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Abstract. Small heat shock proteins (sHSPs) associ-
ate with nuclei, cytoskeleton and membranes, and as 
molecular chaperones they bind partially denatured pro-
teins, thereby preventing irreversible protein aggregation 
during stress. sHSP monomers consist of a conserved a-
crystallin domain of approximately 90 amino acid resi-
dues, bordered by variable amino- and carboxy-terminal 
extensions. The sHSPs undergo dynamic assembly into 
mono- and poly-disperse oligomers where the rate of dis-
assembly affects chaperoning. The a-crystallin domain 
contains several b-strands organized into two b-sheets 

responsible for dimer formation, the basic building block 
of most sHSPS. The amino-terminal extension modu-
lates oligomerization, subunit dynamics and substrate 
binding, whereas the fl exible carboxy-terminal extension 
promotes solubility, chaperoning and oligomerization, 
the latter by inter-subunit linkage. Crystallization studies 
have revealed sHSP structure and function. Additionally, 
site-directed mutagenesis, biophysical investigations, 
functional studies and the discovery of relationships be-
tween mutated sHSPs and diseases have illuminated the 
role of sHSP within cells.
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Introduction

Functional proteins assume discrete but fl exible three-
dimensional structures determined by their amino acid 
sequences. In cells, where RNA and protein concentra-
tions reach 200–400 mg/ml, the thermodynamic activ-
ity of macromolecules increases and protein diffusion 
decreases, changes with opposite effects on biochemi-
cal reaction rates including those of protein folding 
[1–4]. Not only is the intracellular milieu crowded, but 
the greater complexity of eukaryotic as compared with 
prokaryotic cells correlates with expansion in protein 
size and domain number. This favours a shift from post-

translational to cotranslational protein folding, where 
successive molecular domains acquire higher-order 
structure as they are manufactured [5, 6]. Cotranslational 
folding sequesters hydrophobic residues, protecting nas-
cent proteins from aggregation during synthesis and upon 
release from ribosomes. However, protein domains may 
fold partially, forming molten globules with suffi cient 
exposed hydrophobicity to allow aggregation. Crowd-
ing enhances chaperone function, although, along with 
greater protein complexity, it also leads to nonproductive 
polypeptide interactions.
How proteins reach and maintain stable conformations, 
especially in the face of physiological stress arising from 
adverse environmental conditions and disease, are fun-
damental issues with important implications for cells. 
Protein folding requires the assistance of molecular chap-
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erones, including Hsp60 (chaperonins), Hsp70, Hsp90, 
Hsp104/ClpB, Hsp110 and the small heat shock proteins 
(sHSPs) [6–14]. Chaperones actively mediate folding, 
some assist protein destruction through the action of 
an ubiquitin ligase called CHIP [12], and others protect 
proteins from irreversible damage upon exposure to heat, 
toxicants and hypoxia/anoxia, all processes characterized 
by transient interaction of chaperones with substrates.
Of the molecular chaperones, the sHSPs play a critical 
role in organismal defence during physiological stress 
where they protect proteins from irreversible aggregation 
by an energy-independent process until suitable condi-
tions pertain for renewed cell activity, at which time pro-
tein release and refolding are mediated by ATP-depend-
ent chaperones such as Hsp70 [14–21]. The sHSPs are 
phylogenetically widespread and function within several 

subcellular compartments where their ability to bind and 
protect proteins ensures a critical role in the chaperone 
network. To understand their mechanism of action, the 
sHSPs have been analyzed extensively, revealing pro-
teins of 12–43 kDa with the ability to construct dynamic 
oligomers, disassembly of which is usually required for 
effective chaperoning. Representative sequences (fi g. 1), 
of the many available, demonstrate sHSP monomers are 
composed of a conserved a-crystallin domain, enriched 
in b-strands organized in a b-sheet sandwich responsible 
for dimer formation, the basic structural unit of many 
sHSPs. An amino-terminal extension, variable in length 
and sequence and thought to infl uence higher-order 
oligomerization, subunit dynamics and chaperoning, at-
taches to one end of the a-crystallin domain. At the other 
end, the charged, highly fl exible carboxy-terminal exten-

Figure 1. sHSP sequence align-
ment. Selected sHSP amino 
acid sequences were aligned by 
CLUSTAL W (1.82) to show 
the conserved a-crystallin 
domain bordered by variable 
amino- and carboxy-terminal 
regions and to position sec-
ondary structure elements. 
HCRYAA, Homo sapiens 
aA-crystallin, P04289;      
HCRYAB, H. sapiens aB-
crystallin, P02511; HHsp27, H. 
sapiens Hsp27, NP_001532; 
MHsp25, Mus musculus 
Hsp25, JN0679; Ap26, Artemia 
franciscana p26, AAB87967; 
DHsp27, Drosophila mela-
nogaster Hsp27, P02518. (-) no 
amino acid residue; (*) identi-
cal residues; (:) conserved sub-
stitution; (.) semi-conserved 
substitution. sHSP domains are 
indicated above the alignment, 
and the predicted secondary 
structure of Artemia francis-
cana p26 is depicted under the 
alignment. Residue number is 
indicated on the right. 
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sion stabilizes oligomers while mediating sHSP solubil-
ity and chaperoning, roles that are, like those proposed 
for the amino-terminal extension, linked to one another. 
Elucidation of sHSP structure and function received a de-
cided boost upon crystallization of Methanococcus jan-
naschii Hsp16.5 [22, 23] and Triticum aestivum Hsp16.9 
[24], which allowed interpretation at the molecular level 
of data derived from site-directed mutagenesis, in vitro 
chaperoning assays and biophysical studies, among other 
approaches. These and related fi ndings presented herein 
lead to a model of sHSP design and function that contin-
ues to evolve and shows promise for theoretical as well as 
practical exploitation [25, 26].

sHSP substrates

Proteins are major substrates of the sHSPs
sHSPs confer stability on the cell proteome by protect-
ing diverse proteins engaged in signal transduction, 
metabolism, translation, transcription and other activities 
[27–29]. Partially denatured proteins in an unstable mol-
ten globule state bind sHSPs, suppressing non-specifi c, 
irreversible aggregation [30, 31]. sHSPs tend not to in-
teract with native proteins, entirely unfolded proteins or 
stable monomeric molten globule state proteins, nor do 
they appear to assist with folding, although uncertainty 
surrounds the extent of sHSP association with folding 
proteins [31, 32]. Substrates range from peptides to oli-
gomeric proteins without sequence or structure specifi -
city, and because potentially at least one target molecule 
binds per subunit, the sHSPs prevent protein denaturation 
effi ciently [33-35]. Several different proteins incorporate 
into individual sHSP-substrate complexes, an important 
functional attribute in the crowded cell because many 
polypeptides require protection during stress [34, 36]. 
To accommodate substrates there are low (transient) and 
high (stable) affi nity binding sites, as for the a-crystal-
lins [37, 38], regions potentially affected by ATP binding 
[39], although sHSP chaperoning is generally considered 
to be nucleotide independent. Substrates are released 
from sHSPs upon stress termination, probably by the ac-
tion of energy-requiring chaperones such as Hsp70, and 
they refold with co-operation from the same chaperones, 
as discussed in more detail later [28, 29, 34, 40, 41]. By 
interacting with a wide range of proteins, the sHSPs pro-
tect cells from oxidative stress [42], heat [27, 29, 43] and 
apoptosis [44, 45], the latter by modulation of signalling 
pathways.

Cytoskeletal elements as sHSP substrates 
sHSPs associate with microfi laments, intermediate 
fi laments and microtubules, the cytoskeletal elements of 
eukaryotic cells [46–50]. Up-regulation of aB-crystallin 

stabilizes glial fi brillary acidic protein (GFAP) fi laments, 
while Hsp27 and aB-crystallin interact with intermediate 
fi laments, preventing network formation and regulating 
spatial organization [51, 52]. Additionally, aB-crystal-
lin and desmin, a type III intermediate fi lament, couple 
specifi cally within cardiac muscle cells [53]. p26, a 
sHSP from Artemia franciscana, affi liates with tubulin, 
the major structural protein of microtubules, prevent-
ing denaturation and potentially increasing encysted 
embryo stress resistance [47]. As a consequence of tu-
bulin recognition, p26 may inhibit mitosis by disrupting 
microtubule formation and contribute to developmental 
arrest in oviparously developing Artemia embryos [54]. 
aB-crystallin is reported to bind microtubules by way 
of microtubule-associated proteins leading to increased 
microtubule stability [55], and when phosphorylated at 
Ser-59 the protein localizes to centrosomes and mid-
bodies [56]. The relationship between sHSPs, actin and 
microfi laments has been well studied, with phosphor-
ylation receiving particular attention [50]. Monomeric, 
non-phosphorylated Hsp25/27 caps actin and inhibits 
microfi lament formation, but phosphorylated monomers 
and non-phosphorylated multimers do not affect polym-
erization [57]. Peptides corresponding to residues W43-
R57 and I92-N106 of murine Hsp25 strongly inhibit ac-
tin assembly, with I92-N106 effectiveness diminished by 
phosphorylation. The homologous aB-crystallin peptide 
has a similar response to phosphorylation [58]. Wild-type 
Hsp27 and a pseudo-phosphorylated derivative, but not 
a non-phosphorylatable variant, stabilize microfi laments 
against heat, oxidative stress and actin-reactive drugs 
[59-61], with comparable protection by phosphorylated 
Hsp25 in rat embryonic H9c2 myoblasts [62]. sHSPs rec-
ognize actin in vitro, preventing salt-induced formation 
of insoluble aggregates [49], and Hsp20 is dynamically 
associated with actinin, an actin cross-linking protein 
[63]. This cursory view demonstrates that sHSPs main-
tain and remodel the cytoskeleton while confi rming these 
intracellular polymers as important sHSP substrates.

Membranes interact with sHSPs
Nonameric Hsp16.3, a major membrane protein of Myco-
bacterium tuberculosis, generates dimers upon combin-
ing with positively charged lipid layers, and is thought 
to protect the bacterium from reactive oxygen species of 
the macrophage defence system [64–66]. Reaction with 
the M. tuberculosis membrane is reversible, may involve 
subunit exchange with soluble Hsp16.3 and requires 
oligomer dissociation [64]. Oxidation of non-saturated 
membrane lipids, if not prevented by Hsp16.3, decreases 
membrane fl uidity and increases permeability, leading to 
detrimental effects on bacterial cells [66]. A portion of 
lens a-crystallin resides in the plasma membrane [67], 
suggesting that maintenance of membranes, among the 
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most stress sensitive of cell components, is an important 
sHSP action under physiological conditions [20]. Hsp17 
effects on Synechocystis membranes are relatively short 
term after stress exposure, and much of the induced sHSP 
interacts with thylakoids [40, 68, 69]. Hsp17 modulates 
the physical state of thylakoid membranes, a notion sup-
ported by increased membrane fl uidity in mutants lack-
ing the chaperone [40, 69, 70]. Hsp17 and a-crystallin, in 
concert with molecular chaperones such as GroEL, may 
regulate membrane fl uidity by stabilizing the liquid crys-
talline state and lowering heat induced hyperfl uidity. 

sHSP substrates in the nucleus
Tomato Hsp16.1-CIII contains a nuclear localization 
signal between b-strands 5 and 6 of the a-crystallin do-
main and the protein resides mainly in nuclei, although 
by joining with other sHSPs it localizes to the cytoplasm 
[71]. Hsp27 migrates into transfected A549 cell nuclei 
during stress, but protection is not dependent on nuclear 
localization [72]. Rat myocardial cell Hsp20 occupies 
nuclei upon heat shock [73], and in normal non-stressed 
tissues, human testis-specifi c HspB9 occurs predomi-
nately in nuclei [74]; however, the consequences of 
nuclear placement are unknown. HspB9 lacks a nuclear 
localization signal, and translocation into nuclei may de-
pend on interaction with TCTEL1, a small polypeptide 
associated with dynein, a microtubule-dependent motor. 
p26 enters nuclei early in A. franciscana oviparous de-
velopment [75], during heat stress and upon pH reduction 
in vitro [76]. Thus, several sHSPs enter, and presumably 
function, in nuclei.
Hsp27, Hsp25 and aB-crystallin bind nucleoli and 
speckles, intranuclear structures populated by splicing 
factors, possibly regulating molecular processes or pro-
tecting proteins [77–80]. Immunofl uorescent staining of 
cultured C2C12 myoblasts and myotubes discloses the 
intranuclear position of aB-crystallin and Hsp25, show-
ing that interaction with speckles varies as cells differ-
entiate [78]. Localization of aB-crystallin to HeLa cell 
nuclear speckles is affected by pseudo-phosphorylation, 
but exact effects are under debate [77]. Of concern for 
this work, the polyclonal serum K79, which recognizes 
the 13 carboxy-terminal residues of aB-crystallin, labels 
nuclear structures in lens epithelial cells from wild-type 
and aB (–/–) mice lacking aB-crystallin. Staining spe-
cifi city is questioned and doubt cast on work employing 
this particular antibody [77]. Further complicating the 
issue, localization studies are infl uenced by differing cell 
stress responses, making extrapolation from one cell type 
to another diffi cult.
Functional relationships between sHSPs and nucleic 
acids are evoked in experiments where mouse a-crys-
tallin binds aD/E/F-crystallin genes [81] and bovine 
lens a-crystallin recognizes single-stranded and double-

stranded DNA [82, 83]. sHSPs may also protect messen-
ger RNAs (mRNAs) during stress-induced translational 
arrest [84, 85], but whether RNA interaction is direct or 
via intermediary proteins remains uncertain.
Clearly, sHSPs interact with many essential molecules 
comprising different cell compartments and processes. 
They are, as a consequence of this promiscuity, funda-
mentally important to all organisms, either as a fi rst line 
of defence during stress or while in pursuit of normal af-
fairs. The remainder of the review is, therefore, dedicated 
to considering the structural properties of sHSPs and 
integrating these observations into mechanistic aspects 
of function.

sHSP crystallization and the a-crystallin domain

Hsp16.5 from the thermophilic archae M. jannaschii, the 
fi rst sHSP crystallized, is a homogeneous complex of 24 
subunits arranged in octahedral symmetry (fi g. 2). The 
oligomer is a hollow sphere with eight triangular and 
six square windows large enough to allow entry of small 
molecules and extended peptides [22, 23]. Each Hsp16.5 
monomer exhibits an immunoglobulin fold, although 
lacking sequence similarity to immunoglobulins, and 
contains nine a-strands in two parallel sheets, a pair of 
310-helices, and an additional short b-strand. A monomer 
contains b-strands 1, 7, 5 and 4 in one b-sheet and 2, 3, 9 
and 8 in the other, along with b-strand 6 of the adjacent 
subunit. Several contacts exist between Hsp16.5 mono-
mers during dimerization with the b2-strand of one subu-
nit hydrogen bonded to the b6-strand of a neighbouring 
subunit. Except for the amino-terminal 32 residues 
which may reside in the central cavity of the oligomer, 
the Hsp16.5 sequence, including the a-crystallin domain 
and carboxy-terminal extension, is ordered. 
The second sHSP crystal structure, achieved at 2.7 Å 
resolution, is for wheat T. aestivum Hsp16.9, and al-
though similar to Hsp16.5, interesting differences are 
present (fi gs. 2, 3) [24]. Hsp16.9, a class I cytosolic plant 
sHSP defi ned on cell localization and sequence, prevents 
aggregation of malate dehydrogenase upon heating and 
exists as a larger oligomer than class II wheat Hsp17.8 
[43]. Hsp16.9 assembles a dodecameric disk arranged in 
two rings each of three dimers, with the oligomer:dimer 
ratio shifted to favour dimers at elevated temperature [24, 
86]. Hydrogen deuterium exchange and mass spectrom-
etry indicate Hsp16.9 dimers are stable and chaperone 
activity is enhanced by dodecamer dissociation in the 
absence of dimer structural change [86]. The Hsp16.9 
a-crystallin domain contains a b-sandwich of two anti-
parallel b-sheets, constructed of b-strands 2, 3, 8, 9 and 
4, 5, 7, but b-strand 1 of Hsp16.5 is absent. The extended 
dimerization loop comprising residues 83–105 connects 
b-strands 5 and 7, and there is a short b-strand termed 
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b6. The dimerization loop interacts with a b-sheet in an 
adjacent monomer and is an important part of the inter-
face between dimer subunits. The amino-terminal region, 
composed of intertwining a-helical domains resolved in 
6 of 12 oligomer subunits, sustains interactions between 
monomers in separate disks. The fi nal 10 residues of 
the carboxy-terminal extensions in monomers with 
disordered amino-terminal arms embrace the adjacent 

dimer in the partner disk, stabilizing the dimer-dimer 
interface. In contrast, the carboxy-terminal extensions 
of monomers with ordered amino-terminals link dimers 
in the same oligomeric disk but in adjacent tetramers. 
The intermolecular contacts made by carboxy-terminal 
extensions involve the conserved V/IXI/V motif, where 
isoleucines 147 and 149 of b-strand 10 deploy in a hydro-
phobic groove separating b-strands 4 and 8. The highly 

Figure 2. Structural comparison of M. jannaschii Hsp16.5 and T. 
aestivum Hsp16.9. (a) The amino acid sequences of M. jannaschii 
Hsp16.5 and T. aestivum Hsp16.9 were aligned by CLUSTAL W 
(1.82). WHsp16.9, T. aestivum Hsp16.9, 1GME_A; MHsp16.5, M. 
jannaschii Hsp16.5, Q57733. (-) no amino acid residue; (*) identi-
cal residues; (:) conserved substitution; (.) semi-conserved substitu-
tion. The secondary structure of T. aestivum Hsp16.9 is depicted 
above the alignment and the secondary structure of M. jannaschii 
Hsp16.5 is below the alignment. Amino acid residues in red, small 
and hydrophobic; blue, acidic; magenta, basic; green, contain a 
hydroxyl or amine group. Residue number is indicated on the right. 
(b) Quaternary structure of M. jannaschii Hsp16.5. The spherical 
24-mer has an outer diameter of 12 nm and an inner diameter of 
6.5 nm; image resolution is 0.29 nm. (c) Quaternary structure of T. 
aestivum Hsp16.9 arranged as a dodecameric double disk which is 
approximately 9.5 nm wide and 5.5 nm high with a central cavity of 
about 2.5 nm; image resolution is 0.27 nm. Adapted, with permis-
sion, from [23, 24].

Figure 3. Structure of T. aestivum Hsp16.9. (a) An overview look-
ing down the threefold axis of wheat Hsp16.9, which is perpendicu-
lar to three crystallographic twofold axes. Dimers in the top disk are 
displayed in red, green and blue, while dimers in the bottom disk 
are in pink, sage and turquoise. The interface that forms an eclipsed 
tetramer with the bottom dimers hidden when viewed down the 
crystallographic threefold axis is located between red-pink, blue-
turquoise and green-sage dimers. (b) An outside view of one side of 
the Hsp16.9 dodecamer, showing how dimers from the top and bot-
tom disks are related by a twofold axis to form an eclipsed tetramer. 
In the top dimer, the monomer with a disordered amino-terminal 
arm is shown as a pink ribbon, while the monomer with an ordered 
arm appears as a solid molecular surface, with hydrophobic patches 
shown in blue. Monomers of the bottom dimer are represented by 
yellow and red ribbons. Residues I147 and I149 of the I/VXI/V 
motif in the carboxy-terminal extension of the bottom monomer 
(yellow) extend from one dimer to another, covering hydrophobic 
grooves which are putative substrate binding sites in the a-crystallin 
domain. (c) An Hsp16.9 dimer composed of a complete monomer 
(red) and an amino-terminal arm-disordered monomer (pink). 
Amino (N)- and carboxy (C)-terminals are labeled, as are glutamic 
acid 100 and arginine 108, oppositely charged amino acid residues 
which form an intermolecular salt bridge in the dimerization loop. 
(d) Ribbon diagram of an Hsp16.9 monomer with the ordered 
amino-terminal arm shown in green, while the a-crystallin domain 
and the carboxy-terminal extensions are in red. Adapted, with per-
mission, from [24].
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phenylalanine 94 resides in b-strand 7 near a putative 
dimerization loop focused on b-strand 6, suggesting how 
the change perturbs monomer interactions. Glycine 114 
is housed in the conserved G-X-L motif of a short loop 
joining b-strands 8 and 9, but knowing this fails to show 
how glycine modifi cation affects chaperone activity 
and not oligomerization [90]. Mutation of leucine 122 
in M. tuberculosis Hsp16.3, located in the conserved 
motif GVLTVTV, and the equivalent leucine 116 in B. 
japonicum HspH, undermines chaperone function in both 
proteins, although the effect on oligomerization is greater 
for HspH than Hsp16.3 [90, 95]. Leucine 122 of Hsp16.3 
corresponds to leucine 129 of M. jannaschii Hsp16.5, 
and is located at the start of b-strand 9 between b-strands 
4 and 5, close to a potential hydrophobic motif of IIL at 
positions 67–69. 
Chaperone activity and oligomerization decrease mod-
estly upon mutation of several different residues within 
the a-crystallin domain of human aB-crystallin [94, 
96]. In contrast, replacement of phenylalanine 71 with 
glycine in rat aA-crystallin almost completely eliminates 
chaperone ability even when determined by the reduc-
tion-induced denaturation of insulin at low temperature. 
Molecular mass, intrinsic tryptophane fl uorescence and 
secondary structure are unaffected by the mutation, 
but surface hydrophobicity as measured by 1,1’-bi(4-
anilino)naphthalene-5,5’-disulfonic acid (bis-ANS) 
binding increases, and a very small difference in tertiary 
structure occurs [97]. The results indicate phenylalanine 
71 and several neighbouring residues form a chaperone 
site of aA-crystallin composed of residues 70–88. Al-
though mutations in the a-crystallin domain tend to have 
limited effect on function, autosomal dominant cataract 
is caused by an R116C mutation in aA-crystallin [98], 
and desmin-related myopathy is associated with the aB-
crystallin mutation R120G [99], both highly conserved 
sHSP arginines [25].
The sHSP a-crystallin domain is bracketed by amino- 
and carboxy-terminal extensions differing in sequence 
from species to species and between sHSPs from the 
same organism (fi g. 1). These regions contribute to 
sHSP structural and functional variation, and they have 
been examined extensively by deletion and site-directed 
mutagenesis, with emphasis on oligomerization, subunit 
exchange and chaperone activity. Although sHSP amino- 
and carboxy-terminal extensions have diverged, consen-
sus is emerging in regard to their characteristics.

The sHSP amino-terminal domain

sHSP oligomerization and chaperoning are infl uenced 
by the amino-terminus in several [86, 100-109], but not 
all [110, 111] sHSPs. The amino-terminal domain is 
susceptible to phosphorylation and, as shown by amide 

conserved arginine 108 stabilizes dimers by formation 
of an intermolecular salt bridge with glutamic acid 100 
in the dimerization loop. This contrasts Hsp16.5 where 
the equivalent residue, arginine 107, hydrogen bonds to 
glycine 41, reinforcing the interaction between b-strands 
1 and 2. Characterization of the conserved arginine is an 
important outcome of crystallization studies because mu-
tation of this residue has profound effects on sHSPs [25, 
51, 53, 87–89]. 
The Hsp16.5 and Hsp16.9 crystal structures shed light 
on the spatial orientation of residues within the a-crys-
tallin domain as well as details of monomer-monomer 
and higher-order interactions. The b6 loop, involved 
in Hsp16.5 dimerization, is shortened in some sHSPs 
[20, 90, 91], which may limit its function, but the im-
munoglobulin-like fold of the a-crystallin domain is 
conserved. Hsp16.5 and Hsp16.9 oligomers possess a 
central cavity, with dimeric building blocks similar in 
shape and size to those of other sHSPs [65, 86, 92]. 
These structural similarities explain why different sHSPs 
share functions even though molecular mass, spatial 
symmetry and quaternary structure vary. Of the two 
crystallized sHSPs, Hsp16.9 is more useful for modeling 
other eukaryotic sHSP three-dimensional structures, 
and models corresponding to a-crystallin domains of 
human aA- and aB-crystallin are based on the wheat 
protein [93]. The models, excluding 61 amino-terminal 
and 27 carboxy-terminal residues of aA-crystallin, and 
65 amino-terminal and 25 carboxy-terminal residues of 
aB-crystallin, portray b-strand shifts in the a-crystallin 
domain and variations in loops connecting b-strands. The 
loops between b-strands 5 and 7 of the two a-crystallins, 
for example, experience a deletion of seven amino acid 
residues, thereby modifying the dimer interface. Similar 
variations are found by modeling human aB-crystallin 
against M. jannaschii Hsp16.5 [94]. Although modeling 
demonstrates differences between human a-crystallins 
and the crystallized sHSPs, the involvement of b-strands 
6 and 2 in neighbouring monomers appears to be a com-
mon parameter of dimer formation. 

Mutations of the sHSP a-crystallin domain 

Protein modeling based on the crystal structure of related 
proteins requires caution, but it indicates how point mu-
tations and deletions perturb function, and in the absence 
of crystal structures for most sHSPs remains a useful 
method for molecular dissection. As a case in point, 
mutation of phenylalanine 94 in Bradyrhizobium japoni-
cum HspH disrupts dimerization, leading to monomer 
formation and function loss, whereas modifi cation of the 
conserved glycine at position 114 eliminates chaperone 
function without affecting oligomerization [90]. When 
considered in light of three-dimensional modeling, 
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hydrogen exchange, has a loose exposed structure. This 
agrees with data obtained by use of chemical cross-link-
ers and mass spectrometry to examine bovine a-crystal-
lin [112], but contrasts the idea that the amino-terminus 
is hidden internally due to its hydrophobicity [23, 92, 
113, 114]. Analysis of crystal structure indicates the 40 
amino-terminal residues of wheat Hsp16.9 are housed 
within oligomer interiors, but they experience rapid 
hydrogen/deuterium exchange, suggesting the region 
undergoes conformational change and solvent exposure 
[24, 86]. 
An effective method for scrutiny of the sHSP amino-
terminus is to delete peptides of defi ned length, allow-
ing comparison of truncated and full-length proteins, 
keeping in mind the possibility of non-specifi c changes 
to protein structure upon elimination of large peptides. 
sHSPs from several eukaryotes have been examined in 
this manner, and as one early example, deletion of the 
rat aA-crystallin amino-terminus yields dimers and 
tetramers unable to protect bL-crystallin against heat-
induced denaturation, even though far-ultraviolet (UV) 
circular dichroism (CD) measurements of truncated and 
full-length proteins are similar [115, 116]. Removing 19 
residues from aA-crystallin has little effect on quater-
nary structure or subunit exchange, whereas deleting 
56 or more amino-terminal residues reduces oligom-
ers to units of 3–4 monomers and eliminates exchange 
reactions, indicating important functions for residues 
20–56 [108]. Bovine aB-crystallin and mouse Hsp25 
truncated at the amino-terminus produce oligomers of 
18–20 and 12–13 subunits, respectively, both larger than 
for aA-crystallin but lacking chaperone activity [115]. 
In other work, aB-crystallin oligomerization depended 
on the amino-terminus, and the truncated, dimeric form 
of aB-crystallin prevented heat-induced alcohol dehy-
drogenase aggregation in vitro [117]. Substrate protec-
tion against heat-induced denaturation by rice (Oryza 
sativa) Hsp16.9 is compromised by dispensing with 42 
amino-terminal residues, but unexpectedly, the truncated 
derivative produces oligomers slightly larger than those 
of full-length protein [111]. Without an amino-terminal 
domain the 24 subunit complex formed by yeast Hsp26 
reduces to a dimer and chaperone activity declines, indi-
cating the importance of the region [104].
Eliminating 11 residues from the amino-terminus of 
Escherichia coli IbpB, a polydisperse sHSP, by either 
proteolytic digestion or recombinant technology, leads 
to dimer formation and loss of chaperone activity [100]. 
In comparison, removing the amino-terminus of M. tu-
berculosis Hsp16.3 dissociates the nonameric oligomer 
into trimers, the sHSP building block [118], and deleting 
more than 5 amino-terminal residues from either HspH 
or HspF of B. japonicum reduces multimerization and 
chaperone activity [106]. Oligomers of eight subunits 
devoid of chaperone activity arise upon moderate amino-

terminal truncation of B. japonicum sHSPs, suggesting 
that a relatively intact amino-terminal domain is required 
for oligomerization and chaperoning, while a smaller 
portion of the region facilitates dimer formation. 
For some sHSPs the amino-terminus infl uences mono-
mer-monomer interaction and the region is required, but 
not suffi cient, for oligomerization. As a case in point, 
an amino-terminal deletion mutant of M. jannaschii 
Hsp16.5 behaves like its full-length counterpart, sug-
gesting, in contrast to examples just described, the region 
lacks a critical role in maintaining oligomer structure but 
assists in monomer organization before oligomerization 
[110, 118]. In this model, the hydrophobic amino-termi-
nus holds a-crystallin domains in close proximity long 
enough to enhance oligomer assembly. To extrapolate, 
the amino-terminal regions of all sHSPs may encour-
age oligomerization by positioning monomers in such a 
way that stable interactions between other regions of the 
molecule are promoted, whereas the amino-terminals of 
most sHSPs also assume the related function of holding 
monomers in dynamic complexes.
Modifi cation of individual residues and short internal 
peptides by site-directed mutagenesis is employed to 
reveal functional characteristics of the sHSP amino-ter-
minal domain. Thermo-protective activity by Chinese 
hamster Hsp27, a sHSP for which the amino-terminus 
stabilizes oligomers [109], requires phosphorylation 
of serine residues 90 and 15, while phosphorylation of 
serine 90 is suffi cient to dissociate oligomers [119]. Re-
placing serine 90 with alanine and eliminating phosphor-
ylation of this site inhibits stress-induced dissociation of 
oligomers and eliminates chaperone activity. However, 
more than dissociation is required for Hsp27 function 
because replacement of serine 15 with alanine allows dis-
sociation but the protein is inactive. The WD/EPF motif, 
located in the amino-terminus of many sHSPs, maintains 
Hsp27 oligomer structure and chaperone activity [119]. 
Three-dimensional modeling demonstrates homology 
between the residues around the Hsp27 WD/EPF motif 
and SXXFDPF of Hsp16.9, the latter thought to replace 
the b-strand 1 of Hsp16.5 and mediate inter- and intra-
molecular interactions within oligomers. Serine 90 is 
positioned near the centre of monomer b-sheets and 
adjacent to serine 90 in the neighbouring monomer, 
suggesting that introduction of negative charges by 
phosphorylation contributes to destabilization. Thus, the 
WD/EPF motif potentially associates with isoleucine 96, 
glutamine 98, tyrosine 150 and proline 153, residing at 
the b2/b7 strand interface in the a-crystallin domain of 
the same monomer. Phosphorylation of serine 90 destabi-
lizes the interaction and facilitates oligomer dissociation; 
with phosphorylation of serine 15, the motif is liberated 
and free to chaperone substrates [119]. 
Human aA- and aB-crystallin internal deletion mutations 
lacking residues SRLFDQFFG at positions 20–28 and 
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21–29, respectively, yield oligomers diminished in size 
with increased bis-ANS binding and weakened stability 
to urea-induced denaturation, indicating the sequence is 
an important determinant of quaternary structure [120]. 
The mutated aA-crystallin is more dynamic than the 
wild-type protein, and both mutated crystallins possess 
higher chaperone activity than unmodifi ed proteins. 
Residues SRLFD within the deleted motif are analogous 
to wheat Hsp16.9 7-SNVFD-11, which contacts arginine 
109 and phenylalanine 110 in the a-crystallin domain 
and contributes inter- and intra-molecular contacts. The 
results support the idea that oligomer dissociation is im-
portant for chaperoning, but suggest the conserved motif 
lacks a direct role such as substrate binding, as proposed 
for the WD/EPF sequence [119]. Replacing phenyla-
lanines 24 and 27 within the conserved amino-terminal 
motif 22-RLFDQFF-28 of murine aB-crystallin with 
positively charged arginines disrupts the adjacent area 
and impairs chaperoning determined by heat-induced 
aggregation of g-crystallin, the reduction of insulin by 
incubation with dithiothreitol (DTT) [121], and the de-
creased viability of transfected cells exposed to KCl and 
heat [122]. However, the equivalent mutation in human 
aB-crystallin fails to affect chaperone ability measured 
by insulin reduction at 25 °C and heat induced aggrega-
tion of a-lactalbumin at 37 °C, indicating the residue is 
not essential [123], a conclusion supported by mutation 
of phenylalanine 28 to serine in bovine aB-crystallin 
[124]. The modifi ed aB-crystallin is potentially unstable 
at elevated temperature and this, along with using recom-
binant proteins from different species in these studies, 
may explain the variation in results [96, 123, 124]. 
The initial 12 amino-terminal residues, MSLIPSFF-
SGRR, within pea Hsp18.1, a dodecameric sHSP 
containing the FDPF motif at residues 16–19, bind 
bis-ANS, indicating surface hydrophobicity. Bis-ANS 
binding elevates with rising temperature and declines 
when Hsp18.1 associates with substrate. However, 
the capacity of MSLIPSFFSGRR as a substrate bind-
ing site is uncertain with this doubt reinforced, albeit 
indirectly, by detection of a bis-ANS binding site in the 
a-crystallin domain, the latter a possible chaperoning 
region [34].

The sHSP carboxy-terminal extension

Truncation and other modifi cations reveal important 
features of the sHSP carboxy-terminal extension, a 
fl exible region enriched in polar and charged amino 
acid residues existing as a solvent-exposed random coil 
[35, 96, 100, 103, 113, 125–128] (fi g. 1). Removal of 
11 residues from the carboxy-terminus of E. coli IbpB 
leads to dimer formation and loss of chaperone activ-
ity [100]. Progressive deletion of the carboxy-terminus 

from rat and human aA-crystallin dramatically decreases 
oligomerization and alters tertiary structure once 11 or 
more residues are removed, with oligomer mass reduced 
from approximately 550 to 150 kDa [129]. Arginine 
163, the 11th residue from the carboxy-end, may be 
particularly important because oligomerization declines 
once it is deleted. Truncations of less than 10 residues 
either slightly improve chaperoning or impose small 
deleterious effects, agreeing with experiments where 
aA-crystallin oligomerization was unaffected by loss 
of 10 carboxy-terminal residues [108]. Eliminating 11 
residues from aA-crystallin moderately damages chap-
eroning, whereas truncations of greater length have 
severe consequences [108], as shown by the inability of 
bovine lens a-crystallin to protect alcohol dehydrogenase 
against heat-induced aggregation upon tryptic removal 
of 16 carboxy-terminal residues [130]. Deletion of 17 
carboxy-terminal amino acid residues reduces human 
aA-crystallin solubility and produces larger than normal 
oligomers. The latter was possibly infl uenced by resol-
ubilization of recombinant aA-crystallin in urea, which 
changes the size of oligomers formed from full-length 
protein and alters the near-UV CD spectrum of wild-
type and truncated proteins [131]. Chaperone activity of 
the modifi ed aA-crystallin, determined by inhibition of 
temperature-dependent aldolase aggregation and singlet 
oxygen-induced gD-crystallin denaturation, is reduced in 
comparison with normal protein. In these experiments, 
wild-type and truncated aA-crystallins were renatured in 
urea, discounting this explanation for functional differ-
ences and implicating the carboxy-terminus in chaperone 
activity [131]. The application of mass spectrometry 
shows that deletion of 5 carboxy-terminal residues from 
aA-crystallin reduces the average oligomer molecular 
mass from 540 kDa to 440 kDa, lowers poly-dispersity 
and severely impairs subunit exchange rate, but chaper-
one activity is unchanged [125]. Importantly, oligomer 
dissociation appears less important for poly-disperse 
aA-crystallin as a determinant of chaperoning activity 
than for mono-disperse sHSPs, and intact oligomers are 
the aA-crystallin chaperone units. Additionally, that the 
carboxy-terminus promotes polydispersity is supported 
by these fi ndings.
Flexibility of the carboxy-terminal aA- and aB-crystallin 
extensions is maintained upon formation of substrate-
sHSP complexes under reducing conditions, indicating 
that fl exibility is important for chaperone activity [132]. 
Corroborating this possibility, introducing a hydropho-
bic residue such as tryptophan into the carboxy-terminal 
extension of aA-crystallin reduces protein fl exibility, 
solubility and thermostability [96, 127]. Chaperone ac-
tion measured by DTT-induced denaturation of insulin at 
40 oC and heat-induced aggregation of b-low crystallin at 
55 °C is diminished, but there is little effect on oligomer 
assembly. However, the tryptophan containing aA-crys-
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tallin mutant provides complete protection against malate 
dehydrogenase inactivation by glycation at 37°C [96]. 
The small temperature variation between insulin and 
malate dehydrogenase based assays is enough to change 
aA-crystallin secondary structure, possibly explaining 
the different results and providing a cautionary note when 
chaperone assays are done at increased temperature. 
Eliminating the pair of carboxy-terminal lysines from 
porcine aB-crystallin, a region with reduced fl exibility 
upon substrate binding [126], leaves a protein similar 
in secondary structure and surface hydrophobicity to 
wild type, but with smaller oligomers and superior heat 
stability [133]. In other experiments, doing away with 
the 5 carboxy-terminal residues of aB-crystallin, includ-
ing the two lysines, has no effect on chaperone activity 
[35], whereas lysine mutagenesis to either leucine or 
glycine produces oligomers of normal size containing 
polypeptides structurally similar to wild type, but with 
less chaperone activity [121]. Mouse Hsp25 lacking the 
18-residue carboxy-terminal extension forms oligomers 
similar in mass to those of wild-type protein, indicating 
the region is dispensable for oligomerization [132]. The 
truncated Hsp25 fails to protect a-lactalbumin against 
DTT-induced precipitation, but shields citrate synthase 
against heat-induced aggregation. In comparison to wild 
type, mutated Hsp25 has a smaller amount of ANS-avail-
able surface hydrophobicity, minimized stability to heat 
shown by precipitation from solution at 55 °C, and as in-
dicated by 1H nuclear magnetic resonance (NMR), added 
fl exibility. Disruption of a b-strand which interacts with 
an adjoining subunit and strengthens the oligomer may 
explain reduced stability. The maximum oligomer size 
of human Hsp27 increases upon subtracting 24 carboxy-
terminal residues, possibly due to modifi ed protein solu-
bility, but the proportion of protein as large oligomers is 
smaller than for wild-type Hsp27 [102].
The sHSP carboxy-termnal extension contains a rela-
tively well conserved V/IXI/V motif. Eliminating either 
5 or 15 amino acid residues from the extreme carboxy-
terminus of B. japonicum HspH leaves the V/IXI/V 
motif intact, and is without effect on protection of citrate 
synthase against thermal denaturation in vitro, even 
though truncated variants are less soluble than wild-type 
protein [106]. Oligomerization is also indifferent to the 
shorter truncation; however, removing 15 residues yields 
oligomers larger than those obtained with full-length 
protein. Loss of 20 carboxy-terminal residues, including 
the V/IXI/V motif, completely destroys HspH chaperone 
activity and obstructs oligomer formation, with dimers 
as the maximum complex, fi ndings duplicated by sub-
stituting alanine for either one or both isoleucines in the 
motif [106]. Interestingly, rat Hsp22, with amino- and 
carboxy-terminal regions comparable in length to most 
other sHSPs, lacks the V/IXI/V sequence and exists as 
monomers, suggesting a role in oligomerization [134]. 

Binding of the carboxy-terminal extension to a groove 
in the a-crystallin domain, as shown by crystal structure 
analysis, involves the V/IXI/V motif. Oligomers are sta-
bilized by shielding hydrophobic residues from solvent 
and promoting interdimeric association [23, 24, 135], ex-
plaining results obtained with HspH and rat Hsp22, and 
upon insertion of the V143A mutation into Synechocystis 
Hsp16.6. The mutation changes valine 143, which nor-
mally associates with L66 in a hydrophobic patch of the 
a-crystallin domain, yielding dimeric Hsp16.6, reduced 
chaperone activity in vitro, and cells more susceptible to 
stress [135]. An L66A substitution also causes dimer for-
mation, but suppressors of this mutation do not infl uence 
the V143A mutation, nor do suppressors of the V143A 
substitution affect the L66A modifi cation. In contrast, 
when the V/IXI/V motifs in aA- and aB-crystallin are 
modifi ed to I159G-V161G and I159G-I161G, respec-
tively, oligomer size and chaperone activity increase 
[136]. Fluorescence resonance energy transfer (FRET) 
experiments indicate the V/IXI/V motifs of aA- and 
aB-crystallins occupy positions either close to regions 
in the a-crystallin domain, or adjacent to other V/IXI/V 
sequences, thus affecting sHSP oligomerization.
To summarize, the variable, highly fl exible, carboxy-ter-
minal extension maintains sHSP solubility, stability and 
chaperone activity, as well as protein-substrate complex 
solubility, but may lack a direct role in substrate binding. 
However, by modulating oligomerization, the carboxy-
terminal extension undoubtedly contributes to chaperone 
activity in a critical way. 

Caenorhabditis elegans sHSPs: natural deletions 
indicative of function

Interesting characteristics of amino- and carboxy-termi-
nal extensions surface upon consideration of C. elegans, 
an organism boasting 16 sHSP genes [137]. Deleting the 
15 amino-terminal residues of C. elegans Hsp16.2 (fi g. 
4), a stress-induced sHSP, greatly reduces oligomer size 
and chaperone activity [114]. Conversely, removing 16 
residues from the Hsp16.2 carboxy-terminus increases 
oligomer size slightly with almost no effect on chap-
eroning even though the truncated protein precipitates 
upon freeze/thawing, suggesting diminished solubility. 
Hsp12.6, a stress-indifferent, developmentally regulated 
C. elegans sHSP, lacks a carboxy-terminal extension but 
possesses an amino-terminus of 25 residues, the latter 
corresponding in length to many artifi cially truncated 
sHSPs. Hsp12.6 exists as monomers and fails to shelter 
citrate synthase from heat-induced denaturation [138]. 
C. elegans Hsp12.2 and Hsp12.3, structurally similar 
to Hsp12.6 and essentially equivalent to the a-crystal-
lin domains of larger sHSPs, occur as tetramers and lack 
chaperone action [139]. These observations suggest te-
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tramers are the fundamental building blocks of Hsp12.6, 
and oligomerization, mediated by the amino-terminal 
domain, is required for chaperone activity. As demon-
strated by swapping amino-terminal regions, a-crystallin 
domains and carboxy-terminal extensions between C. 
elegans Hsp12.2 and human aB-crystallin, the aB-crys-
tallin amino-terminus promotes multimerization [140]. 
Moreover, the absence of Hsp12.2 chaperone activity 
in vitro depends on a-crystallin domain characteristics 
rather than the inability to form oligomers, per se. In 
these experiments, the carboxy-terminus of aB-crystallin 
modulates hybrid protein chaperone activity for specifi c 
substrates, but oligomer size is unaffected [140]. Hsp25, 
the second largest C. elegans sHSP, is synthesized inde-
pendent of heat stress and appears at all developmental 
stages [141]. Hsp25 forms mostly dimers and tetramers, 
but chaperones citrate synthase in vitro under increased 
temperature. Specifi c binding to vinculin and a-actinin 
suggests infl uence on focal adhesions. Examination of 
sHSP variants, including those naturally occurring in C. 
elegans, or others produced artifi cially by deletion and 
site-directed mutagenesis, demonstrates that amino- and 
carboxy-terminal regions have similar effects on quater-
nary structure from species to species, and their infl uence 
depends, at least partly, on spatial relationships with the 
a-crystallin domain.

sHSP oligomerization

Structural diversity of sHSPs
sHSP family members exhibit similar functions but con-
stitute a morphological continuum of dynamic oligomers, 
ranging from poly-disperse to mono-disperse, and with 
differing symmetry [27, 92, 110, 142, 143]. Many sHSPs 
present as globular or ring-like structures, revealing cen-
tral cavities when observed by microscopic procedures, 
including cryoelectron microscopy. Other arrangements 
exist, with Hsp16.3 from Mycobacterium tuberculosis 
composed of nonameric triangles [144] and plant sHSPs 
arranged as dodecameric discs [24]. Oligomerization is 
likely to depend on the successive union of subunits driv-
en by the interaction of oligomerization determinants, 
leading to increasingly larger assembly units such as 
dimers, trimers or tetramers. As an example, site-directed 
spin labeling and electron paramagnetic resonance indi-
cate that oligomerization determinants of M. jannaschii 
Hsp16.5 exist in the a-crystallin domain [107], dimers 
of which represent building blocks of higher-order struc-
tures [22, 91, 145]. Results obtained by application of the 
yeast two-hybrid system support the assembly of stable 
mammalian sHSP dimers by way of a-crystallin domain 
interactions [109, 146, 147]. Assembly of these building 
blocks then depends on the amino- and carboxy-terminal 

Figure 4 Sequence alignment 
of multiple C. elegans sHSPs. 
The amino acid sequences of 
C. elegans sHSPs described 
in the text, and which mir-
ror experimentally truncated 
derivatives of sHSPs from 
other organisms, were aligned 
by CLUSTAL W (1.82). 
CHsp12.3, C. elegans Hsp12.3, 
F38E11.1; CHsp12.6, C. 
elegans Hsp12.6, F38E11.2; 
CHsp12.2, C. elegans 
Hsp12.2, P34328; CHsp16-2, 
C. elegans Hsp16-2, M14334; 
CHsp25, C. elegans Hsp25, 
T15466. (-) no amino acid 
residue; (*) identical residues; 
(:) conserved substitution; (.) 
semi-conserved substitution. 
sHSP domains are indicated 
above the alignment. Residue 
number is indicated on the 
right. 
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extensions, as described earlier, yielding oligomers rang-
ing in structure from the homogeneous mono-disperse 
microbial and plant sHSPs to the poly-disperse mam-
malian sHSPs. 

Structural dynamics of sHSP oligomers
Oligomerization is thought to be required for substrate 
binding and chaperone function, although oligomer roles 
vary from one sHSP to another. In agreement with these 
ideas, surface plasmon resonance studies show individual 
a-crystallin subunits fail to interact with unfolded pro-
teins [148], and phosphorylated Hsp27 exhibits signifi -
cantly decreased oligomeric size and chaperone activity 
[142]. In contrast, human Hsp22 [134, 149] and Hsp20 
[150] apparently never form homo-oligomers, yet exhibit 
chaperone activity in vitro. Tapeworm sHSPs have chap-
erone activity but exist as dimers and tetramers, includ-
ing up to eight a-crystallin domains due to duplication 
of this region [151]. Adding another dimension, sHSP 
oligomers are dynamic, with assembly/disassembly dif-
fering in response to tissue age, temperature, pH, ionic 
strength, phosphorylation and protein concentration 
[86, 90, 102, 108, 152–158]. Subunit exchange occurs 
between oligomers of either the same or different sHSPs, 
and the exchange rate varies with differing consequences 
for chaperone function [24, 27, 28, 90, 155, 157–159]. In 
particular, subunit exchange is less critical for aA-crys-
tallin than the plant and bacterial sHSPs [125]. As well, 
the 24 subunit yeast Hsp26 separates reversibly into dim-
ers upon heat shock, enhancing chaperoning effi ciency 
[33, 104], but yeast Hsp42 is an effective chaperone even 
though it escapes heat induced dissociation [27]. 
HspH from B. japonicum assembles oligomers of 
400–500 kDa, a prerequisite for chaperone activity, and 
the subunits exchange readily with homologous and 
heterologous complexes [90, 160]. M. tuberculosis 
Hsp16.3 is a trimer of trimers, an inert storage oligomer 
that undergoes subunit exchange, even at 4 °C, and for 
which dissociation greatly enhances chaperone activity, 
presumably by exposing a-crystallin domains [93, 107, 
156, 161]. Hsp16.3 chaperone capability is modifi ed by 
adjusting oligomer dissociation rate in response to heat 
shock or urea, without change in oligomer size [152, 
162], suggesting that tertiary structure modifi cation 
increases chaperoning as temperature rises [95]. H2O2 
induced methionine sulfoxidation of M. tuberculosis 
Hsp16.3 promotes oligomer dissociation and decreases 
chaperone action, results seemingly opposed to those just 
presented [66]. To explain the paradox, methionine side 
chains may convert from hydrophobic to hydrophilic in a 
region that binds substrate and/or provides inter-subunit 
attachment, thereby reducing chaperone activity while 
promoting oligomer disassembly. Wheat Hsp16.9 also 
undergoes heat-induced dissociation into dimers with a 

corresponding increase in chaperone activity [24, 86]. 
Moreover, concentration-dependent heterogeneous subu-
nit exchange between pea Hsp18.1 and wheat Hsp16.9, 
principally as dimers, is limited by dissociation kinetics 
and lacks preference for specifi c stoichiometries, sug-
gesting subunits interact similarly to form dodecameric 
oligomers [24, 155]. 
Human Hsp27 and Hsp20, the latter normally a dimer, 
undergo temperature-infl uenced mixing to yield oligom-
ers with approximately equal amounts of both subunits, 
indicating hetero-complex formation in vivo [150]. aA-
crystallin forms a reversible hetero-oligomeric complex 
with Hsp27 and aB-crystallin, a temperature-dependent 
activity modulated by amino-terminal sequences [108]. 
Hsp27 binding stabilizes aB-crystallin, as happens when 
aA- and aB-crystallins associate [163, 164]. Exchange 
between different sHSP oligomers signifi es structural 
similarities between subunits, a conclusion agreeing with 
sequence comparisons, analysis of crystallized sHSPs 
and structural modeling. Contrary to the sHSPs just de-
scribed, exchange of M. jannaschii Hsp16.5 subunits is 
specifi c, and other sHSP monomers do not associate with 
Hsp16.5. This implies suffi cient differences within some 
sHSPs to preclude stable subunit interaction, examples 
being disparate b-strand compositions of a-crystallin 
domains and amino-terminal dissimilarity [107, 157]. 
Limitations imposed by the high temperatures at which 
M. jannaschi Hsp16.5 functions may explain the lack of 
sHSP subunit exchange.
The interaction of large denatured proteins with aA-crys-
tallin markedly reduces subunit exchange rates, presum-
ably due to substrate association with several subunits 
[158]. However, some subunits remain dynamic, while 
association between substrates and sHSPs is relatively 
static. Moreover, pre-formed sHSP-substrate complexes 
are constant in size even upon addition of more sHSPs to 
mixtures [28], implying a relatively stable interaction be-
tween substrate and chaperone. These comments support 
the proposal that ATP-dependent chaperones recognize 
sHSP-bound substrates and are required for refolding be-
cause they facilitate removal of proteins from oligomeric 
complexes [28, 29].
Combining these observations shows how the conceptual 
relationship between sHSP oligomerization and chap-
eroning has been altered by incorporating the idea of 
environmentally sensitive, adjustable subunit exchange 
rates as determinants of chaperone activity. Oligomer 
destabilization increases hydrophobic surface area avail-
able for chaperoning, either by subunit rearrangement 
within oligomers of stable size, by modifying complex 
size or by changing the conformation of individual 
monomers [34, 110, 113, 165–167]. Subunit exchange 
also increases hydrophobic surface area availability, and 
the liberated subunits react individually with substrates 
before reforming complexes. Some combination of these 
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events is possible, indeed likely, during exposure of cells 
to adverse conditions, as structural changes occasioned 
by stress affect subunit packing in oligomers, leading 
to enhanced monomer exchange. Moreover, subunit 
exchange at normal temperature potentially prepares 
sHSPs for activities such as regulation of the cytoskel-
eton and protection from apoptosis, as well as providing 
rapid response to changing conditions in cells upon stress 
exposure [86] (fi g. 5).

Perspectives

The sHSPs are increasingly well characterized, but much 
remains to be learned. Continued efforts at crystalliza-
tion, either of intact sHSPs or of a-crystallin domains, 
will comment upon conclusions made by comparison of 
poly-disperse sHSPs to the crystal structures of Hsp16.9 
and Hsp16.5. The role of subunit exchange in chaperone 
activity will benefi t from further study done in light of 
the environmental conditions normally experienced by 
the experimental organisms under consideration. Identi-
fi cation of individual protein substrates must be extended 
in order to encompass sHSP roles in development, ap-
optosis and other vital cell activities, an objective that 
requires the application of proteomics. Coupled with 
investigation of these and other lingering questions is 
the continued molecular dissection of sHSP monomers 
by site-directed mutagenesis and related procedures 
in order to understand oligomerization and chaperone 

function. As the molecular details of sHSP design and 
function are resolved, the possibility for practical exploi-
tation increases. Already, sHSPs are implicated in several 
diseases, either as causative agents through mutation and 
posttranslational changes, as protective molecules or as 
biochemical prognostigators of survival, all with thera-
peutic potential. sHSPs infl uence aging and they mediate 
diapause, a state of developmental and metabolic arrest 
in many animals, including insects and the crustacean, 
A. franciscana. The implications of understanding dia-
pause are enormous when considered in the context of 
agriculture and aquaculture, and sHSPs may be central 
to this issue and to several other practical applications 
that will follow from continued study of these molecular 
chaperones.
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