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Abstract. BH3-only proteins are a subset of the Bcl-2
family of apoptotic regulators. BH3-only proteins
function as �damage sensors� in the cell; they are
activated in response to cellular stress or DNA
damage, whereupon they initiate apoptosis. Apoptosis
is the primary mechanism by which the body rids itself
of genetically defective cells and is critical for
preventing the accumulation of cells with tumorigenic
potential. Therefore, dysregulation of BH3-only pro-
teins may promote tumorigenesis. Furthermore, func-
tional apoptosis pathways are required for the success

of most cancer treatments, including chemotherapy.
Resistance to chemotherapy, as seen with malignant
melanoma, often reflects an inability of tumor cells to
undergo apoptosis. By deciphering the roles of BH3-
only proteins in tumorigenesis, we may learn how to
manipulate cell death pathways to overcome apop-
totic resistance. This review summarizes the current
knowledge of BH3-only proteins and how they con-
tribute to tumorigenesis, with particular attention
given to studies involving melanoma.
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Introduction

It is now recognized that cancer is not simply a disease
of excessive cell proliferation. More accurately, tumor
development reflects an imbalance between cell
production and cell elimination [1]. Over-production
may result from the mutation of cell cycle control
genes or the hyperactivation of cell proliferation
pathways. Ineffective cell elimination, on the other
hand, is thought to arise from the deregulation of cell
death pathways, such as apoptosis. Apoptosis (pro-
grammed cell death) is the primary mechanism by
which the body rids itself of damaged, genetically
defective, or superfluous cells [2], and is therefore
critical for preventing the accumulation of cells with

tumorigenic potential. Cancer cells often acquire
defects in genes regulating apoptosis, allowing them
to evade cell death. Furthermore, conventional cancer
treatments such as chemotherapy and radiation work
primarily by inducing apoptosis in tumor cells and thus
require functional apoptotic pathways [3]. Chemo-
therapeutic resistance, in many cases, may actually
reflect an underlying resistance to apoptosis.
Malignant melanoma is a notoriously apoptotic-
resistant tumor type that responds poorly to both
chemotherapy and radiation treatment [4]. Melano-
ma tumors have been shown to exhibit low rates of
spontaneous apoptosis compared with other tumor
types [5]. It is generally thought that melanocytes
acquire a resistance to apoptosis during their trans-
formation from normal to melanoma cells [6]. In
accordance with this notion, melanocytic nevus cells
show greater resistance to apoptosis than melanocytes* Corresponding author
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when grown in collagen gels [7]. Furthermore, mela-
noma cell lines are usually resistant to drug-induced
apoptosis [8]. Melanoma patients with advanced
disease have essentially no treatment options and
face a dismal prognosis: only 16% of metastatic
melanoma cases survive for 5 years [9]. There is an
urgent need to develop effective therapies for this
disease. Part of the solution lies in understanding why
melanoma cells are so resistant to DNA damage-
induced apoptosis and how we can manipulate
apoptotic pathways to overcome this resistance.
Apoptosis is a complex process, controlled by many
different genes and proteins. A particular subset of
proteins, known as BH3-only proteins, have recently
emerged as critical effectors of apoptosis in mamma-
lian cells. Deciphering the roles of BH3-only proteins
in melanoma cell death is critical to understanding
how melanoma cells can be induced to undergo cell
death. In this review we summarize the current
knowledge of BH3-only proteins and how they con-
tribute to tumorigenesis, with particular attention
given to studies involving melanoma.

Mechanisms of BH3-only protein-induced cell death

BH3-only proteins function as the “damage sensors”
of the cell. They are activated in response to cellular
stress or DNA damage, whereupon they initiate
apoptosis (Fig. 1) [10]. BH3-only proteins are acti-
vated to induce apoptosis by a diverse range of stimuli
including cytokine withdrawal, loss of adhesion to the
extracellular matrix, DNA damage (by chemothera-
peutic drugs or radiation), and oncogene activation
[11]. Distinct BH3-only proteins are induced depend-
ing on the nature of the cytotoxic stimulus and the
tissue type involved.
BH3-only proteins are a subgroup of the Bcl-2 protein
family, all of whose members either promote or inhibit
apoptosis. The Bcl-2 family can be divided into three
functional groups: (i) Pro-survival Bcl-2-like mem-
bers (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, and A1), (ii )pro-
apoptotic Bax-like members (Bax, Bak and Bok), and
(iii) Pro-apoptotic BH3-only members (Puma, Noxa,
Bid, Bim, Bmf, Bad, Bik, and Hrk) [2]. The cell
controls apoptosis by finely balancing the expression
and activities of pro-survival proteins with those of
pro-apoptotic proteins. In terms of protein structure,
all Bcl-2 family proteins possess one or more Bcl-2
homology (BH) domains, BH1, BH2, BH3, and BH4.
Pro-survival members share all four BH domains
(except Mcl-1, which does not contain BH4), Bax-like
members have three BH domains (BH1, BH2, BH3),
and BH3-only members share just the BH3 domain, as
their name suggests (Fig. 2) [11].

There are two other pro-apoptotic Bcl-2 family
proteins, Bcl-XS and Bcl-XAK, that do not fall into
the aforementioned categories. Bcl-XS contains a BH3
and BH4 domain, while Bcl-XAK contains a BH2 and
BH4 domain. Both proteins are alternative splice
products of the bcl-x gene that codes for Bcl-XL. The
abilities of both Bcl-XS and Bcl-XAK to induce
apoptosis have been described in melanoma cells
[12, 13], but their mechanisms of action so far remain
unclear.
Multidomain Bax-like proteins appear to possess
intrinsic cell death-inducing ability while BH3-only
proteins act more indirectly, by engaging other Bcl-2
family members to either suppress pro-survival pro-
teins (Bcl-2, Bcl-XL) or to activate pro-apoptotic
multidomain proteins (Bax, Bak) [14]. BH3-only
protein activity is tightly controlled via transcriptional
upregulation (Puma, Noxa, Bim, Hrk) or posttransla-
tional modification (Bid, Bim, Bmf, Bad, Bik) [15].
Once activated, BH3-only proteins translocate to the

Figure 1. Induction of apoptosis by BH3-only proteins. BH3-only
proteins are activated in response to DNA damage or other cellular
stress via either transcriptional upregulation (Puma, Noxa, Bim,
Hrk) or posttranslational modification (Bid, Bim, Bmf, Bad, Bik).
Activated BH3-only proteins interact with Bcl-2-like proteins at
the mitochondrial membrane, neutralizing their pro-survival
function and “priming” the cell for apoptosis. Activated BH3-
only proteins are also thought to activate pro-apoptotic Bax and
Bak proteins. Activated Bax/Bak form homo-oligomers that lead
to permeabilization of the mitochondrial outer membrane, release
of cytochrome c, caspase activation, and, ultimately, apoptotic cell
death.
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mitochondria, where they bind to their Bcl-2-like and
Bax-like relatives [10]. Binding of BH3-only proteins
to Bcl-2-like proteins is thought to neutralize the pro-
survival function of the latter and �prime� the cell for
apoptosis [2]. This antagonizing interaction is medi-
ated by the BH3 domain, an amphipathic a helix,
which inserts into a hydrophobic groove formed by the
BH1, BH2, and BH3 domains on the surface of the
Bcl-2-like protein [16]. Changes induced by BH3-only
proteins are also thought to activate pro-apoptotic
Bax and Bak proteins [17, 18]. Bax or Bak activation is
required for apoptosis to proceed [17, 18]. Activated
Bax/Bak form homo-oligomers that either directly or
indirectly permeabilize the mitochondrial outer mem-
brane [17, 18]. Disruption of the mitochondrial
membrane results in the leakage of pro-apoptotic
factors (cytochrome c, Smac/DIABLO, AIF) into the
cytosol, subsequent apoptosome formation, activation
of caspases and, ultimately, cell death [19].
Systematic studies of BH3-only peptide binding
affinities suggest that most BH3-only proteins bind
selectively, not promiscuously, to Bcl-2-like pro-sur-
vival proteins [20 – 22]. Although Puma, Bim, and t-
Bid (the truncated form of Bid) can bind and
neutralize all five Bcl-2-like proteins (Bcl-2, Bcl-XL,
Bcl-w, Mcl-1, and A1), other BH3-only members
cannot. Specifically, Bad and Bmf bind only to Bcl-2,
Bcl-XL, and Bcl-w; Bik and Hrk bind only to Bcl-XL,
Bcl-w, and A1; and Noxa binds only to A1 and Mcl-1
[2]. Thus, some BH3-only proteins (e.g. Puma and
Bim) appear to play broader, more dominant roles in
the apoptotic program, whereas others act with more
narrow situational specificity.

Models of BH3-only protein-induced Bax/Bak
activation

As previously mentioned, BH3-only proteins require
Bax and/or Bak activation in order to induce apoptosis
[17, 18]. However, the exact mechanism underlying
such activation has not been fully elucidated. Two
models have been postulated to account for the role of
BH3-only proteins in Bax/Bak activation. The first,
suggested by Letai et al. [23] and expanded upon by
Certo et al. [22], proposes that all BH3-only proteins
are either �activators� or �sensitizers�. Activators (t-Bid
and Bim) interact directly with Bax/Bak, activating
them and inducing their oligomerization. However,
they are prevented from doing so under normal
conditions because they are held inactive by pro-
survival Bcl-2-like proteins. Sensitizers (Bad and Bik)
are activated following cytotoxic stress, whereupon
they bind to Bcl-2-like proteins and cause them to
release bound activators [23]. An alternative model
proposed by Willis et al. [24] asserts that under normal
conditions, Mcl-1 and Bcl-XL sequester an active form
of Bak at the mitochondrion. Following cytotoxic
stimuli, activated BH3-only proteins must displace
Bak from both Mcl-1 and Bcl-XL in order to achieve
Bak activation. Currently, there is experimental
evidence to support both models [2]. Therefore,
further study is needed to determine which model, if
either, is correct.

Figure 2. Schematic diagram of
the Bcl-2 protein family. Bcl-2
proteins are divided into three
functional groups: (i) Bcl-2-like,
(ii) Bax-like, and (iii) BH3-only
proteins. Anti-apoptotic Bcl-2-
like proteins functionally oppose
Bax-like and BH3-only proteins,
which are both pro-apoptotic.
Most Bcl-2-like proteins contain
four Bcl-2 homology (BH) do-
mains; BH1, BH2, BH3, and
BH4. Bax-like proteins contain
two or three BH domains. BH3-
only proteins contain only a BH3
domain. Most Bcl-2 family mem-
bers also express a trans-mem-
brane (TM) domain that facili-
tates mitochondrial membrane
localization.
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Roles of BH3-only proteins in tumorigenesis

Bcl-2-like pro-survival proteins have long been im-
plicated in tumorigenesis. The most well known
example is the deregulation of Bcl-2 expression in
human follicular lymphomas. This disease is charac-
terized by a t(14;18) chromosomal translocation that
places the Bcl-2 gene under control of an immuno-
globulin heavy-chain promoter, resulting in constitu-
tive expression of Bcl-2 protein [25, 26]. Bcl-2 and Bcl-
XL overexpression have also been linked to several
other malignancies, including acute promyelocytic
leukemia, breast cancer, and pancreatic b cell cancer
[27]. Meanwhile, the absence of pro-apoptotic Bax-
like proteins is associated with tumor progression. For
example, loss or mutation of Bax may contribute to
colon cancer [28], mammary tumors [29], and brain
tumors [30]. However, it is only in recent years that
researchers have begun to examine the roles of pro-
apoptotic BH3-only proteins in tumorigenesis. Be-
cause BH3-only proteins are critical for initiating
apoptosis following cellular damage, their proper
regulation is a crucial component of tumor suppres-
sion. If BH3-only protein expression is lost or altered,
apoptosis may be suppressed, leading to the accumu-
lation of damaged cells with tumorigenic potential.
Absence of BH3-only protein expression may also
promote apoptotic resistance. In the context of cancer
treatment, this creates a major therapeutic obstacle.

Puma

Puma (p53 upregulated modulator of apoptosis) is a
highly potent pro-apoptotic protein that induces the
rapid and complete death of many malignant cell
types, including colorectal cancer, lung cancer, osteo-
sarcoma, glioma, head and neck cancer, and melano-
ma cells [31 –35]. Puma was discovered by three
independent groups, two of which were searching for
p53-inducible target genes [31, 32], and one of which
was screening for Bcl-2-binding partners [36]. Puma
contains two consensus p53 binding sites within its
promoter region, indicating that it is a direct tran-
scriptional target of p53 [31, 32, 36]. Puma is not
known to undergo posttranslational modifications,
but upon translation, localizes to mitochondria where
it antagonizes pro-survival members of the Bcl-2
family [11]. Puma expression is strongly and rapidly
upregulated in response to DNA-damaging agents,
such as adriamycin, 5-fluorouracil (5-FU), actinomy-
cin D, etoposide, and ionizing radiation, in a p53-
dependent manner [31, 32, 36].
There is abundant experimental evidence to support
the notion that Puma is a critical mediator of p53-

dependent apoptosis. For example, mouse embryonic
fibroblasts (MEFs) transduced with the adenoviral
oncoprotein E1A are normally rendered sensitive to
p53-mediated apoptosis [37], but Puma-/- MEFs re-
main strongly resistant to DNA-damaging agents
under the same conditions [38]. Furthermore, color-
ectal and lung cancer cells lacking wild-type p53 are
unable to upregulate Puma following DNA damage
[31, 32]. Puma expression can also be induced by p53-
independent apoptotic stimuli, including glucocorti-
coid treatment, serum starvation, and hypoxia [31, 32,
36]. However, less is known about the p53-independ-
ent mechanisms of Puma induction.
Puma is not required for normal development, and
Puma-/- mice suffer no developmental abnormalities.
However, thymocytes and myeloid progenitors from
these animals are resistant to apoptosis induced by
various stimuli, including anticancer drugs, g-irradi-
ation, cytokine withdrawal, glucocorticoid treatment,
staurosporine, and the phorbol ester PMA [39, 40].
Loss of Puma alone has not been shown to cause
cancer, but inhibition of Puma expression does
promote certain malignant phenotypes. For example,
Hemann et al. [41] reported that short hairpin RNA
(shRNA)-mediated knockdown of Puma potently
induces transformation of MEFs co-expressing the
oncogenes E1A and ras. It is well established that p53
mutations cooperate with E1A and ras to promote
oncogenic transformation [38, 42, 43]. Thus, Puma loss
mimics p53 mutation in this context. Puma suppres-
sion can also accelerate lymphomagenesis in an Em-
myc transgenic mouse model [41]. Em-myc transgenic
mice express the c-myc oncogene from an Ig heavy--

chain enhancer, causing them to develop B cell
lymphomas [44]. Hematopoietic stem cells (HSCs)
from these mice give rise to lymphomas when trans-
ferred into healthy recipient mice, and deletion of p53
accelerates this process [37, 45]. To determine wheth-
er deletion of Puma would have a similar effect,
Hemann et al. [41] used shRNA against Puma to
stably suppress its expression in Em-myc HSCs. Upon
transferring these cells to normal mice, they observed
dramatically accelerated lymphomagenesis with re-
duced latency in all recipient animals. Thus, Puma loss
can mimic the effects of p53 loss/mutation and Puma is
a bona fide tumor suppressor.
Considering the essential role of Puma in apoptosis
and its �p53-like� tumor-suppressing effects, it seems
intuitive that Puma loss may contribute to human
cancer. Accordingly, Puma�s chromosomal locus,
19q13.3, is frequently lost in human gliomas [46],
neuroblastomas [47], and certain B cell lymphomas
[48]. Deletion of chromosomal arm 19q has also been
reported in head and neck squamous cell carcinomas
(HNSCCs) [49 – 51] and lung cancers [52 – 54]. Only
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one study, conducted by Hoque et al. [34], has focused
specifically on the mutational status of Puma in
cancer. Loss of heterozygosity (LOH) analysis of 30
primary HNSCCs and lung tumors detected LOH at
19q in 56% of HNSCCs and 27% of primary lung
cancer samples. However, sequence analysis of Puma
in 10 cell lines and 30 primary tumors revealed no gene
mutations. The only study of Puma expression in
melanoma was conducted by our own laboratory [35].
In a tissue microarray analysis of melanoma tumor
biopsies, we found that Puma protein expression was
reduced in primary malignant melanomas (n=107)
compared to non-malignant dysplastic nevi (n=64)
(p<0.0001). Puma expression was even further de-
creased in metastatic melanomas (n=51) (p=0.001).
Puma expression level also inversely correlated with
5-year survival (p<0.001) and was deemed to be an
independent prognostic factor by Cox regression
analysis (p=0.05), indicating that Puma expression
in melanoma tissue has a protective effect in terms of
patient survival [35]. Whether reduced Puma expres-
sion is a causative factor in melanoma or is simply a
consequence of melanoma-associated molecular
changes is not clear. One also cannot rule out the
possibility that epigenetic changes, such as promoter
methylation, may be responsible for Puma down-
regulation in melanoma.

Noxa

Noxa was the first BH3-only protein to be identified as
a p53 transcriptional target [55]. Noxa is similar to
Puma in many respects; it contains a p53 response
element and is directly upregulated by p53 following
DNA damage [55]. Noxa can also function independ-
ently of p53. For example, hypoxia-inducible factor
(HIF)-1a is reported to directly induce Noxa tran-
scription [56]. Posttranslational modifications of Noxa
have not been described so far. Like Puma, Noxa
protein is thought to translocate to mitochondria,
where it antagonizes Bcl-2 family pro-survival pro-
teins.
Like Puma-/- mice, Noxa-/- mice exhibit no develop-
mental abnormalities. Although MEFs from these
animals exhibit drug resistance, Noxa-/- thymocytes
readily undergo apoptosis in response to both p53-
dependent stimuli (etoposide, g-irradiation) and p53-
independent stimuli [cytokine withdrawal, the gluco-
corticoid treatment, calcium flux, and the phorbol
ester 12-myristate 13-acetate (PMA)] [39, 57]. Noxa-/-

mice are resistant to gastrointestinal (GI) epithelial
cell death following whole body irradiation, indicating
that Noxa also plays a role in the maintenance of GI
tract tissues [57].

Studies of Noxa-/- MEFs suggest that Noxa is impor-
tant for oncogene-induced apoptosis. Specifically,
Noxa-/- MEFs transduced with the adenovirus onco-
protein E1A are protected against apoptosis induced
by etoposide, adriamycin, and X-ray irradiation [39,
57]. Unlike Puma, exogenous Noxa expression in
wild-type MEFs does not induce apoptosis. However,
Noxa sensitizes MEFs to etoposide and UV irradi-
ation regardless of p53 status, suggesting that Noxa
cooperates with p53-independent apoptotic pathways
[16, 51]. Discrepancies in the abilities of Puma and
Noxa to induce apoptosis may be explained by a
model postulated by Chen et al. [20]. They assert that
Puma binds promiscuously to all pro-survival Bcl-2
family proteins whereas Noxa associates with only a
subset (Mcl-1 and A1), making Noxa a less potent
apoptotic effector. Alternatively, Puma and Noxa may
simply be subject to tissue-specific regulation that
differs between thymocytes and MEFs.
In melanoma, Noxa appears to mediate the apoptotic
effects of certain drugs. For example, the g-secretase
tripeptide inhibitor GSI (z-Leu-Leu-Nle-CHO) has
been shown to induce apoptosis in melanoma cell lines
(but not in normal melanocytes) via upregulation of
Noxa protein [58]. GSI can induce Noxa in melanoma
cells despite the absence/mutation of p53, low Apaf-1
levels, and an abundance of Bcl-2, Bcl-XL, and Mcl-1
protein expression. This suggests that GSI-mediated
apoptosis is p53-independent and may be effective in
treating apoptosis-resistant melanoma cells.
Proteasome inhibitors have also been shown to induce
melanoma-specific cell death and, so far, two studies
have identified Noxa as a key mediator of this effect
[59, 60]. Bortezomib (Velcade) can induce apoptosis
in melanoma cell lines expressing low levels of Apaf-1
and high levels of anti-apoptotic factors (Bcl-2, Bcl-
xL, Mcl-1, Survivin), as well as melanoma cells
harboring mutations of p53, Ras, BRAF, or INK4/
ARF [60]. It is thought that rapid accumulation of
Noxa antagonizes Bcl-2 at the mitochondrial mem-
brane, thus promoting intrinsic cell death. Bortezomib
treatment has also inhibited the growth of melanoma
xenotransplants in vivo, with excised tumors showing
evidence of Noxa protein induction [59, 60]. These
studies suggest that the proteasome helps to maintain
the malignant phenotype of melanoma cells by block-
ing the expression of Noxa and thus hampering the
activation of apoptosis.
Studies of Noxa in human cancer have so far provided
no evidence that Noxa loss contributes to tumori-
genesis. The most comprehensive study of Noxa in
human tumors was conducted by Lee et al. [61]. They
examined the mutational status of Noxa in a large
panel of tumors, including colon adenocarcinomas
(n=78), advanced gastric adenocarcinomas (n=53),
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non-small-cell lung carcinomas (n=86), breast carci-
nomas (n=76), urinary bladder transitional cell
carcinomas (n=33) and heptocellular carcinomas
(n=90). Only one Noxa mutation missense was
discovered in the entire sample set (in a bladder
carcinoma), and the mutation had no functional
impact in vitro.

Bid

Whether loss of Bid expression promotes tumori-
genesis or contributes to drug resistance in humans is
not clear. A large study of Bid protein expression in
prostate, ovarian, colorectal, and brain cancers, and B
cell non-Hodgkin�s lymphomas showed that Bid
expression sometimes increases during tumor pro-
gression but that Bid expression is not related to
chemotherapeutic responsiveness [78]. Likewise, a
recent study of Bid expression in cervical cancer
specimens indicated no relationship between protein
level and sensitivity to radiation treatment [79]. Low
rates of inactivating Bid mutations have been reported
in gastric cancers [80] and reduced Bid expression is
observed in hepatocellular carcinomas [81], but the
significance of these findings is unclear. Bid functions
as a cell death signal amplifier that links various
peripheral death pathways to intrinsic, mitochondrial-
mediated apoptosis [62]. Cytosolic Bid protein is quite
stable until it is cleaved, usually by caspase-8, to form
truncated Bid (t-Bid). This cleavage step is thought to
induce a conformational change that fully exposes the
Bid BH3 domain, thus facilitating activating interac-
tions with Bax or Bak proteins [63-66]. T-bid then
translocates to mitochondria and activates Bax or Bak
to induce apoptosis. Caspase-8 is a component of the
extrinsic apoptosis pathway and is typically activated
following the engagement of the death receptors such
as Fas, TNF-R1 and TRAIL [62]. Consequently, Bid
was initially thought to be specific to death receptor-
mediated apoptosis. However, subsequent studies
revealed that Bid is also subject to cleavage by other
proteases, such as granzyme B [67, 68], calpain [69,
70], and lysosomal enzymes [71, 72], which are
activated in response to a broad range of cell injury
stimuli. Bid-/- mice spontaneously develop a myeloid
hyperplasia that progresses to a malignancy resem-
bling chronic myelomonocytic leukemia (CMML).
Thus, Bid functions as a tumor suppressor in myeloid
homeostasis [73]. However, Bid does not mediate
p53-dependent apoptosis [74– 77].
In melanoma, Bid appears to be important for some
types of drug-induced apoptosis. For example, cispla-
tin-induced apoptosis of melanoma cells seems to
depend significantly on calpain-mediated Bid cleav-

age [70]. The antitumor effects of the flavanoid
compound propolin-C also appear to be mediated by
Bid in melanoma cells [82].

Bim

Bim functions to monitor the integrity of cytoskeletal
structures by inducing apoptosis in response to micro-
tubule disruption. Bim contains a highly conserved N-
terminal dynein light chain (DLC)-binding motif,
allowing it to associate with DLC1, a component of
the microtubular dynein motor complex [83]. Upon
cellular damage, such as UV irradiation, Bim is
activated through phosphorylation by Jun N-terminal
kinase (JNK) [84]. Phosphorylated Bim is released
from the cytoskeleton and translocates to mitochon-
dria, where it antagonizes pro-survival Bcl-2 proteins.
Bim protein stability is reportedly regulated by
extracellular signal-regulated kinase (ERK), which
phosphorylates Bim to promote its ubiquitination and
subsequent degradation via the proteasome pathway
[85 – 87]. Bim is also subject to transcriptional upre-
gulation by the forkhead transcription factor FKHR-
L1 [88] and c-myc [89, 90].
Knockout mouse studies indicate that the major
physiologic function of Bim is to help regulate
lymphoid cell populations, as Bim-/- mice exhibit a
range of hematopoietic abnormalities [91 – 93]. Bim
loss has also been shown to promote malignancies on
tumor-prone backgrounds. In one study, Bim sup-
pressed the tumorigenic growth of epithelial cells
transformed with E1A and dominant negative p53
[94]. In another study, loss of a single Bim allele
greatly accelerated B cell lymphoma development in
c-myc transgenic mice [89]. Consistent with its role as
a microtubule damage sensor, Bim protein rapidly
accumulates in cells treated with the anti-microtubule
drug paclitaxel and Bim-/- tumors are resistant to the
drug [94]. This may explain why H-ras-induced
tumors are paclitaxel resistant; over-expression of
H-ras constitutively activates the MAPK signaling
cascade, which in turn promotes continuous Bim
protein degradation via the ubiquitin-proteasome
pathway [85]. Accordingly, the proteasome inhibitor
Velcade (bortezomib) restores paclitaxel sensitivity
and promotes Bim-dependent tumor regression in
epithelial solid tumors over-expressing H-ras [94].
Studies of Bim in melanoma indicate that it can
mediate specific types of cell death. For example, Bim
may initiate the melanoma-specific apoptosis induced
by certain histone deacetylase inhibitors. A study by
Zhang et al. [95] demonstrated that the histone
deacetylase inhibitor suberic bishydroxamate
(SBHA) induced apoptosis in melanoma cell lines,
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but not in melanocytes. Cytosolic Bim protein trans-
located to mitochondria and associated with Bcl-2
following SBHA treatment, suggesting that Bim is a
key initiator of SBHA-induced apoptosis in melano-
ma cells. Bim is also reported to be a key mediator of
anoikis in epithelial cells [96] and may suppress
anchorage-independent melanoma cell growth. A
study by Jorgenson et al. [97] showed that PMA
promotes proliferation and anchorage-independent
survival of melanoma spheroids, in part by inactivat-
ing Bim and Bad. PMA activates the PKCs, a family of
kinases involved in signal transduction induced by
extracellular stimuli (e.g., growth factors) and the
regulation of cell growth, differentiation, apoptosis,
malignant transformation, and metastasis [98]. Jor-
gensen et al. [97] reported that PMA protected
melanoma spheroids against anoikis by activating
ERK1/2 (via a MEK-independent mechanism), which
in turn inactivated the downstream BH-3 only pro-
teins, Bim and Bad.
Bim mutations in cancer have not been reported.
However, loss of chromosomal region 2q13, contain-
ing Bim, has been observed in mantle cell lymphomas
[99]. Bim protein expression is reportedly absent in
many renal cell carcinomas and in some metastatic
melanoma cell lines [59]. In a recent tissue microarray
analysis of melanoma biopsies, we found that the Bim
expression level declines with increasing stage of
tumor progression (p<0.001), and that Bim over-
expression induces apoptosis of melanoma cells in
vitro [unpublished data]. Zhang et al. [100] reported
that TRAIL-resistant melanoma cells exhibit de-
creased levels of Bim and Bid expression. Incidentally,
such cells are known to have high levels of activated
Akt and ERK1/2, which may account for Bim
suppression [101].

Bmf

Bmf is similar to Bim in that it is also associated with
the cytoskeleton. In the case of Bmf, however, its N-
terminal dynein light chain (DLC)-binding motif
facilitates its sequestration by DLC2, a component
of the myosin V actin motor complex [102]. Bmf is
activated by damage signals such as UV irradiation,
loss of adhesion signaling, and cell detachment
(anoikis). Following these apoptotic stimuli, Bmf is
phosphorylated and becomes detached from the actin
cytoskeleton. Bmf then translocates to mitochondria
where it binds to Bcl-2 survival proteins and promotes
apoptosis. Bmf is expressed in hematopoietic cells and
has also been shown to mediate granulocyte cell death
upon cytokine withdrawal [103]. The chromosomal
location that contains Bmf (15q14/15) is suspected to

harbor a tumor suppressor gene, as loss of this region is
associated with advanced breast cancer, lung, and
colon carcinomas. However, the role of Bmf in cancer
remains poorly defined and there are so far no studies
of Bmf in melanoma [104, 105].

Bad

Bad was one of the first BH3-only proteins identified
[106]. Bad is negatively regulated by phosphorylation
on multiple serine residues in response to growth
factor-induced signals [107]. Under normal condi-
tions, when growth factors are present, Bad is kept
phosphorylated by various protein kinases such as the
90-kDa ribosomal S6 kinase (RSK) [106, 108], Akt
[109, 110], protein kinase A [111], Raf-1 [112], and
p70S6 kinase [113]. Phosphorylated Bad is seques-
tered in the cytosol by 14-3-3 proteins [114]. Upon
growth factor deprivation, Bad is dephosphorylated
and allowed to translocate to mitochondria where it
antagonizes the pro-survival Bcl-2 family members
Bcl-2 and Bcl-XL, and thus promotes apoptosis [115].
Knockout mouse studies highlight the role of Bad in
maintaining the integrity of the hematopoietic system.
Bad-/- mice spontaneously develop diffuse B cell
lymphoma and exhibit an increased incidence of
thymic lymphomas after g-irradiation [116]. Bad-/-

cells also exhibit increased resistance to a combination
of serum deprivation plus any of the following: FasL,
tumor necrosis factor (TNF), or etoposide [116].
Bad is reported to play a crucial role in melanoma-
specific MAPK survival signaling. The Ras-Raf-
MEK-ERK (MAPK) pathway, which promotes cell
differentiation,proliferation, and survival, is frequent-
ly hyperactivated in human melanomas, but not in
normal melanocytes [117 –119]. Eisenmann et al.
[120] showed that dephosphorylation of Bad is the
critical step leading to melanoma cell death induced
by MEK inhibition. They suggest that Bad is phos-
phorylated by RSK, a downstream effector in the
MAPK cascade, and is thus maintained in an inactive
state in melanomas. Accordingly, exogenous expres-
sion of a constitutively active RSK mutant conferred
apoptotic resistance to melanoma cells. Conversely,
exogenous expression of a constitutively active mu-
tant form of Bad sensitized melanoma cells to
apoptosis induced by MEK inhibition.
However, recent studies by Panka et al. [121] indicate
that Bad does not protect melanoma cells from
apoptosis induced by the raf inhibitor Sorafenib
(BAY 43-9006). Although the drug suppressed Bad
phosphorylation, siRNA-mediated knockdown of
Bad did not protect most melanoma cell lines from
the lethal effects of Sorafenib. Therefore, Bad de-
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phosphorylation and mitochondrial translocation
does not appear to mediate raf inhibitor-induced
apoptosis of melanoma.
The PI3-kinase/Akt signaling pathway also regulates
Bad activity. Akt is commonly hyperactivated in
human cancers, due to loss or mutation of PTEN, the
phosphatase that negatively regulates PI3-kinase
[122]. Constitutively active Akt has been detected in
a large proportion (43 – 67%) of malignant melano-
mas [123] and is thought to contribute significantly to
melanoma progression and invasion [123 – 125]. De-
spite the importance of Akt in melanoma, and the fact
that active Akt phosphorylates Bad [109, 110], Bad
has not been shown to play a contributing role in this
disease. Infrequent mutations of the Bad gene have
been described in colon adenocarcinoma [80], but so
far no studies have implicated Bad dysregulation,
mutation, or loss as a factor in melanoma develop-
ment.

Bik

Bik (also called Nbk) expression is induced by several
stress stimuli including genotoxic stresses [126]. Bik is
regulated by phosphorylation (on residues Thr-33 and
Ser-35), which enhances its pro-apoptotic potency
[127]. Blk (the murine orthologue of Bik) is expressed
in a range of hematopoietic cells, including lympho-
cytes, myeloid cells and nucleated erythrocytes. How-
ever, it appears to play a redundant role in apoptosis,
as Blk-/- lymphocytes show no impairment of apoptosis
induced by various stimuli: cytokine withdrawal, the
glucocorticoid dexamethasone, phorbol ester, iono-
mycine, the topoisomerase II inhibitor etoposide, or B
cell receptor [128].
Loss of Bik protein expression, associated with allelic
loss and/or methylation, has been reported in renal
cell carcinomas (RCCs) and may be a factor in RCC
drug resistance [129]. Bik mutations have also been
found in B-cell lymphomas [130].
There has been one study of Bik in melanoma,
conducted by Oppermann et al. [131]. Examination
of Bik expression in 17 melanoma cell lines revealed
that Bik protein was weakly upregulated in melanoma
compared to normal human melanocytes, in which Bik
is undetectable. Exogenous Bik expression induced
apoptosis and enhanced chemosensitivity of SKM13
melanoma cells to etoposide, doxorubicin, and pa-
midronate, as well as CD95 antibody-mediated apop-
tosis. Bik also inhibited the growth of human mela-
noma xenografts by 45% in a nude mouse model.
However, the mechanism of Bik-induced growth
inhibition and apoptosis in melanoma has not identi-
fied. Although Bik has been reported to activate

caspases [126], Opperman et al. found no evidence of
cytochrome c release or caspase activation in mela-
noma cells. Presently, the importance of Bik in cancer
is not fully understood.

Hrk/DP5

DP5 was first cloned as a neuronal apoptosis-inducing
gene in rats [132]. It is widely expressed in embryo-
genesis, during which massive destruction of neurons
occurs to sculpt the developing nervous system. DP5 is
thought to mediate the b-amyloid-induced formation
of neuronal plaques in the brain, associated with
neurodegenerative disorders such as Alzheimer�s
disease [133]. Harakiri (Hrk) (the human homologue
of DP-5) was isolated from a HeLa cell cDNA library,
based on its ability to bind with Bcl-2 [134]. Hrk is
transcriptionally induced by nerve growth factor
(NGF) deprivation, following which it strongly in-
duces neuronal apoptosis [132, 135]. The role of Hrk
in melanoma has not yet been studied. However, Hrk
gene inactivation by methylation has been reported in
gastric and colorectal cancers [136] and by LOH in
astrocytomas and glioblastomas [137].

Conclusion

In summary, BH3-only proteins are key mediators of
the apoptotic response to various forms of cytotoxic
stress. Loss or aberrant expression of BH3-only
proteins (like Puma) may contribute to malignancy
in certain contexts. However, the relative importance
of BH3-only proteins in tumorigenesis, and specifi-
cally malignant melanoma, remains to be clarified.
Despite these unknowns, current knowledge of BH3-
only protein function provides us with some novel
therapeutic possibilities. For example, gene therapy
vectors may be used to forcibly express potent BH3-
only proteins (such as Puma or Bim) and induce
apoptosis in tumor cells. Alternatively, drugs designed
to upregulate specific BH3-only proteins may be used
to sensitize apoptotic-resistant tumors to DNA-dam-
aging agents. Another promising therapeutic option is
the development of BH3-only mimetic compounds. A
recent study by Oltersdorf et al. [138] describes a small
organic molecule, ABT-373, that fits into the BH3
domain-binding pocket present on the surface of Bcl-
2-like proteins. This compound inhibits Bcl-2, Bcl-XL,
and Bcl-w proteins, sensitizes cancer cells to DNA-
damaging agents, and causes regression of certain
tumors in vivo. It will be exciting to see whether a new
class of BH3-only mimetics emerges and whether such
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compounds will be effective in treating apoptosis-
resistant tumors.
As we learn more about the roles of BH3-only
proteins in apoptosis, we will gain a better under-
standing of how dysregulation of these proteins may
contribute to tumorigenesis and how they may be
manipulated towards a therapeutic benefit.
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