded the Bonferroni multiple testing threshold (p < 3.78e-05). In 

Panel B, Vitamin D deficiency is also labeled for reference. Full details are provided in 

Supplementary Data 3 and 5.
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Figure 4. 
The associations between PGSDBP, PGSDBP_GC and laboratory measures in individuals with 

primarily European ancestry (n = 66,482).

Note: Panel A, LabWAS for PGSDBP. Panel B, LabWAS for PGSDBP_GC. Associations for 

315 laboratory results are shown. On the x-axis, the laboratory tests are clustered according 

to broad organ or pathology categories, represented by different colors. P values are shown 

on the y-axis, with upturned triangles representing positive associations and downturned 

triangles representing negative associations. Laboratory tests with p values exceeding the 

Bonferroni multiple testing threshold (p < 1.59e-04), shown as a pink horizontal reference 

line, are labeled. 25OHD_a2 and 25OHD_a3 are two different types of 25 hydroxyvitamin D 

assays. 1,25OHD_a1 and 1,25OHD_a4 are two different types of 1,25 dihydroxyvitamin 

D assays (see Methods). WBC, leukocytes (#/volume) in blood by automated count. 

LymAbs, lymphocytes (#/volume) in blood by automated count. MonAbs, absolute count 

of monocytes. NtAb, absolute count of neutrophils. EoAb, absolute count of eosinophils. 

Full details are provided in Supplementary data 4 and 6.

Kresge et al. Page 22

Twin Res Hum Genet. Author manuscript; available in PMC 2024 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kresge et al. Page 23

Table 1.

Counts and univariates statistics for key demographic variables of the European and African ancestry groups

European ancestry African ancestry

Sample size (N) 66,483 13,285

Female, N (%) 37,001 (55%) 8102 (61%)

Mean (SD) of the person-level median age in years across the EHR 48.71 (22.27) 38.60 (21.33)

Length of EHR in years, Median (Q1-Q3) 9.58 (3.64–15.49) 8.55 (3.43–14.87)

Number of ICD codes Median (Q1-Q3) 131 (47–315) 102 (36–261)

Density of ICD codes (# ICD codes/length of EHR) Median (Q1-Q3) 18.8 (8.16–48.12) 16.81 (7.23–42.41)

Note: EHR, electronic health record; SD, standard deviation; Q1-Q3, first and third quartile.

Twin Res Hum Genet. Author manuscript; available in PMC 2024 May 30.


	Abstract
	Methods
	Study Population and Data Access Approval
	Genotyping and Quality Control
	Phenotype Data
	PheWAS.
	LabWAS.

	Statistical Analysis
	Polygenic score model training.
	LabWAS of PGS25OHD, PGSDBP and PGSDBP_GC.
	PheWAS of PGS25OHD, PGSDBP and PGSDBP_GC.
	Post-hoc analyses of PGSDBP and PGSDBP_GC PheWAS findings.
	The influence of rs4588 and rs7041 on PheWAS and LabWAS.


	Results
	European Ancestry — PGS25OHD
	European Ancestry — PGSDBP and PGSDBP_GC
	African Ancestry — PGS25OHD
	African Ancestry — PGSDBP and PGSDBP_GC
	The Influence of rs4588 and rs7041 on PheWAS and LabWAS Variables

	Discussion
	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Table 1.

