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Abstract. Heregulin (HRG) is a soluble secreted
growth factor, which, upon binding and activation of
ErbB3 and ErbB4 transmembrane receptor tyrosine
kinases, is involved in cell proliferation, invasion,
survival and differentiation of normal and malignant
tissues. The HRG gene family consists of four
members: HRG-1, HRG-2, HRG-3 and HRG-4, of
which a multitude of different isoforms are synthe-

sized by alternative exon splicing, showing various
tissue distribution and biological activities. Disruption
of the physiological balance between HRG ligands
and their ErbB receptors is implicated in the forma-
tion of a variety of human cancers. The general
mechanisms involved in HRG-induced tumorigenesis
is discussed.
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Introduction

Heregulin [HRG, also called Neuregulin (NRG), Neu
differentiation factor (NDF), glial growth factor
(GGF), and acetylcholine receptor-inducing activity
(ARIA)] was first cloned and characterized in rat [1,
2] and in human [3] as a putative ligand for the ErbB2
transmembrane receptor tyrosine kinase. However, it
was shown later that ErbB2 functions as a co-receptor,
forming a heterodimer with the actual HRG recep-
tors, ErbB3 and ErbB4, thereby being activated
indirectly upon ligand binding [4-6]. The HRG gene
family consists of four members, HRG-1, HRG-2,
HRG-3 and HRG-4 [3, 7-10], encoding at least 26
different HRG isoforms through alternative splicing
in different species [11]. These different types of HRG
and its isoforms, in general, have different tissue
distributions, variable potencies, different receptor
specificities, and variable biological functions. Indeed,
HRG has been shown to be implicated in develop-
mental processes [12-15], as well as physiological and
pathological processes of the nervous system, the

heart and in epithelial cells of many different organs
{e.g., Schizophrenia (reviewed in [16]), coronary
artery disease [17], cancer (see text)} (Table 1).

While HRG proteins encoded by the HRG-I and
HRG-2 genes bind to and activate both ErbB3 and
ErbB4 receptors, isoforms encoded by the HRG-3 and
HRG-4 gene only induce activation of ErbB4. HRGs
are predominantly expressed in parenchymal organs
and in the embryonic central and peripheral nervous
system [18, 19] and gene transcripts were found in
breast, ovary, testis, prostate, heart, skeletal muscle,
lung, liver kidney, salivary gland, small intestine, brain
and spleen [3]. Mutation of the HRG-1 gene in the
mouse has indicated that it has multiple independent
and essential functions in development. HRG-1
knockout mice die during embryogenesis due to
severe heart malformation and failure in neuronal
cell development [20]. These findings led to a
classification of the HRG family members into neuro-
nal and mesenchymal factors, based on their tissue of
origin [21]. HRGs are involved in the regulation of
cellular proliferation [22-26], differentiation [1,
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Table 1. HRG gene products and their expression in different tissues.
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HRG gene Protein encoded by the HRG gene HRG isoforms Protein expressed in
HRG-1 type 1 HRG /NRG / NDF HRG-1al Neural tissue
HRG-102a Respiratory epithelia
HRG-102b Heart (endocardium)
HRG-1a2c Different organs (epithelial cells)*
HRG-105
HRG-141
HRG-1f2a
HRG-13
HRG-1p4a
HRG-15
HRG-1y
ARIA ARIA-B1 Neural tissue
ARIA- 32 Muscle
HRG-1 type 11 GGF GGF2 Neural tissue
Pituitary
Retinal ganglion
Muscle
HRG-1 type 111 SMDF SMDF Neural tissue
Olfactory epithelium
Retinal ganglion
Heart (endocardium)
HRG-2 HRG-2 HRG-2a Neural tissue
HRG-23
HRG-20w
HRG-2pv
HRG-20*1
HRG-2a0*2
HRG-3 HRG-3 Neural tissue
HRG-4 HRG-4 Pancreas
Muscle

HRG: heregulin; NRG: neuregulin; NDF: Neu differentiation factor; ARIA: acetylcholine receptor-inducing activity; GGF: glial growth

factor; SMDF: sensory and motor neuron-derived factor.

* Breast*, ovary*, testis, prostate*, heart, skeletal muscle, lung*, liver, kidney, salivary gland, small intestine*, brain*, and spleen.
(* Neoplastic pathologies with HRG expression found in these organs).

27-29], migration [30-34], apoptosis and survival [25,
26, 35-38], angiogenesis [39-41] and cell fate [42-44],
depending on the cell type and the HRG isoform.
Regarding the diversity and number of HRG genes
and isoforms, as well as their wide tissue distribution, it
is not surprising that HRG is involved in such a variety
of biological outcomes.

Structure of HRG

HRG genes: isoforms and their relevance in human
cancer

HRG-1. Human HRG-I gene has been mapped to
chromosome 8, in the p22-p11 region [45]. This gene
contains 21 alternatively spliced exons generating a
minimum of 15 HRG isoforms [46], with heteroge-
neous binding affinities to different ErbB complexes
[6]. Based on structural differences in the N termi-
nus, HRG-1 encoded isoforms can be subdivided into
three mutually exclusive groups (Fig. 1). Type I (e.g.,
HRG; acetylcholine receptor-inducing activity,

ARIA) and type II (e.g., glial growth factor, GGF)
isoforms contain an immunoglobulin (Ig)-like do-
main N-terminal to a common epidermal growth
factor (EGF)-like sequence and are referred to as Ig-
HRGs. While type I proteins contain a cytoplasmic
tail as well as an extracellular glycosylation site
between the Ig-like and the EGF-like domain, type 11
proteins lack both of these domains. The third group
of HRG-1 proteins belongs to the type III isoforms
(e.g., sensory and motor neuron-derived factor,
SMDF), containing a cysteine-rich domain (CRD)
N-terminal to the EGF-like domain. These HRG
variants are referred to as CRD-HRGs (reviewed in
[47]). The only exon that is shared by all isoforms is
the one encoding the major part of the EGF-like
domain, encoding four of the six cysteine residues
present in the EGF-like domain.

The EGF-like domain of type I and type I HRG-1
isoforms is preceded by a variable-length sequence
that contains one invariant motif, the Ig-like domain,
and two mutually exclusive domains, which flank the
Ig-like domain on both sides. These are the neuronal
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Figure 1. Heregulin (HRG) 1-4
isoform structures of their pro-
proteins: schematic representa-
tion of coding sequences. In the
HRG-1 gene, three different start
codons may be used, generating
type I HRG1 (heregulin, HRG),
type 11 HRG1 (glial growth fac-
tor, GGF) and type III HRG1
(schwannoma derived growth
factor, SDGF). Ig-like: Ig-like
domain, held together by a cys-
teine bridge; involved in glyco-
saminoglycan binding. EGF-
like: Epidermal growth factor
(EGF)-like domain held togeth-
er by three cysteine bridges;
receptor binding and activation.
sl and s2: Spacer sequences;
glycosylation site in HRG-1
type I proteins. TM: Hydropho-
bic transmembrane sequence;
anchorage in cytoplasmic mem-
brane. C: Cytoplasmic tail; pro-
tein processing and regulation of
apoptosis. Ser/Thr: Serine/threo-
art” nine-rich N terminus of HRG-3
* gene splice variants. a, 3 and vy:
Splice variants of the EGF-like
domain. 1, 2, 3, 4 and 5: Splice
variants of the juxtamembrane
region in HRG-1 isoforms. a, b
and c: Splice variants of the
cytoplasmic tail of HRG-1 type
I variants. a*1, a*2: Truncated
variants within the juxtamem-
brane sequence of HRG-2 pro-
teins, due to a translational fra-
meshift. Red asterisks indicate
the position of stop codons in
HRG-1 and HRG-2 gene splice
variants.

COOH
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cell-specific kringle-domain and the apparently mes-
enchyme-specific glycosylation spacer domain. Fur-
ther structural variation is confined to three domains
C-terminal to the EGF-like domain and defines the
identity of each HRG-1 type I precursor protein [48].
Based on receptor binding affinities and structural
differences in the C-terminal portion of the EGF-like
domain, HRG-1 type I can be subdivided into o,  and
v isoforms, which differ between the fourth and the
sixth cysteine of the EGF-like domain [49]; HRG-1
type II and type III have a 3-kind EGF-like domain
ending. The a and the P isoforms both bind to the
ErbB3 and ErbB4 receptors, with HRG1-f being
more potent than HRGIl-a and showing higher
receptor affinity [50]. While HRG1-y variant has a

longer 5UTR and a longer 3'UTR than HRG1-a, the
protein is truncated after amino acid position 211,
resulting in a protein equivalent to the N-terminal 211
amino acids of HRG1-a. Our data suggest that the
HRG1-y isoform does not bind or activate the
receptors, as shown by addition of recombinant
HRG1-y to different ErbB-expressing breast cancer
cell lines (unpublished data).

The adjacent juxtamembrane processing stretch dis-
plays structural heterogeneity that is denoted by a
number (isoforms 1-5; isoform 3 contains a stop
codon). Lastly, the length of the cytoplasmic tail of
type I HRG-1 downstream to an invariant segment
that includes the transmembrane domain and 157
amino acids, determines the identity of the isoforms as
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a, b or c. Alternatively, there are isoforms that lack the
transmembrane and cytoplasmic domains, like
HRG1-3, which has a stop codon C-terminal to the
EGF-like domain. These isoforms are not glycosy-
lated and are presumably retained intracellularly.
However, their potential functional implication within
the cells remains to be determined.

Although the exact mechanism(s) by which HRG-1
induces malignancy may be distinct for different cell
types, some general aspects are maintained for the
majority of these. Cancer cells that aberrantly produce
HRG-1 are likely to use it in an autocrine manner,
resulting in constitutive activation of their respective
ErbB receptors and the downstream signaling path-
ways. Consequently, this leads to increased prolifer-
ation and invasion of cancer cells, resulting in a more
malignant phenotype (described in more detail later
in this review). However, HRG-1 is suggested to have
a dual function, as it is also described to be involved in
the induction of growth inhibition in various tissues,
which is related to the ability of HRG to induce
apoptosis, differentiation, and cell cycle G2 arrest
(reviewed in [35]). Different HRG1-f3 isoforms were
shown to induce apoptosis [51, 52], whereby both the
extra-and intracellular domains of HRG-1 are re-
quired [53]. Therefore, the difference in the role of
HRG-1 in controlling cell proliferation as well as cell
fate is mainly due to the presence of different HRG-1
isoforms and the variable expression of ErbB recep-
tors.

HRG-2. Human HRG-2 gene (also called DON-1 or
NTAK) encodes 12 exons, coding for six isoforms [8,
54] and was mapped to chromosome 5, in the q23-q33
region. The HRG-2 mRNA is detected mainly in the
nervous system. An alternative splice site within the
EGF-like domain in the HRG-2 gene gives rise to the
a and B forms (Fig. 1), followed by a variable region
between the EGF-like domain and the transmem-
brane domain that is either present (v isoforms) or
absent in the HRG-2 transcripts. In addition to
transmembrane forms, putative secreted forms have
been detected, which show truncation of the proteins
in the C-terminal part of the EGF-like domain due to
translational frameshift events (a*1 and a*2) [55, 56].
Although the overall structure of HRG-2 proteins
resembles that of HRG-1 proteins, the two gene
products differ in their amino acid sequence (se-
quence homology between Ig-like domain: 36 %;
EGF-like domain: 50%; transmembrane domain:
91 %; cytoplasmic domain: 47-89%). Furthermore,
several HRG-1-specific domains/exons were not
identified in HRG-2 proteins, such as the CRD, the
glycosylation domain and the discussed variation in
the cytoplasmic tail.
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As described for HRG-1, HRG2 proteins are also
involved in the induction of cell proliferation as well as
in the control of cell differentiation, depending on the
expression of the appropriate receptors and the HRG-
2 isoforms present [57-59]. Furthermore, HRG-2 has
been proposed to inhibit angiogenesis on the basis of
its ability to inhibit proliferation of endothelial cells
[60]. This effect is not mediated by its EGF-like
domain and may be due to receptor-independent
mechanisms.

HRG-3. The HRG-3 gene was mapped to chromo-
some 10, in the q22-q23 region [61]. Like HRG-2, the
expression of HRG-3 mRNA seems to be restricted to
the nervous system. In contrast to many HRG-1
family members, the extracellular domain of HRG-3
is devoid of Ig-like or kringle domains. Instead, HRG-
3 contains a unique Ala/Gly-rich segment at the N
terminus and a mucin-like Ser/Thr-rich region con-
taining abundant sites for O-linked glycosylation,
upstream of the EGF motif (Fig. 1) [10]. HRG-3 was
found to be expressed in human breast cancer biopsies
[62], and is suggested to be a potential regulator of
normal and malignant breast epithelial cells in vivo
[63].

HRG-4. Aside from HRG-4 possessing a HRG-like
EGF domain, it shares very little sequence homology
to the known HRGs, particularly in the vicinity of the
transmembrane domain, a region where the other
three HRGs exhibit high primary sequence homology
[7]. Unlike other HRGs, which contain a variety of
structural motifs, such as an Ig-like domain, a Cys-rich
region, or a mucin-like domain, HRG-4 contains no
recognizable structural motifs other than the EGF-
like domain (Fig. 1). Expression of HRG-4 mRNA
has only been detected in pancreas and to a lesser
extent in muscle [7]; yet HRG-4 expression was found
in breast [63] as well as bladder cancer [64].

HRG motifs

N terminus. Unlike other secreted proteins, which
have a classic N-terminal signal sequence that targets
the protein to the endoplasmic reticulum for subse-
quent cell sorting, the HRG proteins do not have this
endoplasmic reticulum targeting sequence. Instead,
the HRG isoforms display a variety of other sequen-
ces, which range from hydrophobic stretches in the N
terminus (type II and type III HRG) to signal-anchor
sequences within the transmembrane domain (type I
HRG) (reviewed in [47]), and which are potentially
important for protein trafficking and sorting. Further-
more, the first 23 amino acids of HRG-1 are domi-
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nated by charged residues and contain a sequence
(KGKKKER; residues 13-18) that closely resembles
the consensus sequence motif for nuclear targeting
[65], which was first defined for HRG by Holmes et al.

[3].

Ig-like domain. The most N-terminal two cysteines of
HRG-1 and HRG-2 are linked by a disulfide bond,
and the intervening amino acid sequence was identi-
fied as an Ig-like domain of the C2 type [65, 66].
Although the Ig-like domain is not directly involved in
receptor binding and activation [3, 48], this domain
seems to be essential for efficient interaction of the
EGF-like domain with ErbB receptors [67] as well as
to be important for efficient signal attenuation [68].
Furthermore, the Ig-like domain contributes to the
association of HRGs with the extracellular matrix by
binding to cell surface heparan sulfate proteoglycans
[69],1leading to alocal enrichment of the growth factor
at the site of action [70]. Moreover, we have shown
that this sequence motif is implicated in the stabiliza-
tion of interactions of HRG with intracellular proteins
other than the receptors (e.g., hUBCY9) [2, 71]. In
addition, we identified a second putative nuclear
localization sequence (NLS) within the Ig-like domain
[71], resembling the consensus NLS sequence K-R/K-
X-R/K [72]. Our data demonstrate that either of the
two NLS found in HRG is sufficient for nuclear import
[71].

Spacer domain. Located N-terminal to the EGF-like
domain of HRG-1 type I isoforms, this stretch of 13
amino acids serves as an attachment site for O-linked
and N-linked glycosylation [1]. The region is absent
from neuronal HRG isoforms, suggesting that it is
transcribed from a separate exon. In addition, the
spacer region is N-terminally flanked by a single Ser-
Gly dipeptide that is thought to be a potential site for
glycosaminoglycan attachment [73]. The spacer do-
main may serve as a peptide core to adopt a stiff and
extended conformation to keep adjacent functional
domains, namely the Ig-like domain and the EGF-like
domain, exposed and accessible to molecular inter-
actions.

EGF-like domain. This unit is shared by many trans-
membrane glycoproteins and is defined by six cys-
teines predicted to fold into a typical structure with
three disulfide-linked loops (HRG-1: Cys'"-Cys'®,
Cys’-Cys?"’, Cys*>-Cys**'). The EGF-like motif of
HRG is essential and sufficient for receptor binding
and activation as well as for promoting tumorigenesis
[26]. Deletion mutants consisting only of this domain
fully retain the receptor binding capacity and the
biological activity. Conversely, HRGs lacking this
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domain do not bind to, and are not able to displace,
wild-type HRGs from the receptors [48]. The a/p/y
sequence variation partially alters the amino acid
sequence between the fourth and the sixth cysteine
residues of the EGF-like domain and completely
changes the sequence C-terminal to this motif. The C
terminus of the EGF-like domain is responsible for
differences in receptor binding affinities and conser-
vation of most of the EGF-like domain confers the
same receptor specificity to all HRG proteins. The
binding epitope of HRG for the native receptor
extends across the beta-sheet in the EGF-like domain
and includes residues Leul79, Lys181, Leu209 and
Lys211 of HRG [50, 70, 74]. Another study showed
that a region consisting of HRG amino acids 177-226
is sufficient both for binding and stimulation of
receptor phosphorylation [50]. The p-isoforms bind
to the ErbB receptors with an affinity that is approx-
imately tenfold higher than that of the a-isoforms [48].
Therefore, although the a-isoform and the 3-isoform
share similar protein conformation, they are biolog-
ically distinct. It is suggested that this must be related
to the unique sequence (i.e., structural) difference in
the last disulfide loop in the EGF-like domain and the
C-terminal tail (6 amino acids in length) [50]. These
data further imply that the receptor-binding domain of
HRG molecules resides at the C-terminal region of
the EGF-like domain. In contrast, the HRGY isoform
contains the third known sequence variation in the
EGF-like domain; this splice variant is encoded by the
first 211 amino acids of HRG-1; however, due to a stop
codon after the fourth cysteine residue, the EGF-like
domain is truncated. Furthermore, HRGY lacks the
transmembrane domain and may therefore act intra-
cellularly.

Considering the function of the EGF-like region in
diverse proteins as a motif essential for protein-
protein interaction, our work has shown novel non-
receptor interaction partners of HRG, binding to its
EGF-like motif (e.g., hUBC9, cullin-1, RS cyclophilin,
HDAC2) [71].

Juxtamembrane and transmembrane domain. Most
HRG precursor proteins are synthesized as mem-
brane-associated growth factors, containing a trans-
membrane domain that spans the plasma membrane
once. Membrane anchoring and membrane topology
are influenced by variable hydrophobic transmem-
brane domains and other structural elements [47, 75].
In general, they are oriented in the membrane in a
manner placing the EGF-like domain on the extrac-
ellular face of the plasma membrane where it can
interact with the respective transmembrane ErbB
receptors. Transmembrane HRG proteins can either
act in a juxtacrine way [76], activating ErbB receptors
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as intact transmembrane proteins, or — after being
processed and cleaved as secreted growth factors — act
in a paracrine or autocrine way [77, 78]. The hydro-
phobic membrane-spanning stretch positioned in the
C-terminal half of the HRG molecule is flanked at
both ends with clusters of basic residues that probably
function as transmembrane anchoring sequences.
HRG is proteolytically cleaved in the juxtamembrane
sequence N-terminal to the transmembrane domain
by metalloproteinases [79, 80] to be secreted as a
ligand for the ErbB3 and ErbB4 receptors. A putative
proteolysis site (Lys-Arg) is common to all trans-
membrane forms of HRG. This protein-processing
step has been shown to involve ADAM proteases,
which are major ErbB ligand sheddases [81]. Deletion
of the extracellular juxtamembrane region termed
linker, decreases cell surface exposure of the mutant
proHRG(DeltaLinker), and causes its entrapment at
the cis-Golgi. Furthermore, cell surface-exposed
transmembrane HRG forms retain biological activity,
activating ErbB receptors in trans and also stimulating
proliferation [82]. These data show that the linker is
implicated in surface sorting and the regulation of the
cleavage of transmembrane HRGs, indicating that this
region exerts multiple important roles in the physiol-
ogy of HRGs. The juxtamembrane domain displays
most diversity since five differently spliced HRG-1
variants (1-5) and two HRG-2 isoforms (a*1, a*2)
exist. The HRG-1 juxtamembrane subtypes range in
size from a single amino acid (isoform 2) to 27 amino
acids (isoform 4) and contain in one case a stop codon
(isoform 3).

Cytoplasmic tail. Proper release of HRG functional
proteins requires its cytoplasmic tail [83, 84]. This
relatively long (157 amino acids) and hydrophilic
common part of the HRG-1 molecules is rich in serine
and threonine residues and is followed by two variable
regions (a or b), or by a stop codon (isoform c). The a
isoform extends for an additional 217 amino acids, and
isoform b extends for an additional 39 different amino
acids. The cytoplasmic domains of human, rat and
chicken HRG molecules display a high sequence
identity (>85 %), which implies a functional role for
this long domain. Indeed, one HRG isoform, HRG-
1B2b, was isolated in an in vitro screen for dominant,
apoptosis-inducing genes [52]. The intracellular re-
gion of the HRG-1 precursor was sufficient for the
induction of apoptosis, independent of ErbB receptor.
The HRG-2, -3 and -4 proteins also encode an
intracellular cytoplasmic tail, the function of which
has not been defined yet.

Subnuclear localization domain. HRG proteins were
previously shown to translocate to the nucleus [3, 85].
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We and others have shown that nuclear HRG
accumulates in specific intranuclear domains [71,
86]. Detailed analysis of the structural requirements
showed that the first 79 amino acids of HRG-1 are
necessary and sufficient to direct the protein to
nucleoli and nuclear speckles [86]; our data further
identified an additional domain (amino acids 113-148,
C-terminal of the Ig-like domain), which is also
required for subnuclear localization of HRG-1 pro-
teins [71]. Within this first dot-forming sequence we
identified a putative consensus sequence for SUMOy-
lation [87], (I/L)KXE (amino acids 34-45) [71], which
has been implicated in the regulation of protein
targeting for nuclear import [88]. However, as neither
SUMOylation of HRG nor the functional implication
for nuclear translocation of HRG have been studied
further, this leaves an interesting open question
regarding the mechanism defining nuclear import of
HRG. Indeed, although processed HRG proteins
have a size of around 45 kDa, which is below the
diffusion size for nuclear pore complexes, our results
suggest that either an active import mechanism or an
active nuclear retention mechanism exists for HRG
proteins [71].

HRG acts as a ligand for the ErbB3 and ErbB4
receptors

Most HRG isoforms are synthesized as large trans-
membrane precursor proteins, with the EGF-like
domain connected to the transmembrane domain by
the juxtamembrane linker, which is susceptible to
proteolytic cleavage by metalloproteinases thereby
releasing the HRG ectodomain [79, 80]. Processing of
the pro-HRG at both the N and the C termini
generates the secreted molecule [50, 81] that may
bind to nearby ErbB receptors, acting in an autocrine
or paracrine way (type I and II HRG mainly) [81, 82].
Alternatively, intact transmembrane HRG proteins
may directly activate ErbB receptors, leading to a
juxtacrine type of signaling (mainly type I and type 111
HRG, in addition to other isoforms) [76]. Further-
more, as the Ig-like domain of HRG proteins has been
shown to bind to heparin sulfate proteoglycans and
other highly charged glycosaminoglycans [70], local-
ized at the cell surface and extracellular matrix, this
may provide a way to limit diffusion as well as to
enrich HRG proteins at their site of action. It has been
reported that heparan sulfate binding may alter the
biological activity of growth factors [89].

The ErbB family of receptors and their ligands are
described as a “signaling network”, including an input
layer (ligands, receptors, transactivators); a signal-
processing layer (downstream intracellular adaptor
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proteins, signaling cascades, transcription factors);
and an output layer (biological consequences of ErbB-
ligand interactions, such as proliferation, differentia-
tion, survival) [90]. Each ErbB receptor seems to be
responsible for the control of amplitude and duration
of cellular biochemical reactions [91]. Like with
neural networks, there is convergence and divergence
between the different layers as well as lateral inter-
actions within each of the layers.

The ErbB family of receptor tyrosine kinases is
expressed in a variety of tissues of epithelial, mesen-
chymal and neuronal origin, where they play a
fundamental role in mediating proliferation, differ-
entiation and survival of normal cells [9, 92]. These
receptors have also been implicated in angiogenesis,
cell motility and invasion [93], thereby playing a
pivotal role in human malignancies [94]. The ErbB
family consists of four closely related transmembrane
receptors: ErbB1 (also termed EGFR or HER1),
ErbB2 (also termed HER2 or Neu), ErbB3 (also
termed HER3) and ErbB4 (also termed HER4)
(Fig. 2) [4,95-98]. Structurally, these receptors consist
of an N-terminal extracellular ligand binding domain,
a single transmembrane domain and a large cytoplas-
mic tail with a tyrosine-rich C-terminal region and a
kinase domain [90, 92, 99]. While EGFR serves as a
receptor for EGF, TGFa, HB-EGF, amphirgulin,
betacellulin and epiregulin, ErbB2 is an orphan
receptor with no known high-affinity ligands. ErbB3
and ErbB4 act as receptors for HRG proteins [6]; in
addition, ErbB4 serves as a receptor for betacellulin.
The tyrosine kinase activity of the ErbB receptors is
induced upon ligand binding, leading to receptor
homo- or heterodimerization and subsequent recep-
tor transphosphorylation and activation of down-
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Figure 2. ErbB family of trans-
membrane receptor tyrosine kin-
ases act as receptors of the EGF
family of growth factors. The
cysteine-rich domain in the ex-
tracellular domain of ErbB re-
ceptors acts as a ligand-binding
site. Ligand binding induces ei-
ther ErbB receptor homo- or
heterodimerization, followed by
transactivation of the intrinsic
kinase domain located in the
cytoplasmic tail. ErbB2 is an
orphan receptor with no known
ligand; however, it acts as pre-
ferred heterodimerization part-
ner of all the other ErbB recep-
tors. ErbB3 has an impaired kin-
ase activity and requires dimeri-
zation with other ErbB members
to activate its signaling potential.

HRG-3
HRG-4

© )

44 Bla

stream signaling events [100]. In principle, phosphor-
ylation of growth factor receptors can occur either in
cis (within a receptor) or in trans (between receptors).
trans-phosphorylation occurs between EGFR/ErbB2
dimer partners after stimulation with EGF [101] and
between ErbB2 homodimer partners [102]. Despite
the lack of kinase activity of ErbB3, the phosphor-
ylation of ErbB3 in human cancer cells can be up-
regulated by ligands, indicating that trans-phosphor-
ylation occurred [103]. Although cis-phosphorylation
was thought to be occurring in ErbB2, as well as in
ErbB3 co-expression cells [35], it was not fully clear
whether or not ErbB2 can be cis-phosphorylated in a
heterodimer of ErbB2/ErbB3 or ErbB2/ErbB4. How-
ever, a recent study nicely demonstrates that trans-
phosphorylation, but not cis-phosphorylation occur-
red between ErbB2/ErbB3 and ErbB2/ErbB4 hetero-
dimer partners by HRG-1 stimulation [104].

Signal diversity after receptor activation is deter-
mined through differences in the tyrosine residues
that undergo phosphorylation [105]. Which sites are
autophosphorylated and hence which signaling pro-
teins are engaged, is determined by the identity of the
ligand as well as by the heterodimerization partner
[106]. Furthermore, the subsets of signaling molecules
that couple to an activated receptor undergo time-
dependent changes, suggesting that ErbB receptor
phosphorylation is not static. The fine tuning of this
cascade most probably governs the decision of differ-
entiation or proliferation upon growth factor stimu-
lation [107].

All human ligand-binding ErbBs adopt a tethered
conformation in the absence of ligand. The presence
of this tethered state, in which the dimerization arm is
sequestered, strongly suggests that ErbB3 and ErbB4
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undergo conformational changes following HRG
binding, allowing receptor dimerization and activa-
tion [108]. The tethered contact masks the dimeriza-
tion loop thereby presenting a barrier to the formation
of a high-affinity ligand-binding site. The orphan
receptor ErbB2 adopts a conformation very similar to
the ligand-activated form of ErbBl1, in which the
dimerization loop is constitutively exposed [109, 110].
This conformation of ErbB2 appears to explain its
readiness to partner with each of the other ligand-
bound ErbBs [92].

Binding of HRG to its receptors results in the
autophosphorylation of ErbB4 and the subsequent
formation of ErbB4 homodimers as well as of ErbB4-
ErbB2 and ErbB3-ErbB2 heterodimers [49, 57, 111].
It has to be noted that ErbB3 is not a substrate for
HRG-activated ErbB4 [112]. As ErbB3 has no kinase
activity (kinase dead receptor) [113], it depends on
heterodimerization for its activation after ligand
binding [114, 115];indeed, ErbB2 acts as the preferred
heterodimerization partner of the other ErbB family
members, including ErbB3. The increased potency of
ErbB2-containing heterodimers can be attributed to
three reasons: first, the heterodimers are character-
ized by a relatively slow rate of ligand dissociation
[116]; second, unlike ErbB1, whose rate of ligand-
induced endocytosis is rapid, ErbB2 is a slowly
internalizing receptor [117]; and third, ErbB2 co-
expression increases the fraction of high-affinity
receptors at the cell surface [118]. Thus, signaling by
ErbB2-containing receptor dimers is relatively pro-
longed and results in enhanced activation of signaling
pathways. Indeed, ErbB2-ErbB3, which seems to be
the most potent heterodimer, was shown to be highly
mitogenic [57, 111].

HRG proteins are the only ligands capable of
activating all four ErbB receptors by heterodimeriza-
tion, which allows a broader range of biological effects
induced by these ligands. It has been postulated that
the different cellular responses to HRG are depend-
ent on the complement of ErbB receptors in a
particular cell type and the presence of other ErbB
ligands in the microenvironment [100]. Apparently,
ErbB3 is associated with proliferation, whereas
ErbB4 correlates with a differentiated phenotype
and the two HRG receptors play distinct, rather than
redundant, developmental and physiological roles
[119]. Furthermore, transactivation of other receptors
may contribute to the actions of HRG [49], as shown
in the case of the progesterone receptor [120].
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HRG in human cancer

The interaction between the ErbB tyrosine kinase
receptors and their ligands plays an important role in
tumor growth. Aberrant ErbB receptor activation
may be the result of receptor truncation or mutation,
association with other cell-surface proteins, transacti-
vation via other receptors or the presence of autocrine
loops [121], and has been correlated with cancer
development and progression [90, 122] of a variety of
tumor types [123]. Disrupting this autocrine loop may
provide an important therapeutic measure to control
cancer cell growth [124]. The vast majority of pub-
lications describing the role of HRG in cancer
development focus on the HRG-1 isoforms. However,
the other HRGs may also play a role in malignancy, as
HRG-2, HRG-3 and HRG-4 have been shown to
stimulate cell proliferation, provided the cells express
the appropriate receptors [62, 125]. In the following
section of this review, I focus on HRG-1 proteins, and
unless indicated explicitly otherwise, the terms “here-
gulin” and “HRG” refer to HRG-1 proteins.

While the action of HRG in vivo is typically paracrine,
being expressed in mesenchymal tissues adjacent to
epithelia, epithelial tumors frequently show gain of
expression activating an autocrine loop and/or in-
creased sensitivity to paracrine signaling. It has been
shown in different human cancer cells that the relative
level of ErbB2, ErbB3 and ErbB4 can modulate the
response to HRG, determining whether the response
is stimulatory or inhibitory [126]. Co-expression of
ErbB2 and ErbB3 reconstitutes a high-affinity recep-
tor for HRG, capable of potent mitogenic signaling
[127]. Various studies have shown that HRG-stimu-
lated ErbB3 activation in breast cancer can induce
tumor progression, invasion and metastasis [128-131].
While the ErbB3 receptor seems to have direct
implication in tumor formation by HRG, the function
of ErbB4 in human malignancies remains unclear.
Activation of ErbB4 by HRG can either result in
proliferation or differentiation, most probably due to
the range of signals generated by ErbB4 homodimers
versus heterodimeric complexes with other ErbB
members. Indeed, there is evidence that ErbB4
expression correlates with a more differentiated
tumor grade, longer survival, and positive prognostic
indicators [132-136]. One way HRG/ErbB4 may
impair cellular proliferation or promote differentia-
tion is through induction of a cell cycle delay in the
early phase of mitosis and increased expression of the
tumor suppressor protein BRCAT1 [137], potentially
delaying tumor formation and progression. Moreover,
HRG induction of apoptosis is directly correlated with
decreased MAPK activity, increased JNK activity
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resulting in down-regulation of the ErbB2 [138] and
the stabilization of p53 [139].

Tumor types

HRG has been shown to be involved in different types
of cancer: breast, ovarian, endometrial, colon, gastric,
lung, thyroid, glioma, medulloblastoma, melanoma as
well as head and neck squamous carcinoma. In most of
these tumor types, HRG regulates growth, invasion
and angiogenesis through either overexpression or
activation of an autocrine or paracrine loop. Auto-
crine HRG may give rise to constitutively activated
ErbB2 and ErbB3, protecting these tumors against
apoptosis and generating growth factor independence.

Breast cancer. The growth and progression of breast
carcinomas are regulated by a plethora of signals
mediated by growth factors and steroid receptors.
About 60% of the human breast tumors express
estrogen receptor (ER) and are characterized by a
better prognosis and response to endocrine treatment.
Unfortunately, at some point, most of the initially
responsive patients will fail the endocrine treatment
and will develop more aggressive tumors. The more
aggressive tumors have been correlated with up-
regulation of ErbB2. Co-expression of ErbB2 and
ER in breast cancer cells was shown to confer
resistance to endocrine therapy. HRG was demon-
strated to be required in the morphogenesis and
differentiation of the mammary gland [140]. Impor-
tantly, HRG is overexpressed in about 30 % of breast
tumors that do not overexpress ErbB2 and co-
expression of HRG contributes to ErbB2/ErbB3
activation in an autocrine or paracrine fashion,
inducing malignant transformation of mammary epi-
thelial cells [124, 141]. Various studies suggest that
HRG is involved in the acquisition of a hormone-
independent phenotype [131] and anti-estrogen re-
sistance of breast cancer [142-144], inducing a more
aggressive phenotype. This lead to the proposal of
HRG as a relevant prognostic/diagnostic factor in
breast cancer [145]. In human breast carcinomas, a
higher percentage of ER-negative tumors express
HRG compared to ER-positive tumors [146]. HRG
can overcome the protective effects of ER and at least
a component of this appears to be due to repression of
estrogen-responsive element (ERE)-dependent tran-
scription [147]. Recent studies have demonstrated
that HRG up-regulation alone is sufficient for the
development of mammary tumors and promotion of
metastasis, even in the absence of estrogen stimulation
and independent of ErbB2 overexpression, inducing
hormone independence and anti-estrogen resistance
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via increase of MMP-9 and VEGF in an autocrine
manner [128]. HRG promotes the invasive behavior
of breast cancer cells also by regulating the actin
cytoskeleton, thereby inducing cell motility [148].
Blockage of HRG expression suppresses the aggres-
sive phenotype by inhibiting tumor growth and meta-
stasis [129], highlighting the role of HRG in tumor
progression. It has to be mentioned that several
reports show an anti-proliferative role of HRG,
promoting cell differentiation or apoptosis [51,
149-151], contradicting other studies showing prolif-
erative and mitogenic effect of HRG. Although it is
currently unclear what factors determine whether
HRG acts as a mitogen or promotes cell death and
differentiation, there are studies showing that the
biological response to HRG seems to depend directly
on the level of ErbB2 expression in breast cancer cells
[27, 29, 51, 149, 152-154].

Ovarian cancer. HRG expression was found in the
majority of ovarian carcinomas and cell lines, and a
growth-stimulatory, rather than a growth-inhibitory
role for HRG has been described in human ovarian
epithelial cells, with a potential for autocrine regu-
lation of cell growth. The expression level of ErbB1,
ErbB2, ErbB3 and ErbB4 can profoundly affect HRG
response, with ErbB3 and ErbB2 levels exhibiting the
maximum association with growth stimulation and
ErbB4 having a more complex role [22, 155].

Endometrial cancer. The human endometrium is
perhaps the most dynamic tissue in the body that
undergoes cyclical proliferation, differentiation, and
shedding in response to the female sex hormones, and
persistent and prolonged estrogenic stimulation is a
well-known risk factor of endometrial carcinoma.
While ErbB receptors and their ligands have been
shown to be involved in endometrial maturation,
overexpression of the receptors ErbB3 and ErbB4 and
decrease in HRG1a expression has been described to
induce endometrial adenocarcinoma [156].

Colon and gastric cancer. Although rarely overex-
pressed, ErbB2 is widely expressed at normal levels in
colon cancers, suggesting a possible growth-regulatory
role for this ErbB family member in this disease.
Indeed, HRG co-expression and autocrine activation
of ErbB2 through dimerization with ErbB3 has been
described in colon carcinoma cells, and autocrine
HRG activity was responsible for growth factor
independence [38], providing the cells with a cell
survival mechanism during growth factor and nutrient
depletion. Although HRG, ErbB3 and ErbB4 mRNA
were detected in esophagus, stomach and duodenum
[157], very little is known about the function of HRG
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in the gastrointestinal (GI) tract. There are data
suggesting that HRG may affect epithelial cell pro-
liferation through mesenchymal-epithelial interaction
in the gastric mucosa [158]. Moreover, in gastric
cancer, mRNA for ErbB4 was significantly overex-
pressed. These findings suggest that HRG and its
receptors may be physiologically significant in the
human upper GI mucosa, especially in duodenum, and
that ErbB4 may contribute to the growth of gastric
cancer.

Lung cancer. Expression of ErbB receptors and HRG
is differentially expressed in normal bronchial epi-
thelial and non-small cell lung carcinoma (NSCLC)
cell lines, and it was proposed that a constitutive
activation of ErbB2, ErbB3 and ErbB4 receptors
could be induced by HRG via an autocrine loop
mechanism in human lung carcinogenesis [159, 160].
While ErbB2 gene amplification or 3+ staining by
immunohistochemistry is only present in 2-5% of
patients with NSCLC, ErbB2 expression detectable by
immunohistochemistry is present in about 25% of
NSCLCs [161, 162]. Furthermore, ErbB2 has been
shown to be mutated in a subset of NSCLC [163, 164]
and a recent study has shown that somatic mutations
and overexpression of wild-type ErbB2 found in
NSCLCleads to oncogenic transformation in a murine
NSCLC tumor model [165]. These data suggest that
the ErbB2 receptor plays an important role in the
development of NSCLC, independent of ligand bind-
ing. The EGF receptor is detected by immunohisto-
chemistry in 50-80 % of NSCLCs and is activated by
amplification and/or mutations in a subset of these
tumors [166, 167], providing evidence that these
cancers also require EGFR activity for the mainte-
nance of critical intracellular survival and growth
signaling pathways. Furthermore, it is suggested that
EGFR works in concert with other ErbB family
members, particularly ErbB2 and ErbB3, to activate
these signaling pathways in lung cancers (reviewed in
[168]).

Prostate cancer. While ErbB1, ErbB2, and ErbB3
expression was observed in prostate carcinoma cell
lines, ErbB4 was absent and HRG was expressed only
in an immortalized, non-transformed prostate epithe-
lial line [169]. Furthermore, HRG inhibited prostate
cancer cell growth and induced an epithelial-like
morphological change, mimicking differentiation. Im-
munohistochemical studies in clinical prostatectomy
specimens demonstrate absence of significant HRG
expression in prostate cancer, whereas it is expressed
in 100 % of the stroma, 100 % of basal epithelial cells,
and 58% of luminal cells in normal and benign
hyperplastic prostatic tissue. These data suggest that
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HRG may be a paracrine differentiation factor
involved in normal adult prostate physiology and
that functional loss of the HRG/ErbB paracrine loop
may be an early event associated with prostate
tumorigenesis [170]. However, another study found
overexpression of HRG and ErbB3 in a panel of
human prostate cancer, suggesting a potential auto-
crine loop between HRG and ErbB3 in human
prostatic adenocarcinoma [171]. Indeed, recent data
show that activation of ErbB2 and ErbB3 by HRG
enhances androgen receptor (AR) transactivation and
growth of recurrent prostate cancer cells in the
absence of hormone [172].

Papillary thyroid cancer. Inmunohistochemical anal-
ysis revealed increased levels of HRG in both primary
thyroid tumors and lymph node metastasis, as com-
pared to normal thyroid tissue. However, no associ-
ation was found between HRG protein expression and
clinical parameters. The vast majority of patients
showed nuclear immunostaining of HRG in the
papillary carcinomas but not in the normal adjacent
tissue. Overexpression and nuclear localization of the
HRG were not associated with the expression of ErbB
receptors; this may reflect an unknown mechanism of
HRG action, possibly independent of the ErbB
receptor system [173].

Glioma. HRG is widely expressed in neurons and glia
as well as in gliomas [174], and has been shown to be
implicated in a number of developmental events in
neuronal cells, including enhanced survival, mitosis,
migration and differentiation. Glioma cells may use
autocrine or paracrine HRG signaling to enhance cell
survival, rather than cell proliferation [36, 175].
Moreover, HRG is suggested to play an important
modulatory role in glioma cell invasion, increasing cell
motility through activation of focal adhesion kinase
[33, 176]. However, in glioma, EGFR is frequently
overexpressed, which is often associated with gene
amplification. Furthermore, activation mutation of
EGFR has been commonly observed in glioma. In
contrast, other EGFR family members may be present
but are not commonly amplified, overexpressed, or
mutated in gliomas (reviewed in [177]). This suggests
that these cancers mainly depend on EGFR signaling
for the maintenance of survival and growth signaling
pathways.

Medulloblastoma. ErbB1, ErbB3, ErbB4, and HRG
display specific temporal and topographical distribu-
tion in the cerebellum and normal ErbB/HRG signal-
ing is likely to be mediated by ErbB4. In contrast,
ErbB2, which is expressed in 86 % of medulloblasto-
mas, could not be detected at any stage of cerebellar
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development. This suggests the formation of a HRG/
ErbB2/ErbB4 autocrine loop as an important factor in
medulloblastoma tumorigenesis. Indeed, HRG ex-
pression is observed in 87% of medulloblastoma
primary tumors (cytoplasmic and nuclear), with the
greatest expression levels occurring in tumors with
high ErbB2 and ErbB4 receptor co-expression. Fur-
thermore, the expression of all three components of
the proposed autocrine loop was significantly related
to the presence of metastases at the time of diagnosis
[178].

Melanoma. The HRG/ErbB system is functional in
melanocytes and in the majority of melanoma cell
lines, leading to growth stimulation. ErbB2 over-
expression has been associated with transformation
and invasion of malignant melanoma. Loss of the full-
length ErbB4 receptor in melanoma cells suggests
switches in ErbB signaling pathways, perhaps by
ErbB3 heterodimer formation, with ErbB2 contribu-
ting to the dysregulation [179]. Lack of stimulation by
HRG in some melanoma cell lines is due to the loss of
expression of ErbB3 protein or to a severely impaired
ErbB2 activation. In contrast, the aberrant expression
and secretion of HRG by melanoma cells may serve as
an autocrine and/or paracrine signal, promoting cell
growth and/or migration [180]. Therefore, multiple
deregulations of the HRG/ErbB system found in
human melanoma cell lines have been suggested to
control proliferation and migration of melanoma cells.

Head and neck squamous carcinoma. Different
HRG isoforms induce distinct growth regulatory
effects on cultured keratinocytes, through direct
interaction with ErbB3 [181]. HRG may function
as a paracrine mediator controlling epidermal ho-
meostasis [182] as well as directing initial epidermal
migration during cutaneous tissue repair [183]. The
role of HRG as a motility factor for keratinocytes in
epidermal and mucosal wound healing parallels their
motility and growth induction capacity in carcino-
genesis [184]. Multiple ErbB ligands differentially
modulate proliferation, invasion and expression of
matrix metalloproteinases in human head and neck
squamous carcinoma cells (HNSCC) in vitro [185],
and ErbB receptor signaling is suggested as a critical
element in the pathogenesis and progression of
HNSCC, emphasizing the role of autocrine ligand
production [186].

Pancreatic cancer. The EGF family of ligands and
receptors plays an important role in the pathogenesis
of pancreatic ductal adenocarcinoma and contributes
to its aggressiveness. In vivo, HRG is up-regulated in
pancreatic cancer tissues and localized predominantly
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in the cancer cells. High HRG-f3 levels but not HRG-a
levels are associated with decreased patient survival
[187]. Interestingly, HRGs can also induce pancreatic
cancer cell growth without the presence or activation
of ErbB3 and ErbB4, pointing to a receptor-inde-
pendent role in pancreatic tumor development.

Regulation of HRG in human cancer

Although relative little is known about the mecha-
nisms involved in the regulation of HRG expression,
there are various mechanisms that have been dis-
cussed recently. Overexpression of HRG has been
found in different human cancers [156, 171, 173],
indicating the potential of autocrine regulation. Dif-
ferent growth factors [140, 188] and hormones [28,
189] have been shown to up-regulate HRG expression
in different cellular systems. Furthermore, cross-
induction, i.e., up-regulation of an EGF-like growth
factor following stimulation with a family member
frequently occurs in human carcinomas. As a result,
two or more EGF-like proteins are often co-ex-
pressed, leading to a sustained mutual co-amplifica-
tion mechanism [186]. Other oncogenes may also
induce HRG expression in certain tumor cell lines
[190, 191]. As HRGs are synthesized as transmem-
brane precursor proteins, they have to undergo
proteolytic cleavage; this process has been linked to
multiple metalloproteases of the matrix metallopro-
tease (MMP) and a disintegrin and metalloprotease
(ADAM) family. This shedding can be activated by
various physiological stimuli, linked to the enhance-
ment of metalloprotease activity (reviewed in [192]),
which regulates the availability of HRG in the
extracellular matrix. Indeed, targeting ADAM-medi-
ated ligand cleavage has been shown to inhibit ErbB3
and EGFR pathways in NSCLC [81]. Furthermore,
rearrangements of the HRG gene have been impli-
cated in cancer development. Rearrangement and co-
amplification of the 8p12 and 11q13 chromosomal
regions are found in a significant proportion of breast
cancers giving rise to a mutant HRG fusion gene
(called gamma-HRG), which shows deregulated sig-
naling through the ErbB pathway [193, 194]. Further-
more, novel HRG gene rearrangements have been
described in breast cancer, which are associated with
poor prognosis [195]. Subcellular localization of HRG
may also be involved in the regulation of HRG
activity, as nuclear HRG staining has been shown in
medulloblastoma [178], in papillary thyroid carcino-
mas but not in normal thyroid tissue [173], as well asin
ductal carcinoma in situ of the breast, where the
expression correlates with the tumor grade [196].
Although the significance of intranuclear HRG ex-
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pression remains to be determined, it suggests a novel
mechanism of action for some of the HRG isoforms.
We and others have clearly demonstrated that HRG
localizes to specific subnuclear domains, independent
of receptor binding [71, 86]. This supports the idea
that secretion and subsequent cell surface receptor
binding of HRG are not a prerequisite for nuclear
translocation of HRG, and that non-secreted ligands
may have highly specific activities in defined nuclear
compartments, such as the nucleoli and SC35-positive
nuclear speckles, involved in ribosomal biogenesis and
pre-mRNA splicing [86]. Further evidence for novel
nuclear as well as cytoplasmic functions of HRG arises
from our recent study identifying HRG protein
interaction partners that are expressed in the cyto-
plasm or in the nucleus [71], and which may be
involved in further regulating HRG activity and
function during tumorigenesis.

Nuclear localization has been shown not only for
HRG proteins but also for the ErbB receptors
[197-202]. HRG-mediated activation of ErbB recep-
tors is shown to result occasionally in the nuclear
localization of full-length or cleaved receptors, sug-
gesting direct, receptor-mediated signaling [203, 204].
Indeed, EGFR, ErbB2, and ErbB4 are proposed to
contain transactivational activity, functioning as tran-
scriptional cofactors to activate gene promoters, and
products of these genes are shown to be involved in
tumorigenesis and tumor progression [201, 205-207].
However, our understanding of the functional impor-
tance of nuclear receptors is very limited and con-
troversial. EGFR is shown to be translocated to the
nucleus as an intact receptor; however, the underlying
mechanism and functional relevance remains unclear
(reviewed in [203, 208, 209]). There are other studies
showing that intact receptor tyrosine kinases may be
translocated to the nucleus in a ligand-dependent way;
yet these data do not clearly support an important
signaling role of intact receptor tyrosine kinases in the
nucleus (reviewed in [210]). By contrast, ErtbB4 is
shown to get proteolytically cleaved by a dual-
protease system (TACE/y-secretase) after binding to
HRG [203]. The free cytoplasmic tail of ErbB4
translocates to the nucleus as a presumably active
form [199], which is suggested to be implicated in the
regulation of gene transcription and cell fate [211].

HRG regulates gene transcription. Several HRG-
responsive target genes are known to regulate malig-
nant tumor progression. Increased de novo formation
of vascular systems contributes to tumor progression,
supplying the tumor with oxygen and growth factors
but also providing a system by which tumor cells can
spread to other tissues. Up-regulation of VEGF,
CYR61 and Hif-1a by HRG may have direct impli-
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cation in HRG-stimulated induction of angiogenesis
[212-214]. Other proteins that were up-regulated
following HRG treatment include MMP-9, stromely-
sins, collagenases, adhesion molecule 1 as well as
urokinase plasminogen activator and its receptor [215,
216]. These proteins play a potential role in HRG-
mediated invasion. Furthermore, HRG induces the
expression of transcription factors, a mechanism that
may constitute an important way of HRG-mediated
regulation of a variety of growth-regulating cellular
genes [217-219]. Heat shock protein-70 (Hsp70) is
another of the HRG-inducible gene products found in
human breast cancer cells; since Hsp70 acts as a
molecular chaperone with cell survival function, these
findings suggest that stimulation of Hsp70 expression
is a potential mechanism of protein redistribution in
growth factor-activated cells [220]. Heat shock pro-
teins (HSPs) play a key role in the protection of cells
from apoptosis and the mediation of anchorage
independent growth by HRG, supporting a role for
HRG-induced HSP expression in tumor progression
[221]. HRG-induced stimulation of ErbB receptors
may activate downstream signaling events ultimately
leading to control of gene expression. In contrast,
although no DNA-binding domain has been described
thus far for HRG, this protein may regulate tran-
scription indirectly by recruiting cofactors essential
for transcriptional control. Indeed, in a yeast two-
hybrid screen, we found that HRG interacts specifi-
cally with several proteins implicated in transcrip-
tional regulation [71], supporting the hypothesis that
nuclear HRG may be directly implicated in transcrip-
tional control. In addition, we have shown that HRG
interacts with endogenous HDAC2, a well-known
enzymatic transcriptional corepressor, and shows
transcriptional regulation activity in a reporter gene
assay [222].

Angiogenesis. MMP-9 plays important roles in tumor
invasion and angiogenesis. Secretion of MMP-9 has
been reported in different tumor types. HRG not only
acts as a mitogenic factor, it further activates MMP-9
[130] and induces VEGF expression and secretion in
cancer cells [4], thereby potentially regulating tumor
angiogenesis. HRG also leads to an angiogenic
response that is independent of VEGF in vitro and
in vivo, involving HRG-induced rapid calcium fluxes,
receptor tyrosine phosphorylation, and cell prolifer-
ation of endothelial cells [39]. avp3 integrin over-
expression in tumor-associated vasculature is a mark-
er of poor prognosis. HRG is shown to regulate avf33
levels as well as avf3-triggered signaling in highly
invasive breast cancer cells [223], thereby inducing
cell proliferation and survival.
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Figure 3. Simplified scheme of HRG-induced tumorigenesis. HRG regulates different pathways involved in cancer development, either in
a paracrine, juxtacrine or autocrine way. (1) Regulation of cytoskeletal rearrangements implicated in cancer cell migration and invasion. (2)
Regulation of gene expression by inducing transcription factor activity, or (3) by directly acting on gene transcription. (4) Accumulation
within subnuclear domains (functional role yet to be determined). (5) Interaction with cytoplasmic proteins (mechanism yet to be studied).
(6) Induction of VEGF production and secretion in cancer cells as well as direct activation of ErbB receptor on endothelial cells, inducing
angiogenesis. (7) Induction of proteases implicated in the degradation of the extracellular matrix (e.g., MMP-9), thereby regulating cancer
cell invasion. Local enrichment of HRG at site of action through binding to glycosaminoglycan (GAG) chains. HRG activity ultimately
leads to proliferation and survival of cancer cells as well as of endothelial cells, thereby promoting tumor growth and metastasis.

Invasion. The exposure of cells to growth factors has
been shown to induce cytoskeletal reorganization,
leading to stimulation of cell motility and invasion. In
this context, HRG was shown to promote motility and
invasiveness of cancer cells through the regulation of
autocrine motility factor expression [224]. As the
process of cell migration must involve dynamic
changes in the formation of new focal adhesions at
the leading edge and dissolution of preexisting focal
points, several studies have demonstrated the poten-
tial role of HRG in the regulation of paxillin, a major
component of focal adhesion [225, 226], during HRG-
induced cell shape alterations and motility. In addi-
tion, HRG enhances the formation of lamellipodia,
membrane ruffles, stress fibers and filopodia, which is
accompanied by increased cell migration [227],
through regulation of PAK-1 via PI-3 kinase. Tyro-
sine-phosphorylated ErbB3 is able to directly couple
to PI-3 kinase, a lipid kinase involved in the prolifer-
ation, survival, adhesion and motility of tumor cells
[228], and ErbB3-dependent signaling through
ErbB3/ErbB2 heterodimers is shown to contribute
to metastasis through enhancing tumor cell invasion
and intravasation in vivo [229]. For cells to invade the
neighboring extracellular matrix, a regulated degra-
dation of matrix proteins is required. Multiple signal-

ing pathways have been described to be involved in
the activation of MMP-9 by HRG in human breast
cancer cells [130], leading to enhanced cancer meta-
stasis. In addition, mucins provide a protective barrier
for epithelial surfaces, and their overexpression in
tumors has been implicated in malignancy. Muc4, a
transmembrane mucin that promotes tumor growth
and metastasis, physically interacts with the ErbB2
receptor tyrosine kinase and augments receptor
tyrosine phosphorylation in response to the HRG
[230].

Conclusion

The HRG / ErbB system is involved in various
physiological events, where it plays important roles
in developmental processes and the maintenance of
tissue homeostasis. HRG acts not only as a mitogenic
factor for certain cells, it is also implicated in the
regulation of cell differentiation and the induction of
apoptosis. There is a tightly regulated balance be-
tween the expression of the ligands and their receptors
in these tissues, and deregulation is involved in
malignant tumor progression. HRG-induced -cell
transformation is the result of aberrant signaling
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events, resulting from either constitutive receptor
activation or the presence of autocrine or paracrine
loops involving HRG. There are different mechanisms
of HRG-induced tumorigenesis (Fig. 3): (I) activation
of angiogenesis and invasion; (II) HRG-mediated
regulation of gene transcription inducing expression
of proteins important in cancer progression; (III)
overexpression of HRG leading to activation of an
autocrine loop stimulating proliferation and survival;
and (IV) subcellular localization of HRG (role in
tumor formation yet to be defined). Since HRG
proteins exert their action mainly through receptor
binding, a targeted therapeutical approach to inhibit
HRG-induced tumorigenesis may involve inhibition
of receptor activation through either the use of
monoclonal antibodies, interfering with receptor het-
erodimerization, or the use of selective small molecule
inhibitors, inhibiting receptor phosphorylation and
transactivation.
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