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Abstract. Hippocrates’ assertion that ‘what the lance
does not heal, fire will’ underscores the fact that for
thousands of years heat has been used to treat a
variety of diseases, including cancer. Indeed, sponta-
neous tumor remission has been observed in patients
following feverish infection [1], and expression of
activated oncogenes, such as Ras, can render tumor
cells sensitive to heat compared with normal cells
[2, 3]. In the past, a primary drawback to the use of
heat as a clinical therapy was the inability to selec-
tively focus heat to tumors in situ. Of late, however,

several approaches have been devised to deliver heat
more precisely, including the use of heated nanoparti-
cles, making hyperthermia a more clinically tractable
treatment option [4, 5]. Despite these practical ad-
vances, the mechanisms responsible for heat shock-
induced cell death remain controversial and ill-
defined. In this Visions and Reflections we discuss
recent findings surrounding the initiation of heat
shock-induced apoptosis, and propose future areas of
research.
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Heat shock induces of variety of stress responses in
mammalian cells, depending upon the temperature
and length of exposure. For example, mild heat shock
(38-42 °C) induces the expression of heat shock
proteins (hsps), such as Hsp27, Hsp70, and Hsp90,
and these protein chaperones often times render cells
thermotolerant and resistant to subsequent stressful
stimuli, including chemotherapeutic agents [6]. How-
ever, these compensatory mechanisms fail to prevent
cell death following exposure to more intense or
prolonged heat shock. Therefore, heat shock has been
used effectively in combination with chemo- and
radiotherapy for the treatment of various cancers

* Corresponding author.

[7, 8].In general, cancer cells exposed to temperatures
>42 °Cwill undergo cell death, but as the temperature
rises, the percentage of cells undergoing apoptosis
decreases with a concomitant increase in necrosis [9].
Slight variations in this response can occur, depending
upon other factors, such as prior exposure to heat, type
of tumor, cell line, and/or stage of the cell cycle [9-11].
Apoptotic pathways are usually triggered when a
stimulus activates an apical or ‘initiator’ cysteinyl
aspartate-specific protease (caspase), and the extrin-
sic or intrinsic pathway unfolds. In the extrinsic
pathway, death receptors located in the plasma
membrane, such as Fas, death receptors-4 or -5
(DRA4/5), and tumor necrosis factor (TNF) receptor
1 (TNFR1) are activated by their cognate ligands: Fas
ligand (FasL), TNF-related apoptosis-inducing ligand
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(TRAIL), and TNF, respectively. Upon activation, the
adapter protein Fas-associated death domain
(FADD) is directly recruited to most death receptors
to form complexes referred to as the ‘death-inducing
signaling complexes’ (DISCs), which in turn recruit
and activate the initiator caspases-8 and -10 [12, 13].
The intrinsic pathway is triggered by stress-inducing
stimuli which activate proapoptotic Bcl-2 family
members, such as Bax and Bak, and in turn stimulate
mitochondrial outer membrane permeabilization
(MOMP) and release of cytochrome c [14]. Once in
the cytoplasm, cytochrome c¢ binds to apoptotic
protease-activating factor-1 (Apaf-1), along with
dATP or ATP, and induces oligomerization of Apaf-
1 into a large heptameric complex (referred to as the
‘apoptosome’), which subsequently recruits and acti-
vates the initiator caspase-9 [15]. Following their
activation, caspases-8 and -9 then process and activate
the downstream ‘effector’ caspases-3, -6, and -7, which
are responsible for proteolytically dismantling the
cell.

Previous studies have implicated both the extrinsic
and intrinsic pathways in heat shock-induced apop-
tosis, and many have focused in particular on the
synergistic ‘cross-talk’ that exists between death
receptors, chemotherapeutics, and heat shock re-
sponses. For example, downregulation of heat shock
factor-1 (HSF-1) by TNF or RNA interference
sensitizes some cancer cell lines to treatment with
heat shock and/or cisplatin [16, 17], whereas heat
shock sensitizes cells to FasLL by downregulating
FLIP, a dominant negative inhibitor of caspase-8
activation within the DISC [18]. Although these
reports are clearly relevant to combination therapy,
more recent work now suggests that heat alone may
induce apoptosis through more novel pathways.
Using a biotinylated analog of the polycaspase
inhibitor VAD-fmk, Tu and colleagues isolated
caspase-2 as the apical protease following heat
shock and found that it was activated upstream of
mitochondria, since both Bcl-2 and Bcl-x; (antia-
poptotic Bcl-2 family members) failed to prevent the
activation of caspase-2 [19]. Moreover, they impli-
cated both caspase-2 and its adapter protein RIP-
associated ICH-1/CED-3-homologous protein with a
death domain (RAIDD) in heat shock-induced
apoptosis, since both activated splenocytes and
mouse embryonic fibroblasts (MEFs) from caspase-
27 and raidd” mice were largely resistant to heat
shock [19]. As a result, the authors proposed a model
wherein the upstream activation of caspase-2 result-
ed in MOMP and initiation of the classical intrinsic
pathway (Fig. 1). To account for the residual cell
death, they (and others) proposed that caspase-8 was
also activated through a paracrine feedback loop
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involving Fas-FasL [19, 20] and that it could partially
compensate for a loss in caspase-2 activity [19].
Indeed, addition of soluble Fas-Fc to the culture
medium of heat-shocked cells inhibited caspase-8
activation in caspase-2"" splenocytes (but surprisingly
not in raidd” splenocytes) and further suppressed
cell death in the caspase-2”" MEFs [19].
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Figure 1. Model of heat shock-induced apoptosis. Heat shock
activates an apical protease, positioned above mitochondria, which
in turn mediates MOMP in part through the cleavage and
activation of Bid. The identity of this apical protease remains
unclear, but may be procaspase-2. Heat may also directly activate
Bax or Bak or may do so indirectly through the activation of JNKs.
How JNKs are activated in response to heat, how they activate Bax,
and how Hsp70 inhibits this process remains unclear. Both Bcl-2
and Bcl-x; inhibit heat shock-induced MOMP and cell death by
antagonizing Bax or Bak. Interestingly, however, neither caspase-9
nor its adapter protein Apaf-1 are required for cell death,
suggesting that release of IAP antagonists, such as Smac, may be
important for promoting caspase activity and cell death through
inhibition of IAPs.

In concurrent studies, however, our group found no
evidence for increased resistance of caspase-27 or
raidd” MEFs to heat shock-induced apoptosis [21] [S.
Mahajan and S.B. Bratton, unpublished observa-
tions]. Heat shock also failed to induce formation of
a stable RAIDD ecaspase-2 complex in human Jurkat
T cells, and neither depletion of caspase-2 by RNA
interference (RNAi) nor pharmacological inhibition
of caspase-2 with Z-VDVAD-fmk prevented MOMP
or cell death. Furthermore, FADD and caspase-8-
deficient Jurkat T cells remained sensitive to heat
shock, and knock-down of caspase-2 expression in the
caspase-8-deficient cells failed to inhibit cell death,
indicating that at least in these cells, caspase-8 was not
required for cell death and did not compensate for
caspase-2 [21]. However, Z-VAD-fmk did attenuate
heat shock-induced MOMP and completely inhibited
cell death. Thus, there was general agreement that
heat shock activated a Z-VAD-fmk-inhibitable apical
protease, upstream of mitochondria, but disagree-
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ment over the requirement of caspases-2 and -8 for
MOMP and cell death (Fig. 1).

Ironically, controversy surrounding caspase-2 and its
role in apoptosis is nothing new for this enigmatic
protease [22]. Numerous reports have suggested, for
example, that caspase-2 is the apical protease in DNA
damage-induced apoptosis [23-25] and that caspase-2
is activated within a large PIDDosome complex,
composed of RAIDD and the scaffold protein, p53-
induced protein with a death domain (PIDD) [24, 26].
However, an equally large number of studies have
found no connection between caspase-2 and DNA
damage-induced cell death [19,27-29]. One possibility
is that caspase-2 may participate in an important
amplification loop in some cells. Indeed, caspase-2 is
a direct substrate of caspase-3 [30], and cleavage of
caspase-2 following heat shock is dependent upon
caspase-3 activity [21]. Active caspase-2 does not
efficiently process any caspase, other than itself, but it
can weakly process and activate the proapoptotic Bcl-2
family member Bid [31, 32]. Thus, if activated by
caspase-3, caspase-2 might cooperate with caspases-3
and -8 to cleave Bid and consequently induce Bax or
Bak-dependent MOMP (Fig. 1). Consistent with this
notion, bid” MEFs are resistant to cell death induced
by caspase-2 overexpression and heat shock [32].
However, it has also been reported that processed but
catalytically inactive caspase-2 can stimulate MOMP in
isolated mitochondria [33]. Thus, the relative contribu-
tion of caspase-2 to Bid cleavage and to heat shock-
induced MOMP in particular remains unclear.
Alternatively, it has been argued that procaspase-2,
when bound to its adapter protein RAIDD within the
PIDDosome, might exhibit catalytic activity in the
absence of autoprocessing [24]. In other words,
procaspase-2 might be active prior to autocatalytic
cleavage or processing by caspase-3. However, since
there are currently no good tools to selectively
measure the catalytic activity of procaspase-2 in
cells, this notion is largely based on previous studies
with procaspase-9, in which non-cleavable mutants of
procaspase-9 were shown to be catalytically active
when bound to Apaf-1 [34, 35]. It is important to
emphasize, however, that wild-type procaspase-9 is
rapidly processed within the apoptosome. Thus, it
appears unlikely that procaspase-2 could remain
bound to RAIDD and active for long periods of
time without undergoing observable autocatalytic
processing. In short, though caspase-2 clearly binds
to RAIDD, the role of RAIDDecaspase-2 PIDDo-
some complexes in promoting DNA damage or heat
shock-induced apoptosis remains controversial and
warrants further investigation.

With regard to heat shock-induced MOMP, Pagliari
and colleagues find that heat can also directly activate
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recombinant Bax and Bak in vitro and stimulate
MOMP in isolated mitochondria [36]. Moreover, they
find that Bcl-x; normally binds to and inhibits
activated Bax and Bak and that truncated Bid (formed
presumably via the action of caspase-2) is sufficient to
promote MOMP by antagonizing Bcl-x; (Fig. 1) [36].
Interestingly, Hsp70 also appears to inhibit the
activation of Bax. However, Hsp70 does not directly
interact with Bax either in control or heat-shocked
cells, suggesting that Hsp70 indirectly suppresses Bax
activation [37]. One possibility is that Hsp70 may
inhibit the c-Jun N-terminal kinases (JNKs), which are
known to be activated following heat shock and are
proapoptotic under certain circumstances [37, 38].
Indeed, JNKs reportedly activate various ‘BH3-only’
proteins, including Bid, Bim, and Bmf, all of which
promote the activation of Bax and induce MOMP
(Fig. 1) [39-41]. Nevertheless, precisely how JNKs
are activated in response to heat shock and what the
specific target(s) of JNKs are in this context remains
largely unknown.

It is somewhat difficult to reconcile how Hsp70 could
inhibit heat shock-induced cell death by acting solely
upstream of Bax, if in fact heat can directly activate
Bax in vivo. One possibility is that Hsp70 might inhibit
the activation of the Z-VAD-fmk-inhibitable apical
protease (be it caspase-2 or another protease), or
alternatively, Hsp70 might act downstream of MOMP.
Several reports have suggested that Hsp70 can directly
inhibit the formation and/or activity of the apopto-
some, but these studies have recently been questioned
[42-44]. Moreover, although the apoptosome may
contribute to the activation of caspases, neither Apaf-
1 nor caspase-9 is essential for heat shock-induced cell
death, and procaspase-9 does not undergo apopto-
some-dependent processing in some cells [21]. There-
fore, the specific mechanisms through which Hsp70
inhibits heat shock-induced cell death are still being
actively pursued. Given that MOMP is essential for
heat shock-induced apoptosis, release of inhibitor of
apoptosis (IAP) antagonists such as Smac/DIABLO,
rather than cytochrome c, may be critical for promot-
ing caspase activity, as has been observed during FasL-
dependent signaling [21, 45].

Concluding remarks: Slight differences in temper-
ature or duration of heat treatment can produce
variations in the cell death outcome. Therefore,
defining the molecular mechanisms that mediate
heat shock-induced apoptosis is critical for better
understanding its use as a clinical therapy, and
importantly, could lead to the discovery of drugs that
mimic the heat shock response and trigger a more
homogeneous cell death. The recent studies described
above, though at times contradictory and controver-
sial, nevertheless serve as an important backdrop for
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future studies in this intriguing and exciting area of
cancer therapy.
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