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Abstract. Selective hydroxylation of aromatic com-
pounds is among the most challenging chemical
reactions in synthetic chemistry and has gained
steadily increasing attention during recent years,
particularly because of the use of hydroxylated
aromatics as precursors for pharmaceuticals. Biocata-
lytic oxygen transfer by isolated enzymes or whole
microbial cells is an elegant and efficient way to
achieve selective hydroxylation. This review gives an
overview of the different enzymes and mechanisms
used to introduce oxygen atoms into aromatic mole-
cules using either dioxygen (O2) or hydrogen peroxide

(H2O2) as oxygen donors or indirect pathways via free
radical intermediates. In this context, the article deals
with Rieske-type and a-keto acid-dependent dioxy-
genases, as well as different non-heme monooxyge-
nases (di-iron, pterin, and flavin enzymes), tyrosinase,
laccase, and hydroxyl radical generating systems. The
main emphasis is on the heme-containing enzymes,
cytochrome P450 monooxygenases and peroxidases,
including novel extracellular heme-thiolate haloper-
oxidases (peroxygenases), which are functional hy-
brids of both types of heme-biocatalysts.

Keywords. Dioxygenase, monooxygenase, peroxygenase, peroxidase, P450, tyrosinase, laccase, hydroxyl
radicals.

Introduction

Hydroxylations belong to the oxygen transfer reac-
tions introducing the hydroxyl group (-OH) into
organic molecules, primarily via the substitution of
functional groups or hydrogen atoms. From the point
of view of an organic chemist, the direct and selective
introduction of the hydroxyl group into aromatic rings
is one of the most challenging fields in modern
synthesis. Though progress has been reported in
using hydrogen peroxide and metal catalysts (e.g.,
vanadium, palladium, TiO2) for the oxidation of
benzene, toluene, and xylene, the number of direct
hydroxylations, as well as their selectivity is still

limited [1, 2]. Similarly, this is also valid for direct
chemical oxidations in supercritical carbon dioxide,
where it is possible to oxygenate cyclic alkanes and
alkenes, but not aromatic compounds [3]. Therefore,
intricate, multi-step processes are used mostly for
technical production of hydroxylated aromatics (e.g.,
Hock process catalyzing the conversion of p-cumene
into phenol [4, 5]).
Biotransformations involving hydroxylation reactions
have steadily gained attention since the first successful
microbial steroid transformation in 1952 by the
zygomycetous fungus Rhizopus arrhizus, which con-
verts steroids, such as progesterone, into the corre-
sponding 11a-hydroxy derivatives [6]. Three years
later, two groups independently demonstrated by 18O2

labeling that one or both oxygen atoms of dioxygen
can be directly incorporated into aromatic molecules* Corresponding author
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following the enzymatic oxidation of 3,4-dimethyl-
phenol by phenolase and catechol by pyrocatechase,
respectively [7, 8]. It was also Hayaishi (1957) who
designated these enzymes “oxygenases”, which later
turned out to occur throughout all living systems from
archaea to mammals [9]. These ubiquitous enzymes
are also of general interest in biotechnology since their
specificity allows the selective oxygenation of organic
molecules under environmentally friendly conditions
[10]. Recent advances in oxygenase-catalyzed bio-
transformations with biotechnological background
have been reviewed by Van Beilen et al. [11], Urlach-
er and Schmid [12], and Bernhardt [13].
Monooxygenases and dioxygenases can be distin-
guished from the introduction of either one or two
oxygen atoms into the substrate [14]. The majority of
“natural” oxygenases uses dioxygen (O2, a stable
diradical = triplet oxygen) as an oxygen source but
there are also a few enzymes in plants and fungi, which
can act as peroxygenases transferring peroxide-oxy-
gen (from hydrogen peroxide or organic peroxides).
Nomenclature of the Enzyme Commission (EC)
distinguishes two major subclasses of oxidoreductases,
which incorporate dioxygen into substrate molecules:
EC 1.13 and 1.14. Enzymes of the former subclass do
not need external hydrogen donors (e.g., NAD[P]H)
for oxygenation and act on single substrate molecules,
while the latter act on paired hydrogen donors. There
are monooxygenases and dioxygenases in both sub-
classes and their sub-subclasses were re-classified in
1984 by the EC leading in both cases to the deletion of
all sub-subclasses from 1 to 10, and hence the first sub-
subclasses of oxygenases are now EC 1.13.11 and EC
1.14.11 (Enzyme nomenclature 1984 [15], Holland

1998 [14]; for details see: http://www.chem.qmul.a-
c.uk/iubmb/enzyme/ [the official page of the Nomen-
clature Committee of the International Union of
Biochemistry and Molecular Biology; last update
March 13, 2006]). Furthermore, there are enzymes
showing hydroxylating side activities such as tyrosi-
nase (EC 1.10.3.1) or certain peroxidases (1.11.1.–).
The position of a group of membrane bound plant
“peroxygenases”, which hydroxylate fatty acids is
uncertain and they have not yet been “officially”
introduced into the EC classification (enzymatically, it
is a matter of mixed co-oxidations initiated by lip-
oxygenases [EC 1.13.11.12] [16], peroxidase, and/or
P450 enzymes [17], EC nomenclature 1998 [18]).
Finally, some enzymes may incorporate oxygen indi-
rectly via free radical mechanisms and/or addition of
water (e.g. , cellobiose oxidase, laccase). The basic
routes of enzymatic hydroxylation are given in
Figure 1. Most of these reactions occur intracellularly
(mono- and dioxygenases), whereas only tyrosinase
and peroxidases work extracellularly.
The present review gives a survey of the different
types of oxygen incorporating enzymes. This ap-
proach, of course, cannot consider all aspects of this
rapidly developing field of biochemical research and
least of all, not all recent publications. One should
keep in mind that in 2005 alone, more than 400 review
articles, as well as 3300 original papers on cytochrome
P450 enzymes (P450s) were published, according to a
literature research in the PubMed database. There-
fore, we focus our review on the basic aspects of
aromatic hydroxylation, as well as on selected recent
findings including our own results on fungal perox-
idases, which hydroxylate aromatic compounds (per-

Figure 1. Basic routes of enzymatic hydroxylation of
aromatic compounds. DO – dioxygenase, MO – mono-
oxygenase, PO – peroxidase/peroxygenase, Tyr – tyro-
sinase, DH – dehydrogenase, Re – rearrangement. (1)
aromatic substrate, (2) cis-dihydrodiol, (3) catecholic
product, (4) epoxide intermediate, (5) phenolic product,
(6) cis,trans-dihydrodiol, (7) phenolic substrate, (8)
benzoquinone product.
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oxygenases). Table 1 lists representative biocatalysts
of different enzyme families and subclasses, which
incorporate oxygen into aromatic substrates, and
Table 2 gives an overview of cofactors, prosthetic
groups, and metals required, as well as selected
activating compounds and inhibitors of the different
groups of enzymes.

Dioxygenases

Arene dioxygenases (EC 1.14.12.–), which catalyze
the conversion of simple aromatic compounds (e.g.,
benzene, naphthalene, biphenyl, phthalic and benzoic
acids) into the corresponding enantiomerically pure,

vicinal cis-dihydrodiols are intracellular biocatalysts
exclusively produced by eubacteria (e.g., Pseudomo-
nas spp., Rhodococcus spp., Sphingomonas spp.).
They can initiate productive degradation pathways
of aromatic hydrocarbons including a number of
organopollutants [19 – 21]. These enzymes belong to
the Rieske-type, non-heme oxygenases which bear a
[2Fe-2S] cluster in the active site and have one or two
electron transport proteins which precede the final
oxygenase component (Fig. 2) [20, 22, 23]. For exam-
ple, naphthalene dioxygenase (NDO; EC 1.14.12.12),
the most studied enzyme of this group, consists of
three proteins: the iron-sulfur flavoprotein reductase
and the iron-sulfur ferredoxin are electron transfer
proteins, which supply electrons derived from

Table 1. Examples of enzymes catalyzing aromatic hydroxylation.

Enzyme EC number Organism Active site Aromatic substrate(s) Major products Refer-
ences

Naphthalene
dioxygenase (NDO)

EC 1.14.12.12 Pseudomonas
putida

Rieske-type
[2Fe-2S]

Naphthalene, (indole,
toluene, benzene)

cis-1,2-Dihydro-
naphthalene,
(o-dihydrodiols)

[23]

Fe2+/a-keto acid
dioxygenase
(Fe2+/a-KG DO)

EC 1.14.11.– Aerobic organisms [Fe2+]-His1-X-
Asp/Glu-Xn-
His2

Flavonoids Hydroxyflavonoids [42]

4-Hydroxyphenol-
pyruvate dioxygenase
(HPPD)

EC 1.13.11.27 Aerobic organisms [Fe2+]-His1-X-
Glu-Xn-His2

Hydroxyphenolpyruvate Homogentisate,
CO2

[42]

p-Hydroxybenzoate
hydroxylase (PHBH)

EC 1.14.13.2 Aerobic bacteria Flavin (FAD)
(metal-free)

p-Hydroxybenzoate Protechatechuate [52]

Phenylalanine
hydroxylase

EC 1.14.16.1 Human liver
Chromobacterium
violaceum

[Fe2+]-
Tetrahydropterin

Phenylalanine Tyrosine [63]

Toluene monooxygenase
(ToMO)

EC 1.14.14.1 Pseudomonas
stutzeri

Carboxylate-
bridged di-iron
center
[Fe3+-OH-Fe3+]

Toluene, (cresols,
benzene, styrene,
naphthalene)

p-Cresol,
(p-hydroxyaromat-
ics)

[68]

Camphor 5-mono-
oxygenase
(P450cam, CYP101)

EC 1.14.15.1 Pseudomonas
putida

Ferric heme-
thiolate
[heme-Fe3+]-Cys

Camphor, (naphthalene,
pyrene, many more)

5-Hydroxycam-
phor, (1-naphthol,
pyrene quinones)

[194]

Fatty acid hydroxylase
(P450 BM3, CYP102A1)

EC 1.14.14.1 Bacillus
megaterium

Ferric heme-
thiolate
[heme-Fe3+]-Cys

Fatty acids,
(aromatic substrates)

w-hydroxy fatty
acids,
(hydroxyaromatic
products)

[99]

Tyrosinase EC 1.14.18.1 Aerobic organisms Type-3 copper
center
[Cu+/2+-Cu+/2+]

Tyrosine,
(phenolic compounds)

Dopachrome,
dopaquinone,
(o-diphenols)

[150]

Horeseradish peroxidase
(HRP)

EC 1.11.1.7 Armoracia
rusticana

Ferric heme-
histidyl
[heme-Fe3+]-His

Phenols
(benzene)

Phenoxyl radicals,
benzoquinones,
(phenol)

[170, 176]

Agrocybe aegerita
peroxidase (AaP)

EC 1.11.1.– Agrocybe aegerita
(mushroom)

Ferric heme-
thiolate
[heme-Fe3+]-Cys

Naphthalene,
(toluene, benzene, other
aromatics)

1-Naphthol,
(cresols and benzyl
alcohol, p-benzo-
quinone)

[122]

Microperoxidase-8
(MP8)

EC 1.11.1.– Horse (partly
digested heart
cytochrome c)

Ferric heme-
histidyl
[heme-Fe3+]-His

Anthracene,
(naphthalene, aniline,
phenol)

Anthraquinone, (1-
naphthol,
aminophenols,
hydroquinone)

[182]
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NAD(P)H to the catalytic oxygenase with a mono-
nuclear iron site (Fig. 2) [24, 25]. The catalytic cycle of
arene dioxygenases proceeds in two steps, the activa-
tion of dioxygen (O2) and its addition to the substrate.
The reaction mechanism for O2 activation is still
elusive and there is a controversy on the oxidation
states that iron goes through during catalysis [23, 26,
27]. Some reports suggest that O2 activation at the
oxygenase�s active site happens through Fe4+ and Fe5+

oxo-states [R-Fe4+/5+=O], however, more recent stud-
ies favor a Fe3+-(hydro)peroxo complex [R-Fe3+-O-
OH]. Several experimental findings strongly support
the latter assumption [23, 28].
According to the native substrate and sequence
alignments, Gibson and Parales [20] distinguish four
families of arene dioxygenases (toluene/biphenyl,
naphthalene, benzoate, and phthalate families). In
addition, there are several dioxygenases, which do not
cluster with any of these families (e.g., enzymes for the
oxygenation of aniline, dibenzodioxin, 3-phenylpro-
pionate, salicylate, o-halobenzoate). Recently, the
Gram-positive bacterium Rhodococcus opacus,
which utilizes different polycyclic aromatic hydro-
carbons (dibenzofuran and dibenzo-p-dioxin as car-
bon sources) was found to produce a unique arene
dioxygenase catalyzing lateral dioxygenations [29].
NDO is relatively unspecific and also hydroxylates, in
addition to naphthalene, benzene, toluene, and sub-

stituted phenols while incorporating dioxygen not
only in ortho- but also in the para-position [30].
Moreover, NDO was shown to catalyze monohydrox-
ylation, sulfoxidation, desaturation (formation of
C=C bonds), and dehydrogenation, as well as O-
and N-dealkylation and resembles in this respect
cytochrome P450 monooxygenases [31, 32].
Arene dioxygenases are promising biocatalysts for
biotechnological applications due to their versatility,
but because of their complexity and the requirement
of NAD(P)H, the focus remains on whole-cell bio-
transformations. The most well-known application is
the biosynthesis of indigo, an aromatic compound
used for denim dying [33]. It is produced from indole
by engineered E. coli strains, possessing the NDO
encoding genes from Pseudomonas putida, via cis-
indole-2,3-dihydrodiol that dehydrates to form indox-
yl, which in turn, is spontaneously oxidized to indigo in
the presence of air (Fig. 3). [34, 35] Other specific
applications of cis-dihydrodiols formed by arene
dioxygenases have been reported in the synthesis of
chiral precursors of drugs [36 – 38]. In this context,
process parameters of whole-cell biotransformations
were optimized using special bioreactors [39] and
enzyme properties were improved by genetic engi-
neering and directed evolution [40, 41].
Fe2+/a-Keto acid-dependent dioxygenases (mostly a-
ketoglutarate=a-KG is used; EC 1.14.11.–) represent

Figure 2. Electron transfer by Rieske-type dioxygenases (above) illustrated by the dihydroxylation of naphthalene by NDO (naphthalene
dioxygenase) from Pseudomonas putida. Rieske-type [2Fe-2S] cluster in the active site of NOD (below).

Figure 3. Whole-cell transformation of indole to indigo by E. coli host cells containing the NDO gene from Pseudomonas putida (modified
according to [33]). NDO – naphthalene dioxygenase, DHy – spontaneous dehydratization of the indole oxygenation product, Ox –
spontaneous oxidation of indoxyl and subsequent coupling to indigo in the presence of air. (1) indole, (2) instable cis-dihydrodiol
intermediate, (3) indoxyl, (4) indigo.
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a second group of dioxygenases, which incorporate the
two oxygen atoms of O2 into two different substrates
(one atom is transferred to the actual substrate, the
second one to a-KG acting as the co-substrate). Some
enzymes in this diverse group of biocatalysts catalyze
the monohydroxylation of particular aromatic rings.
Thus, plants synthesize a variety of compounds using
Fe2+/a-KG-dependent dioxygenases, among others
flavonoids and alkaloids [42]. These biocatalysts
contain ferrous iron (Fe2+) in the active site of the
resting enzyme, and an Fe4+-oxo species, which is
formed in the course of the complex catalytic cycle is
likely to be the key intermediate for hydroxylation
[43]. The function of a-KG as the co-substrate is to
chelate Fe2+ while it is oxidatively decarboxylated to
form CO2, succinate and an activated oxo-ferryl
intermediate [R-Fe4+=O] that catalyzes the actual
hydroxylation [42]. As an example, Figure 4 shows the
hydroxylation of a methylated flavonol at the aro-
matic 6-position by a plant Fe2+/a-KG hydroxylase
from the saxifrage Chrysosplenium americanum [44].
A second example is naringenin 3-dioxygenase (EC

1.14.11.9), which specifically hydroxylates the 3-posi-
tion of the non-aromatic ring of flavanones [45].
4-Hydroxyphenylpyruvate dioxygenase (HPPD; EC
1.13.11.27), which catalyzes the formation of 2,5-
dihydroxyphenylacetate (homogentisate) is not relat-
ed in sequence to the Fe2+/a-KG hydroxylases, but
exhibits a similar reaction mechanism [46, 47]. The
enzyme, which is found in all aerobic forms of life and
involved in tyrosine metabolism, also contains ferrous
iron (Fe2+) in the active site but the a-keto acid, which
is decarboxylated is part of the substrate and the
hydroxylation is associated with an “NIH” shift
(migration of the acetyl group; [46]) (Fig. 5). Due to
the involvement of HPPD in plant plastoquinone
synthesis (starting from tyrosine), inhibitors of HPPD
are used as herbicides, which uncouple photosynthesis
[48]. Moreover, HPPD is currently subject of directed
evolution studies to broaden its aromatic substrate
spectrum [49].

Table 2. Cofactors, prosthetic groups, and metals required, as well as selected activators and inhibitors of the different types of oxygenases
(according to Springer Handbook of Enzymes; [215–217].

Enzyme group Cofactors, prosthetic groups Metals Activators Inhibitors

Intracellular bacterial
arene dioxygenases

O2, NAD(P)H, FAD or
FMN, ferredoxin

Non-heme Fe2+ Ferricyanide (NDO) 1,10-Phenanthroline, EDTA, NaN3, 4-
chloromercuribenzoate, H2O2

Intracellular
flavonoids
hydroxylating a-Keto
acid dioxygenases

O2, a-ketoglutarate Non-heme Fe2+

(can be partially
replaced by Co2+)

Ascorbate, catalase Pyridine-2.4-dicarboxylate, EDTA,
KCN, Fe3+, Cu2+, Zn2+

Intracellular
4-hydroxy-
phenylpyruvate
dioxygenase

O2 Non-heme Fe2+,
(Cu, Zn)

Organic solvents (e.g.,
tetrahydrofuran,
acetone)

1,10-Phenathroline, EDTA, catechol,
cupferron

Intracellular aromatic
amino acid
hydroxylases

O2, tetrahydrobiopterin Non-heme Fe2+

(Cu, Zn, Ca)
SDS, thiols,
phospholipids, Mn2+,
NaCl

1,10-Phenanthroline, EDTA, H2O2,
Co2+, Ni2+ (competitive against Fe2+)

Intracellular flavin
monooxygenases

O2, NAD(P)H, FAD Metal-free Dihydroxyaromatic
compounds

Halides, SO4
2-, NO3

-, 4-
chloromercuribenzoate, Fe2+, Hg2+

Intracellular bacterial
and fungal di-iron
hydroxylases

O2, NAD(P)H, FAD Non-heme Fe3+

(Cu2+)
Thiols 1,10-Phenanthroline, halides, CN-, H2

O2

Intracellular
cytochrome P450
monooxygenases

O2 (H2O2), NAD(P)H, FAD/
FMN or FAD/ferredoxin,
proto-porphyrin IX (heme)

Heme Fe3+ Tetrahydrofuran, K+

(P450cam)
Pyridine and imidazole derivatives,
methylenedioxy compounds,
parathione, CN-, NO, CO, Co2+, Cd2+,
Mn2+

Extracellular heme-
thiolate
haloperoxidases

H2O2, protoporphyrin IX Heme Fe3+

(Mn2+)
Acetone 5-Vinyl-2-oxaolidinethione, ethanol,

F-, CN-, NaN3, NO3
-, NO, CO

Extracellular histidyl-
heme peroxidases

H2O2, protoporphyrin IX Heme Fe3+ (Ca2+) CaCl2, ascorbate
(<5 mM), polyvinyl-
pyrrolidone

Benzhydroxamic acid, ascorbate, CN-,
NaN3, AlCl3, Na2S2O5

Extracellular
tyrosinases

O2 (H2O2), Type-3 Cu2+

(Ca2+)
3-Hydroxyanthtralinate,
L-dopa, DMSO, Fe3+,
Mg2+

1,10-Phenanthroline, 1-phenyl-2-
thiourea, 4-nitrophenol, catechol,
CN-, NaN3, CO
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Non-heme monooxygenases

Monooxygenases represent mixed-function oxidases
which incorporate a single atom of molecular oxygen
(O2) into a substrate molecule while the other O-atom
is concomitantly reduced to water. According to the
prosthetic groups, four types of aromatic monooxy-
genases can be distinguished: heme-containing cyto-
chrome P450 enzymes (P450s), di-iron hydroxylases,
pterin-dependent monooxygenases, and flavin mono-
oxygenases (FMO) [50]. Whereas the three former
enzyme groups contain iron in the active site, FMOs
are metal-free biocatalysts [51].
FMOs (EC 1.14.13.–) are involved in a variety of
biochemical processes including microbial biodegra-
dation of activated aromatic compounds, such as
phenol, salicylic, or p-hydroxybenzoic acids [52]. p-
Hydroxybenzoic acid hydroxylase (PHBH, EC
1.14.13.2) and phenol hydroxylase (EC 1.14.13.7) are
thoroughly studied FMO enzymes, which occur in
prokaryotic and eukaryotic microbes (e.g., Pseudo-
monas putida, Trichosporon cutaneum) and human
liver, and introduce a second hydroxyl group in ortho-
position to the existing one (Fig. 6) [53 – 56]. The
second hydroxyl group activates the aromatic ring and
facilitates its subsequent cleavage by specific dioxy-
genases (Fig. 6) [57]. In the course of the catalytic
cycle, FMO protein and flavin moieties undergo
significant dynamic changes, and a remarkable char-

acteristic of these enzymes is their ability to catalyze
both a reduction and an oxygenation in a single
polypeptide [56]. The flavin component is reduced by
NAD(P)H and the reduced flavin, in turn, reacts with
O2 to form a hydroperoxoflavin intermediate [R-
(FAD)-O-OH], which is thought to act as the final
oxygenating species [52, 58, 59]. A fundamental
feature of PHBH is a network of H-bonds connecting
the phenolic group of p-hydroxybenzoic acid in the
buried active site to the surface of the protein. This
network is involved in the regulation of the enzyme
and promotes catalysis by protonating and deproto-
nating the substrate and product in the active site [56].
2-Hydroxybiphenyl-3-monooxygenase (EC 1.14.13.44),
a specific FMO from Pseudomonas azelaica, was
recently engineered by directed evolution to accept 2-
tert-butylphenol as substrate, which is converted by E.
coli host cells into 3-tert-butylcatechol, a costly
synthon for pharmaceuticals and dye developers [60].
Pterin-dependent hydroxylases (EC 1.14.16.–) consti-
tute a small family of monooxygenases, which catalyze
the oxygenation of the aromatic amino acids phenyl-
alanine, tyrosine, and tryptophan, which results in the
formation of tyrosine, 3,4-dihydroxyphenylalanine,
and 5-hydroxytryptophan, respectively (Fig. 7). The
enzymes are found in human liver and the central
nervous system, as well as in a few bacteria (e.g.,

Figure 4. Specific 6-hydroxylation of 3,7,4’-trimethylquercitin by a Fe2+/a-KG-dependent dioxygenase from the plant Chrysosplenium
americanum. a-Ketoglutarate (a-KG) as the co-substrate is concomitantly oxidatively decarboxylated to succinate.

Figure 5. Hydroxylation and decarboxylation of 2,5-dihydroxy-
phenylacetate by HPPD (hydroxyphenolpyruvate dioxygenase)
leading to homogentisate (2,5-dihydroxyphenylacetate). The re-
action involves an NIH shift, in the course of which the acetyl rest
migrates from the aromatic C1 to C2.

Figure 6. Hydroxylation of p-hydroxybenzoate in meta-position
by microbial flavin-dependent PHBH (p-hydroxybenzoate hy-
droxylase). The product protocatechuate (3,4-dihydroxybenzoate)
is the starting point for the further metabolism of aromatic carbon
by ortho- or meta-ring cleavage leading to muconic acid or 2-
hydroxymuconate semialdehyde derivatives, respectively.
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Chromobacterium violaceum, Pseudomonas spp.)
[61 – 63]. They contain ferrous iron (Fe2+) bound to
two histidines and a glutamate at the active site, and
utilize a tetrahydro(bio)pterin (Pte) as the co-sub-
strate that is converted to 4a-hydroxy(bio)pterin
during the catalytic cycle (see Fig. 5) [64]. The O-
atoms in both the hydroxylated amino acid and the
pterin products have been shown to originate from
dioxygen. Although the ultimate hydroxylating inter-
mediate of these enzymes has not been identified, the
iron is very likely to be involved in the oxygen
transfer; as promising reactive iron derivatives, ferric
iron-(hydro)peroxo [R-(Pte)-O-OH–-Fe3+] and high-
valence iron-oxo intermediates [R-(Pte)-O=Fe4+] are
discussed [63, 64]. Recent studies have shown that
pterin hydroxylases are relatively unspecific and can
catalyze, in addition to aromatic oxygenation, also the
benzylic hydroxylation of amino acids [65]. Phenyl-
alanine hydroxylase (EC 1.14.16.1), which catalyzes
the formation of the essential amino acid tyrosine, is
the most important and thoroughly studied pterin
monooxygenase since mutations in its sequence are
responsible for the hereditary disease phenylketonu-
ria [66, 67].

Bacterial multicomponent monooxygenases (BMMs)
are soluble protein complexes, consisting of a hydrox-
ylase, a reductase, and a small regulatory protein
(coordinating electron consumption and substrate
oxidation), which use a carboxylate-bridged di-iron
center in their hydroxylase component to activate
dioxygen for insertion into a C-H bond of the hydro-
carbon substrate [68]. Though soluble methane mon-
ooxygenase (sMMO) may not catalyze aromatic
hydroxylation under natural conditions, the enzyme,
which converts methane to methanol, has been widely
studied and is the model for the di-iron systems as
shown in Figure 8A [69, 70]. Moreover, purified
sMMO was found to have a broad substrate specificity
and hydroxylates aromatic substrates in the labora-
tory [71]. Two groups of BMMS, alkene/aromatic
monooxygenases (EC 1.14.14.1, EC. 1.14.13.–) and
phenol hydroxylases (EC 1.14.13.7), incorporate one
O-atom from dioxygen into aromatic substrates lead-
ing to the formation of monophenols or catechols,
respectively (note that they are in the same sub-
subclass as many P450s and share with them EC
1.14.14.1 =unspecific monooxygenases; EC 1.14.13.7
is shared with FMO phenol hydroxylase) [72]. Aro-

Figure 7. Hydroxylation of the amino acid phenyl-
alanine in para-position yielding tyrosine by PheH
(phenylalanine hydroxylase) (modified according to
Fitzpatrick [63]). The reaction involves the conver-
sion of the prosthetic group tetrahydropterin (left) to
4a-hydroxypterin (right). The oxygen atoms in both
the amino acid and hydroxypterin come from dioxy-
gen (O2).

Figure 8. (A) Active site of toluene 4-monoox-
ygenase (To4MO), a non-heme, bacterial multi-
component monooxygenase containing carbox-
ylate-bridged di-iron, in its resting state (left)
and the putative complex Q (right), which is
thought to be the ultimate oxygenating species.
(B) Selective hydroxylation of toluene (1) by
To4MO via instable epoxide (2) and quinoide
(2) intermediates. The reaction proceeds highly
regioselectively and results in the formation of
p-cresol (4) as major product and traces of o-
cresol [50, 68, 77, 78].
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matic BMMs are involved in the productive degrada-
tion and utilization of aromatic hydrocarbons in the
environment (toluene, ethylbenzene, xylene) [73, 74])
and have phylogenetic and functional relations to
methane monooxygenase and the Rieske-type dioxy-
genases, both mentioned above [68, 72, 75, 76]. The
ferric resting di-iron(III) state [Fe3+-OH-Fe3+] is re-
duced by a 2-electron transfer from an NADH-depend-
ent reductase to the active ferrous di-iron(II) state
[Fe2+-Fe2+] that adds dioxygen to form, step-by-step,
the so-called complex Q, a high-valent di-iron(IV)
species [Fe4+-O2-Fe4+] (Fig. 8A). The latter is thought
to be the hydroxylating agent that introduces an oxygen
atom to the aromatic ring via a postulated rebound
mechanism and instable epoxide intermediates [68, 77,
78]. As an example, Figure 8B shows the regioselective
hydroxylation of toluene by toluene 4-monooxygenase
(To4MO) from Pseudomonas mendocina leading to the
formation of p-cresol (yield 96%) [50].
Aromatic di-iron monooxygenases are versatile bio-
catalysts that hydroxylate, in addition to their “in-
trinsic substrate(s)”, also other aromatic and even
alicyclic compounds. Thus, To4MO regioselectively
hydroxylates polycyclic aromatic hydrocarbons, in
addition to toluene [79]. Toluene/o-xylene monoox-
ygenase (ToMO) from Pseudomonas stutzeri oxidizes
dimethylphenols, cresols, benzene, styrene, and naph-
thalene, which makes it an interesting candidate for
bioremediation purposes. Recently, ToMO expression
in the Antarctic cold-water bacterium Pseudoaltero-
monas haloplanktis has been reported. The aim of this
study has been to develop specific degradative capa-
bilities for the bioremediation of chemically contami-
nated marine environments characterized by low
temperatures [80].

Heme monooxygenases (P450s)

While only a moderate number of enzymes and
sequences of non-heme monooxygenases have been
reported, the number of heme-containing monooxy-
genases is enormous and steadily increasing (at the
moment, over 5500 sequences have been described;
for details see http://drnelson.utmem.edu/P450.stats.
2006.htm). Many of these enzymes, found in all king-
doms of life (archaea, eubacteria, eukaryota) [81–83],
catalyze hydroxylations and epoxidations of a wide
range of substrates including aromatic compounds
from simple benzene to complex ring systems such as
flavonoids or aromatic steroids [14]. In addition to
oxygen transfers, P450s are responsible for at least 20
other chemical reactions including dealkylation, S- and
N-oxidations, alcohol and aldehyde oxidations, as well
as dehalogenation and denitration [84].

The first heme monooxygenase was discovered as a
carbon monoxide-binding pigment in the microsomal
fraction of rat liver cells in 1958 and named “cyto-
chrome P-450” (P450) in 1962 due to the characteristic
red shift of the Soret absorption peak of the carbon
monoxide adduct [85, 86]. All P450s are heme-thiolate
proteins whose prosthetic group is a protoheme (iron
protoporphyrin IX) with a cysteine residue as the axial
(= 5th) ligand. They constitute one of the two major
groups of heme proteins found in nature (the other
one, the heme-imidazole group, includes peroxidases
and hemoglobin; see below) [87]. With the exception
of soluble bacterial and fungal P450s, the majority of
these enzymes is membrane-bound, being associated
with either the inner mitochondrial or the microsomal
(endoplasmatic reticulum) membranes [88]. Extrac-
ellular P450s have not been described so far. P450s are
generally divided into two major groups (Class I and
Class II) according to the different transfer systems
they use for electron supply. Class I P450s include
bacterial, mitochondrial, and fungal enzymes, which
use a two-component electron transfer system con-
sisting of ferredoxin and an FAD-dependent reduc-
tase. Class II enzymes are the microsomal monoox-
ygenases receiving their electrons from membrane-
bound FAD/FMN-dependent reductases (NADPH
cytochrome P450 reductase) [89, 90]. According EC
classification, P450 monooxygenases are grouped in
following sub-subclasses EC 1.14.13.– (e.g., isoflavone
hydroxylases: EC 1.14.13.52, EC 1.1.4.13.53), EC
1.14.14.– (unspecific monooxygenase(s): EC 1.14.14.1;
largest group of P450s), EC 1.14.15.– (e.g., P450cam: EC
1.14.15.1) and EC 1.14.99.– (miscellaneous monooxyge-
nases including steroid 9a-monooxygenase: EC
1.14.99.24). P450s catalyzing aromatic hydroxylations
are found within the first three sub-subclasses (for details
see http://www.chem.qmul.ac.uk/iubmb/enzyme/).
The P450 enzyme superfamily is one of the largest and
oldest enzyme gene families [91], whose internal
classification is currently based on primary sequence
homologies at the amino acid level (40% sequence
identity= same family, 55%= same subfamily) [92].
The abbreviation for cytochrome P450 is CYP fol-
lowed by a number denoting the family, a letter
designating the subfamily (when two or more exist)
and a number representing the individual gene within
the subfamily (e.g., CYP1A1= first gene in the sub-
family A of the P450 gene family 1) [84, 93 – 95]. In
addition, a number of common abbreviations exist,
especially for the intensively studied enzymes such as
P450cam (CYP101, camphor hydroxylating enzyme
from Pseudomonas putida with a broad substrate
specificity [96, 97] or P450 BM3 (CYP102A1; fatty
acids and aromatic compounds hydroxylating enzyme
from Bacillus megaterium ; [98, 99].
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Finally, due to their medicinal relevance (e.g., drug
metabolism, carcinogenesis) and biotechnological
significance (e.g., steroid transformation), P450s be-
long to the most intensively studied enzymes
[100 – 103]. Excellent reviews on heme oxygenases,
dealing with structural, mechanistic, genetic, meta-
bolic, and historical aspects of cytochrome P450s, were
published by Sono et al. [88], Werck-Reinhart and
Feyereisen [104], Shou et al. [105], Guengerich [106],
Lewis [84], Kirton et al. [107], Newcomb et al. [108],
Estabrook [9], Hlavica [109] and Denisov et al. [110];
Table 3 lists a selection of other relevant recent
publications on P450s published between 2004 and
2006.

The catalytic cycle of P450 has been studied over
decades and there has been a long controversy about
the ultimate oxygenating heme species [111 – 114].
Although it has not reliably detected as a “normal”
intermediate, “an oxo-ferryl species (Fe4+=O) is al-
most certainly responsible for the majority of the
chemistry supported by P450 enzymes” [115]. A so-
called consensus mechanism for the P450 reaction

cycle has been proposed and can be summarized as
follows (Fig. 9). The cycle starts with the concomitant
binding of the (aromatic) substrate (R-H) and the
release of the hydroxylated product from the P450-
product complex (or a water molecule from the resting
enzyme) leading to the ferric enzyme-substrate com-
plex of P450 [(R-H)…heme(Fe3+)]. The latter accepts
a first electron that is derived from NAD(P)H and
supplied via flavin/ferredoxin or diflavin reductases to
form the respective ferrous state of the enzyme [(R-
H)…heme(Fe2+)] [13, 116]. The ferrous complex is
reactive enough to add O2 and the resulting ferrous
dioxy-complex [(R-H)…heme(Fe2+-O2)] is capable of
accepting a second electron from NAD(P)H via the
electron transfer system to produce a ferric peroxy
anion [(R-H)…heme(Fe3+-O�

2 )] that is protonated to
form the ferric hydroperoxy complex (also referred to
as Compound 0 [(R-H)…heme(Fe3+-O-OH)]. The
hydroperoxy complex undergoes heterolytic cleavage
between the oxygen atoms giving rise to the putative
oxo-ferryl state [(R-H)…heme(Fe4+=O)C+], that is an
analog to Compound I of peroxidases and catalases.
This highly reactive porphyrin species or a similar
electrophilic complex, e.g., a protonated compound-
II-substrate complex (protonated oxo-ferryl porphyr-
in [(R-H)…heme(Fe4+-O-H)]), as recently shown for
the heme-thiolate enzyme chloroperoxidase [117, 118],
hydroxylates the (aromatic) substrate, which then
dissociates and the cycle can start again [114–116].
The so-called “shunt” pathway is a remarkable side
reaction of a number of P450s (but not of all), in the
course of which the substrate is directly oxidized by
hydrogen peroxide (H2O2 or an organic peroxide) to
the hydroperoxo-ferryl state without the stepwise
activation of dioxygen and electron requirement (i.e.,
without NADH). Under natural conditions (wild-type
P450), this shunt pathway is an inefficient side activity
but it offers an opportunity to create self-sufficient
“P450 peroxygenases”, which will be independent of
NAD(P)H and auxiliary proteins [13, 119]. In fact,
one promising approach in P450 research is the
laboratory evolution of peroxide-mediated cyto-
chrome P450 hydroxylation (i.e., the improvement
of the peroxide-shunt pathway) [120 –122], which has
already led to mutants of P450cam with 20-fold higher
peroxygenase activity towards naphthalene as com-
pared to the native enzyme [123, 124]. Other molec-
ular approaches to improve the properties of P450s
involve heterologous expression in microbial hosts,
engineering using site-directed mutagenesis, labora-
tory evolution, and chimeragenesis. Besides enhanced
peroxygenase activity, these investigations have the
aim to extend the substrate spectrum of P450s and to
improve the interaction of redox partners (electron
transfer between reductases and hydroxylase) [13].

Table 3. A selection of recent book publications and review
articles on cytochrome P450 enzymes.

Topic Refer-
ences

P450s as versatile biocatalysts with promising
biotechnological potential

[13]

Essential techniques and methodologies for the
investigation of P450s

[218]

Selective steroid hydroxylation by artificial P450 enzymes [219]

Self-sufficient P450 monooxygenase from Rhodococcus
rubber

[220]

Comprehensive survey on all aspects of P450s [221]

Thermophilic cytochrome P450s [222]

Biodiversity of cytochrome P450 redox systems [223]

Molecular recognition of P450 proteins [224]

Involvement of singlet oxygen in P450 catalysis [225]

Intermediates in P450 catalysis [226]

Structural biology of heme monooxygenases [227]

Electrophilic oxidants in P450 catalysis [228]

Flavocytochrome P450 BM3: Structure and mechanism of
an biotechnologically important enzyme

[99]

Freeze-quenched, iron-oxo intermediates in P450s [229]

Association of P450s and catalytic activity [230]

Different pathways of monooxygenation by P450s [231]

P450: Nature�s most versatile biological catalyst [232]

Mechanisms of P450 catalyzed oxidation reactions [233]
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It is impossible to mention all aromatic hydroxylations
catalyzed by P450s. Therefore Fig. 10 depicts merely a
selection of reactions and may simply demonstrate the
versatility of this group of biocatalysts introducing
oxygen into monoaromatic, polyaromatic, and heter-
ocyclic compounds including organopollutants, plant
ingredients, pesticides, and drugs [82, 84, 115,
125 – 128]. The broad substrate specificity of P450s,
which all bear the same prosthetic group (cysteine-
ligated heme) at the active site, can be attributed to
different key amino acids, which are contact points for
the binding of different substrates such that oxidation

occurs in specific positions, being governed by the
enzyme-mediated orientation of the substrate mole-
cules relative to the heme moiety [129]. As a
consequence, a set of moderately modified P450s
enables an organism to hydroxylate almost any
aromatic substrate.
The oxidation of aromatic rings by P450s involves
oxidation of one of the p-bonds rather than direct
insertion of the oxygen atom into one of the C-H
bonds of the ring [115]. As a consequence, benzene
oxide and similarly unstable arene oxides (epoxides)
emerge and rapidly undergo heterolytic cleavage of

Figure 9. The consensus mechanism of cytochrome P450 catalysis (modified according to Sono et al. [88], Ortiz de Montellano and de Voss
[115], Makris et al. [114], and Groves [116]). (1) native (hydro)ferric enzyme (resting state), (2) ferric heme-substrate complex, (3) ferrous
heme-substrate complex, (4) ferrous-dioxygen complex, (5) ferric peroxy anion complex, (6) ferric hydroperoxy complex (Compound 0),
(7) putative oxo-ferryl radical complex (compound I), (8) product-ferric enzyme complex (further explanations in the text).
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one of the epoxide�s C-O bonds, a process that is
accompanied by migration of a hydride ion (H-) from
the carbon retaining the oxygen to the adjacent carbon
cation (-C+-) resulting in the formation of an also
unstable ketone intermediate. Final tautomerization
of this ketone yields the phenolic product (Fig. 11)
[115]. The entire sequence of reactions is the so-called
“NIH shift” (intramolecular hydrogen transfer=1,2-
hydride shift [130 – 132]); the name NIH shift arises
from the U.S. National Institutes of Health, where

studies were first reported on this type of reaction
[133]).
Besides this generally accepted pathway, there is
experimental and computational evidence for the
oxidation of aromatic rings including benzene by a
mechanism that does not involve formation of an
epoxide intermediate [134 –136]. The “non-epoxide”
mechanism comprises a porphyrin proton shuttle and
contributes, in addition to the non-enzymatic hydrol-
ysis of arene oxides, to the formation of ketones and

Figure 10. Selected aromatic hydroxyla-
tions catalyzed by P450s (according to
review articles of Sono et al. [88], Holland
[14], Lewis [84], and Ortiz de Montellano
and Voss [115]). Conversion of monoaro-
matic compounds (1 –7): (1) benzene hy-
droxylation yielding phenol and hydroqui-
none, (2) hydroxylation of toluene to p- and
o-cresols, (3) aniline hydroxylation leading
to 4- and 2-aminophenols, (4) benzoate
hydroxylation at para-position, (5) hydrox-
ylation of p-nitrophenol to 4-nitrocatechol,
(6) para-hydroxylation of 2-chlorophenyl
acetic acid, (7) specific hydroxylation of
heterocyclic nicotinic acid to 6-hydroxyni-
cotinic acid. Transformation of polycyclic
and complex aromatics (8–14): (8) hydrox-
ylation of the heterocyclic drug chlorzox-
azone, (9) formation of 1-phenanthrol by
hydroxylation of phenanthrene, (10) con-
comitant hydroxylation and N-demethyla-
tion of N-methylcarbazole to 3-hydroxy-
carbazole, (11) double hydroxylation of
biphenyl leading to 4,4�-dihydroxybiphen-
yl, (12) steroid transformation: hydroxyla-
tion and O-demethylation of 3-O-methyl-
estradiol, (13) hydroxylation of the herbi-
cide dichlofop at position C5, (14) flavone
hydroxylation yielding 4�-hydroxyflavone.
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phenols (Fig. 11) [113, 135]. This reaction type is
especially favored with aromatic rings bearing elec-
tron-donating groups (e.g., phenols, anilines) [115].
Due to the almost unlimited catalytic potential of
P450s, these enzymes have been subject of extensive
studies in order to make use of them in biotechno-
logical applications. Despite this fact, the use of P450s
in industrial processes is still restricted to whole-cell
oxidations due to the instability of cell-free P450
preparations and their complexity. Examples of tech-
nical applications are the biotransformation of steroid
hormones by molds of the genus Curvularia [137] and
recombinant Saccharomyces cerevisiae strains [138],
the production of dicarboxylic acids from alkanes by
the yeasts Candida tropicalis and Yarrowina lipolytica
[139, 140], and the synthesis of aromatic precursors for
agrochemicals by the entomopathogenic fungus Beau-
veria bassiana (Fig. 10) [141]. “Blue roses” certainly
are the most famous example of a P450 whole-cell
biotransformation. They contain the gene of CYP75A
from Petunia hybrida, which is responsible for the
synthesis of the blue blossom dye delphinidin [142,
143]. Comprehensive reviews on P450 in biotechnol-
ogy including promising future applications and
approaches to improve their catalytic properties and
performance have been published by Schwanenberg
et al. [144], Gillam and Guengerich [145], Guengerich
[146], Urlacher et al. [101], Buchholz et al. [147], and
Bernhardt [13].

Phenol oxidases

Tyrosinase (o-diphenol:dioxygen oxidoreductase) is
found in almost all domains of life and belongs to a
group of enzymes named type-3 copper proteins,
which also include oxygen carriers (hemocyanins)
from mollusks as well as plant catechol oxidases [148].
Excellent reviews on bacterial and fungal tyrosinases
have recently been published [149, 150]. Among other

functions, the extracellular enzyme is involved in the
synthesis of melanins, where it is responsible for the
first dioxygen-consuming steps of the pathway: the
hydroxylation of L-tyrosine (monophenolase or cre-
solase activity) to DOPA and its subsequent oxidation
to L-dopaquinone and L-dopachrome (diphenolase or
catecholase activity) [151]. Subsequently, the reactive
o-quinones formed tend to polymerize non-enzymati-
cally to the high-molecular mass melanins. Due to
these two functions, tyrosinase has been grouped into
two enzyme subclasses (EC 1.14.18.1 and EC 1.10.3.1,
respectively; for details see http://www.chem.qmul.a-
c.uk/iubmb/ enzyme/).
Tyrosinase bears two copper atoms in the active site,
CuA and CuB, which are coordinated by three
histidine residues (“type-3 copper center”) [148].
Depending on the oxidation state of copper and the
linking with dioxygen, the active site can exist in three
different states: deoxy-, oxy-, and met-tyrosinase
[(Cu+-Cu+), (Cu2+-O2-Cu2+), (Cu2+-OH�-Cu2+), re-
spectively][151]. Figure 12 shows a simplified catalytic
cycle of tyrosinase with focus on the hydroxylase
activity [149, 152]. The deoxy-state reversibly adds
dioxygen (O2) leading to the oxy-state in which the
oxygen is bound as a peroxide between the copper
atoms. In the absence of any substrate, more than 80%
of the protein is in the met-state that therefore
represents the resting state of tyrosinase. In the met-
form, the two copper atoms are bridged by hydroxo
ions and it is formed from the oxy-state by binding a
monophenol. The meta-form is converted back into
the deoxy-state via different meta-intermediates by a
two electron reduction, in the course of which o-
quinones and o-diphenols are released. The intimate
mechanism of tyrosinase reaction remains partially
unclear. However, it was shown that the o-diphenol
oxidation follows Michaelis–Menten kinetics, where-
as monophenol hydroxylation shows a characteristic
lag-phase [151]. The latter can be counteracted by
addition of traces of o-diphenols [153]. An unusual

Figure 11. P450-catalyzed hydroxylation
of deuterated aromatic substrates (1). The
reaction proceeds via a putative enzyme-
iron(IV)-substrate/product complex (2)
and an unstable epoxide (3) to a carboca-
tion intermediate (4) that undergoes NIH
shift to give a ketone (5) tautomerizing to a
deuterated (6) and a non-labeled (7) phe-
nolic product. The partial loss of the
deuterium (D) is a prove for the NIH shift
(modified according to Ortiz de Montella-
no and Voss [115]). The dashed arrow
indicates the possibility of the direct hy-
droxylation without epoxide intermediate
[135].
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tyrosinase with higher cresolase than catecholase
activity has recently been found in the phytopatho-
genic bacterium Ralstonia solanaceareum [154]. Fur-
thermore, purified tyrosinase was shown to act as a
peroxygenase incorporating oxygen from hydrogen
peroxide (H2O2) into phenolic substrates [155]. There
are several attempts to make use of tyrosinase-
catalyzed hydroxylation. An example is the produc-
tion of antioxidant o-diphenols with beneficial prop-
erties as food additives or pharmaceutical drugs [150,
156].
Unlike tyrosinase, laccase (p-diphenol:dioxygen oxi-
doreductase, EC 1.10.3.2), a second widespread,
extracellular phenol oxidase belonging to the blue-
copper proteins [157, 158], cannot directly introduce
oxygen into phenolic rings but it is able to initiate a
cascade that can lead indirectly, via phenoxyl radicals,
cyclodienone cations, and the addition of H2O to the
formation of p-quinones and p-hydroquinones
(Fig. 13). Analogous reactions have been proposed
for phenol-oxidizing peroxidases (e.g., horseradish
peroxidase) [159 – 164].

Peroxidases

Heme-peroxidases (EC 1.11.1.–) using hydrogen per-
oxide as oxidant are ubiquitous in nature. The active
site of these enzymes contains iron heme (protopor-
phyrin IX) as a prosthetic group, which is mostly
linked to a proximal histidine (5th ligand). Exceptions
to this structural rule are chloroperoxidase and Agro-
cybe aegerita peroxidase, where the 5th ligand is, as in
case of P450s, a cysteine (heme-thiolate proteins) [87,
122]. In their natural function, heme-peroxidases
generally perform one-electron, rather than two-
electron oxidations. Most microbial peroxidases are
extracellular enzymes and involved in the degradation
of recalcitrant aromatic polymers (lignin, humic
materials) and in the oxidative detoxification of
plant ingredients and organopollutants. Typical per-
oxidase substrates are phenolic compounds, methoxy-
lated aromatics (e.g., veratryl alcohol), as well as
manganese(II) ions (Mn2+) [165 – 167]. Plant perox-
idases are involved in cell-wall synthesis (lignification,
formation of suberin), phytohormone metabolism, as
well as infection response [168, 169]. Animal/human
peroxidases play a defensive role against microbial
infection and thyroid peroxidase is essential for the
synthesis of the hormone thyroxine. A comprehensive

Figure 12. Catalytic cycle of tyrosinase yielding catechol
and o-benzoquinones from monophenolic substrates
(modified according to Fenoll et al. [152, 212]. (1)
deoxy-tyrosinase, (2) oxy-tyrosinase, (3) hydroxylation
complex of met-tyrosinase, (4) nucleophilic attack com-
plex of the phenolic substrate and met-tyrosinase, (5) met-
tyrosinase, (6) diaxial binding complex of met-tyrosinase.
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book survey on heme peroxidases featuring plant,
fungal, bacterial, and animal enzymes was published
by Dunford [170].
The catalytic cycle of heme-peroxidases illustrated by
the oxidation of a phenolic substrate is given in
Figure 14 (modified according to Dunford [170], van

Rantwijk and Sheldon [171], Veitch [169, 172]). It
shows similarities to the P450 cycle and passes through
following intermediates: the native (hydro)ferric
peroxidase (= resting enzyme) [heme(Fe3+-H2O)]
binds H2O2 to form an extremely short-lived iron(-
III)-peroxide complex [heme(Fe3+-O-OH)] (“Com-

Figure 13. Indirect hydroxylation of phenol by laccase
(Lacc) or phenol-oxidizing peroxidases (PO). (1) phenol,
(2) two mesomeric forms of the phenoxyl radical that can
disproportionate to a cyclodienone cation (3) and a
phenol molecule (1), (4) instable hydroxycyclodienone
rearranging to hydroquinone (5) or p-benzoquinone (6).

Figure 14. The catalytic cycle of heme peroxidases illustrated by the oxidation of a phenolic substrate. The phenoxyl radicals formed may
undergo the cascade described in Fig. 13. The dotted arrow indicates the capability of a few peroxidases to transfer the oxygen from
Compound I to a substrate (see text for further details). (1) native (hydro)ferric enzyme, (2) iron(III)-peroxide complex (analogous to
Compound 0 of P450s), (3a) peroxidase Compound I (oxo-ferryl radical complex) that exists in different mesomeric forms: (3b) oxo-
iron(V) complex, (3c) oxo-radical ferryl complex, (4) Compound II (oxo-ferryl complex).
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pound 0” of P450s), that is heterolytically cleaved
between the oxygen atoms by a two-electron transfer
from the heme. As the result, a water molecule is
expelled and Compound I, an oxo-ferryl, heme-
radical cation complex [heme(Fe4+=O)C+], emerges
and can react with a first phenolic molecule to give a
phenoxyl radical and Compound II. The latter is an
oxo-ferryl heme [heme(Fe4+=O)] and reacts with the
second substrate molecule resulting in the formation
of a second phenoxyl radical and the native ferric
enzyme. In summary, within the typical heme-perox-
idase cycle, two substrate molecules are oxidized by
one-electron abstraction (but without oxygen trans-
fer) while one molecule of hydrogen peroxide is
consumed and two water molecules are produced.
It is assumed that Compound I (Fig. 14, dashed arrow)
or a derived protonated oxo-ferryl species (Fig. 14) is
the active intermediate in oxygen-transfer reactions of
peroxidases, and the same assumption has been made
regarding P450s [117, 173]. But unlike P450s, only a
few examples of such reactions, in the course of which
peroxidases act as peroxygenases, have been reported
in the literature. The main obstacles in this respect are
the preference of one-electron versus two-electron
transfers by most peroxidases and the sterically
restricted active site, which limits the access of the
substrate to the heme iron and ferryl oxygen [171,
174]. An excellent review comparing the structures of
the high-valent, metal-ion, heme-oxygen intermedi-
ates in peroxidases, oxygenases, and catalases has
been published recently [175].
Concerning oxygen transfer, four peroxidases are of
particular interest: horseradish peroxidase (HRP, EC
1.11.1.7), chloroperoxidase (CPO, 1.11.1.10), and the
recently discovered Agrocybe aegerita peroxidase
(AaP, 1.11.1.–), as well as the “artificial” microperox-
idases (MPs, 1.11.1.–). Commercial HRP from Ar-
moracia rusticana was shown to hydroxylate benzene
to phenol when benzene was used as the solvent with
just 0.1– 5% phosphate buffer, whereas in aqueous
buffered media benzene was inert to HRP attack
[176]. Oxygen, in this reaction, came from hydrogen
peroxide which was demonstrated using H2

18O2.
Klibanov et al. [177] reported the efficient hydroxy-
lation of aromatic substrates (phenolic compounds,
phenylalanine) by HRP and O2 in the presence of
dihydroxyfumaric acid as hydrogen donor. This reac-
tion, however, was later shown to be radical-mediated
and the last step non-specifically catalyzed by hydrox-
yl radicals, and thus, independent of the pure catalytic
cycle of the enzyme [178]. HRP is currently the
subject of genetic engineering to improve the oxygen
transfer potential and variants have been obtained,
which have at least some of the key functional
properties of a cytochrome P450. [171, 179].

Microperoxidase-8 (MP-8) is a “minienzyme” that
consists of an octapeptide obtained after proteolytic
digestion of cytochrome c from horse heart and is
covalently bound to heme [180]. Upon reaction with
peroxides, it forms high-valency, oxo-ferryl intermedi-
ates that are analogous to Compounds I and II and can
take effect in peroxidase or P450 modes [181, 182].
With respect to the latter mode, MP-8 was shown to
hydroxylate aniline, phenol, and anthracene, as well as
to some extent naphthalene, but not benzene [183,
184]. Hydroxylation was favored over peroxidation
after addition of ascorbate to the reaction mixture
preventing the coupling of phenoxyl radicals [183].
Later, other microperoxidases have been prepared
(e.g., MP-9 and MP-11 from horse-heart cytochrome
c, MP-5 from cytochrome c552 of Marinobacter hydro-
carbonoclasticus) and they are thought to have a
promising potential as a new generation of biocata-
lysts and/or biomimics in biotechnological applica-
tions [182, 185, 186]. However, to achieve this goal it
will be necessary to improve the catalytic properties of
MPs, particularly with respect to turnover numbers
and enzyme-substrate ratios [184, 187].
CPO is an extracellular enzyme that was discovered
by Hager and co-workers in the 1950s in Caldariomy-
ces fumago, an ascomycete belonging to the so-called
sooty molds [188, 189]. As P450s, it is a heme-thiolate
protein with versatile catalytic properties. Thus, CPO
chlorinates, brominates, and iodates organic com-
pounds including aromatic substrates and catalyzes a
series of non-halogenating oxidations, among others,
epoxidation and hydroxylation of activated C-H
bonds, as well as selective sulphoxidations [171].
Aromatic rings, however, are not susceptible to oxy-
gen transfer by CPO. Merely cyclic dienes, such as 1,2-
dihydronyphthalene or indene, can be epoxidized by
CPO and subsequently undergo spontaneous trans-
formation to the respective oxides or dihydrodiols
[190, 191]. Furthermore, CPO catalyzes benzylic
hydroxylation, e.g., of p-xylene or toluene [192, 193].
We have recently reviewed the reactions catalyzed by
heme-thiolate haloperoxidases [122] and described, in
this context, a second enzyme of this type. The
haloperoxidase of the agaric mushroom Agrocybe
aegerita (AaP) is an extracellular peroxygenase that
can be regarded as a true functional hybrid of heme-
thiolate haloperoxidases and cytochrome P450s. Thus,
as the latter and unlike CPO, AaP selectively hydrox-
ylates aromatic substrates such as toluene or naph-
thalene [122] and recently, even benzene and chlor-
obenzene have been found to be subject of AaP-
catalyzed oxygen transfer (Ullrich 2006, unpublished
results). In case of naphthalene hydroxylation, almost
the same ratio of 1-naphthol versus 2-naphthol (36:1)
was observed as for a P450cam mutant [194]. The

Cell. Mol. Life Sci. Vol. 64, 2007 Review Article 285



resting state of AaP has its Soret absorption maximum
at 420 nm, which is also characteristic for P450s
(416 – 420 nm) and differs from CPO (401 nm)
(interestingly, recent studies with CPO indicate that,
in the presence of 100 mM formic acid, the CPO
spectrum shifts and becomes almost identical to those
of P450s and AaP [195]). On the other hand, the N-
terminus of AaP shows 36% sequence identity (5 out
of 14 amino acids) with that of CPO, and AaP
brominates (but hardly chlorinates and iodates)
aromatic substrates, which is typical for peroxidases,
but has not been reported for P450s [122, 196 – 198].
The hypothetical catalytic cycle of AaP combining
both own observations and recent findings on CPO
and P450s, is given in Figure 15. It considers, inter alia,
the fact that hydroxylation products of AaP have
never been observed as sole reaction products but
always together with varying amounts of their oxida-
tion products (quinones) [198]. Furthermore, it should
be mentioned that AaP catalyzes, in addition to
hydroxylations and halogenations, the oxidation of
aromatic alcohols and aldehydes, O-dealkylation,
phenol oxidation, and the catalase-like destruction
of H2O2 [122, 197, 198].
Data in the literature and own recent findings indicate
that extracellular peroxygenases of the AaP-type do

also occur in other organisms. Thus, we found AaP-
like activities in other Agrocybe strains, as well as in
the coprophilous ink caps Coprinus radians and C.
verticillatus ([122] and Dau, et al. , unpublished re-
sults). An unusual peroxidase, that oxidized the
methyl group of different toluenes via benzyl alcohols
into the corresponding aldehyde, a reaction that was
also reported for AaP and CPO, was described for a
not further characterized Coprinus sp. strain [199] and
the aromatic hydroxylation of 4-hydroxybenzyl alco-
hol by a heme-bromoperoxidase of the red alga
Cystoclonium purpureum was already reported in
1976 [200]. Unfortunately, more detailed information
on these enzymes is lacking since their purification
and characterization is still pending. Maybe, a recently
developed hydroxylation assay, which uses naphtha-
lene as target substrate and directly follows its
conversion to 1-naphthol, will help to find more
fungal species producing AaP-like peroxygenases
(Kluge et al. , unpublished results).

Aromatic hydroxylation by hydroxyl radicals

Several biochemical mechanisms are considered to
facilitate extracellular aromatic hydroxylation in vivo
by means of hydroxyl radicals (COH). The ability of
COH to hydroxylate aromatic compounds has been
known for a long time and used to follow the
formation of this extremely reactive oxygen species
[203]. Among microorganisms, brown-rot fungi be-
longing to the basidiomycetes (e.g., Gloeophyllum
spp.) are regarded as the most potent producers of
COH, and they use the radicals in vivo to decompose
recalcitrant crystalline cellulose and modify aromatic
compounds such as lignin [167, 202]. Two main
pathways of the formation of COH by Fenton�s reagent
chemistry (Fe2+ +H2O2! OH�+ COH) have been
proposed: quinone redox cycling and cellobiose
dehydrogenase (CDH) turnover [202]. The former
reactions are based on the fungal metabolite dime-
thoxy-p-benzoquinone (DMBQ) that is secreted and
reduced by a mycelial reductase to the corresponding
hydroquinone (DMHQ). DMHQ, which in turn,
reduces Fe3+ while it is converted to a semiquinone
radical that reacts with O2 to give H2O2 and DMBQ
[203]. A number of xenobiotic aromatics (halogenat-
ed phenols, fluoroquinolone) were found to be subject
of rapid oxidation and decomposition by the Gloe-
phyllum Fenton system leading to a series of hydroxy-
lated products [204, 205].
CDH (EC 1.1.99.18) is an interesting extracellular
enzyme found in various wood-degrading fungi
(brown-, white-, and soft-rot fungi) and contains
both heme and FAD. It oxidizes soluble cellodextrins

Figure 15. Hypothetical catalytic cycle of AaP (Agrocybe aegerita
peroxidase) illustrated by the hydroxylation/oxidation of naphtha-
lene and calculated on the basis of recent findings on CPO (Green
et al. [117, 213]), P450s (Wong [214], Makris et al. [114]), and our
own studies on AaP (Ullrich et al. [197], Ullrich and Hofrichter
[198], Hofrichter and Ullrich [122], Kluge et al., unpublished
results). (1) native (hydro)ferric enzyme, (2) iron(III)-peroxide
complex (Compound 0), (3) Compound I, (4) Compound II, (5)
putative transition state of a protonated Compound I/II-substrate
complex.
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and lactose to lactones while using a wide spectrum of
electron acceptors including dioxygen (that is reduced
to H2O2), quinones, phenoxyradicals, and Fe3+

(Fig. 16) [206]. In the presence of Fe3+ and O2, the
CDH-producing white-rot fungus Phanerochaete
chrysosporium efficiently hydroxylated salicylic acid
to 2,3- and 2,5-diydroxybenzoic acids, which was
attributed to COH [207]. Hild�n et al. [208] demon-
strated that the CDH-dependent Fenton system
hydroxylates methoxylated aromatics (lignin models)
and cooperated, in this way, with manganese perox-
idase (a key enzyme of lignin degradation). Other
fungal enzymes which have been proposed to generate
hydroxyl radicals are the couple laccase and aryl
alcohol oxidase [209] and lignin peroxidase [210].
Though Fenton�s reaction is an efficient catalytic
system, its hydroxylating potential may be relevant
only for degradative activities of wood-rotting fungi
due to a lack of specificity and selectivity [211].

Outlook

Regarding the enormous biocatalytic potential of
oxygenating enzymes (regardless of which group they
belong to) and the fact that most of them are still little
used in industry, it is to be expected that the following

scientific and technical approaches will be increas-
ingly pursued in the near future:

• further development of whole-cell transformations
with genetically engineered organisms (preferably
fast-growing bacteria and fungi)

• site-directed mutagenesis, laboratory evolution,
and chimeragenesis to improve catalytic enzyme
properties with respect to cofactor requirement,
electron transfer, catalytic constants, substrate
binding sites, and stability (pH, temperature, H2O2)

• search for novel (per)oxygenases using molecular
and chemical methods (specific DNA probes,
specific colorimetric tests, high-throughput screen-
ings)

• process optimization of enzyme catalysis in special
enzyme reactors (membrane techniques, non-ionic
fluids, micelles)

• construction of “artificial” biocatalysts (“enzyme
mimics”) by chemical methods
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