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Abstract

Background: Alzheimer’s disease neuropathologic change (ADNC) is defined by the 

progression of both hyperphosphorylated-tau (p-tau) and amyloid-β (Aβ) and is the most common 

underlying cause of dementia worldwide. Primary age-related tauopathy (PART), an Aβ-negative 

tauopathy largely confined to the medial temporal lobe, is increasingly being recognized as 
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an entity separate from ADNC with diverging clinical, genetic, neuroanatomic, and radiologic 

profiles.

Objective: The specific clinical correlates of PART are largely unknown; we aimed to identify 

cognitive and neuropsychological differences between PART, ADNC, and subjects with no 

tauopathy (NT).

Methods: We compared 2,884 subjects with autopsy-confirmed intermediate-high stage ADNC 

to 208 subjects with definite PART (Braak stage I–IV, Thal phase 0, CERAD NP score “absent”) 

and 178 NT subjects from the National Alzheimer’s Coordinating Center dataset.

Results: PART subjects were older than either ADNC or NT patients. The ADNC cohort 

had more frequent neuropathological comorbidities as well as APOE4 ε4 alleles than the 

PART or NT cohort, and less frequent APOE2 ε2 alleles than either group. Clinically, ADNC 

patients performed significantly worse than NT or PART subjects across cognitive measures, 

but PART subjects had selective deficits in measures of processing speed, executive function, 

and visuospatial function, although additional cognitive measures were further impaired in the 

presence of neuropathologic comorbidities. In isolated cases of PART with Braak stage III-IV, 

there are additional deficits in measures of language.

Conclusion: Overall, these findings demonstrate underlying cognitive features specifically 

associated with PART, and reinforce the concept that PART is a distinct entity from ADNC.
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INTRODUCTION

Alzheimer’s disease (AD) was first described microscopically in the early 20th century 

and is the most common cause of dementia worldwide [1, 2]. Alzheimer’s disease 

neuropathologic change (ADNC) is defined by the presence of hyperphosphorylated-tau (p-

tau) neurofibrillary degeneration, a process which typically proceeds from medial temporal 

lobe structures into the neocortex in well-defined Braak stages [3], amyloid-β plaques 

(Aβ), which proceed from the neocortex to brainstem and cerebellum in Thal phases 

[4], and neuritic plaques (NP) in the neocortex [5]. These features, in particular Braak 

stage, correlate with cognitive status [5, 6], although there is growing evidence that 

some of the cognitive effects associated with this disorder are due, at least in part, to 

coexisting neuropathologic disorders, most commonly including limbic-predominant age-

related TDP-43 encephalopathy neuropathologic change (LATE-NC), Lewy body disease 

(LBD), and cerebrovascular disease (CVD) [7–19].

Primary age-related tauopathy (PART) is thought to be an Aβ-independent tauopathy that 

is primarily restricted to the medial temporal lobe, corresponding roughly from Braak 

stages I–IV in the absence of significant Aβ-deposition [20–24]. “Definite” PART is 

currently defined as Braak stage I–IV in the complete absence of Aβ (Thal phase 0 and 

CERAD NP score “absent”), while “possible” PART is defined as Braak stage I–IV with 
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minimal Aβ deposition (Thal phase 1–2 and/or CERAD NP score “sparse”) [20, 22]. 

Neurofibrillary degeneration in PART is thought to affect the CA2 hippocampal subregion 

early in the disease course, while in ADNC the entorhinal cortex and CA1 subregion 

are more severely affected with relative CA2 sparing [22, 24–26]. Numerous studies have 

also shown that PART subjects differ from subjects with ADNC in terms of APOE ε2 

and ε4 allele frequency [27–31], MAPT haplotype [32], imaging characterization of brain 

atrophy patterns [33, 34], and clinical/cognitive features [27, 31, 35–39]. Clinically, PART 

patients have been shown to have relative preservation of attention, memory, language, 

and visuospatial function until later in the disease course, as well as a slower rate of 

cognitive decline after initial symptom onset compared to patients with autopsy-proven 

ADNC. We and others have demonstrated that cognitive function in subjects with PART 

is not significantly correlated with Braak stage, but rather the presence of hippocampal 

atrophy, white matter pathology, cerebrovascular disease, aging-related tau astrogliopathy 

(ARTAG), the presence and severity of LATE-NC, and the overall hippocampal tau burden 

[22, 27, 40, 41], the latter of which is an observation confirming imaging studies suggesting 

an inverse correlation between medial temporal lobe tau levels, measured with positron 

emission tomography (PET), and cognitive performance [42]. Still, there remains debate as 

to whether PART is a distinct neuropathologic entity or belongs to the early stage of the 

ADNC spectrum [43–45].

In this study, we leverage the National Alzheimer’s Coordinating Center database to 

compare demographics, genetics, neuropathologic features (including an array of comorbid 

disease states), cognitive features, and neuropsychological findings in autopsy-confirmed 

definite PART (n = 208), ADNC (n = 2,884), and “no tauopathy” (NT) (n = 178). We 

demonstrate significant differences in these profiles with and without neuropathologic 

comorbidities, suggesting that PART has a subtle but identifiable clinical correlate, with 

significant differences from ADNC.

METHODS

Case selection and exclusion criteria

For this study, we used the Uniform Data Set (UDS) and Neuropathology (NP) data set 

from the National Alzheimer’s Coordinating Center (NACC), established with funding from 

the National Institute on Aging (U01 AG016976). UDS and NP data were downloaded 

from NACC (https://naccdata.org/). Standardized UDS variable definitions [46] and NP 

variable definitions [47] from NACC were used, as described previously [48, 49]. A total 

of 7,709 unique NACC cases with last patient encounter within the final 24 months of 

life were identified [19]. In total, 3,803 cases were excluded for not having sufficient 

data to determine ADNC level. Of the remaining 3,906 cases, we then excluded 111 

cases with progressive supranuclear palsy (NACCPROG), 72 cases with corticobasal 

degeneration (NACCCBD), 43 cases with Pick’s disease (NACCPICK), 4 cases with MAPT 
mutation (NPFTDT2), 184 cases with other, unspecified frontotemporal dementia (FTD)-

Tau (NPFTDTAU), 70 cases with FTD-TDP (NPFTDTDP), 12 cases with chronic traumatic 

encephalopathy (CTE) (NPFTDT7), 87 cases with prion disease (NACCPRIO), 40 cases 

with amyotrophic lateral sclerosis/motor neuron disease (NPALSMND), 6 cases with Down 
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syndrome (NACCDOWN), 5 cases with multiple system atrophy (NPPDXB), and 2 cases 

with trinucleotide repeat diseases (NPPDXD). Of note, a number of cases had multiple 

exclusionary criteria. Of the 3,270 cases remaining, 2,884 cases had intermediate or high 

level ADNC [5], 208 had definite PART [20, 22], and 178 had no identified tauopathy 

(Supplementary Figure 1). Demographic data on all individuals included in these three 

groups can be found in Table 1.

Neuropathologic variables

ADNC level was determined from the NACC variable NPADNC. In cases where NPADNC 

was not available but other sufficient data were available to determine ADNC, ADNC 

levels were derived from a combination of Braak stage (NACCBRAA), Thal phase 

(NPTHAL), and CERAD neuritic plaque (NP) score (NACCNEUR) [5, 50]. LATE-NC 

stage was assessed using NACC variables NPTDPB (TDP-43 immunoreactive inclusions 

in amygdala), NPTDPC (TDP-43 immunoreactive inclusions in hippocampus), NPTDPD 

(TDP-43 immunoreactive inclusions in entorhinal/inferior temporal cortex), and NPTDPE 

(TDP-43 immunoreactive inclusions in neocortex). Cases were assigned LATE-NC stage 0 

in the absence of TDP-43 immunoreactivity in any region, LATE-NC stage 1 with TDP-43 

immunoreactive inclusions in the amygdala and/or entorhinal cortex, LATE-NC stage 2 

with TDP-43 immunoreactive inclusions in the amygdala and hippocampus proper, and 

LATE-NC stage 3 with TDP-43 inclusions in the amygdala, hippocampus, and neocortex 

[51–53]. Lewy body pathology was assessed using the NACC variable NACCLEWY, where 

absence of Lewy bodies represents stage 0, brainstem predominant is stage 1, limbic is 

stage 2, and diffuse neocortical is stage 3, as previously described [54–56]. Cerebrovascular 

disease was assessed using the presence of infarcts/lacunes (NACCINF), single or multiple 

old hemorrhages (NPHEMO), white matter rarefaction (NPWMR), and moderate to severe 

arteriolosclerosis (NACCARTE), also as previously described [19, 57–61].

Cognitive and neuropsychological variables

Representative cognitive and neuropsychological variables encompassing overall cognition, 

including global Clinical Dementia Rating (CDR; CDR-GLOB), CDR Sum of Boxes 

(CDRSUM), and Mini-Mental State Examination (MMSE; NAC-CMMSE) and more 

specific cognitive domains including attention, processing speed, executive function, 

memory, and language (including both verbal fluency and naming) were assessed as 

previously described [27, 38, 62, 63]. Memory testing consisted of logical memory 

(LOGIMEM) and logical memory recall (MEMUNITS), attention testing consisted of 

digit span forward (DIGIF) and digit span backward (DIGIB), processing speed testing 

consisted of Trail Making Test Part A (TMT-A; TRAILA) and Wechsler Adult Intelligence 

Scale (WAIS) Digit Symbol Substitution Test (WAIS DS; WAIS), executive function was 

represented by Trail Making Test Part B (TMT-B; TRAILB), and language was represented 

by animal list generation/animal fluency (ANIMALS), vegetable list generation/vegetable 

fluency (VEG), and Boston Naming Test, 30 odd items (BNT; BOSTON).

Data analysis

All statistical analyses were performed with GraphPad Prism version 9 (GraphPad Software, 

Inc., La Jolla, CA, USA). All cognitive/neuropsychiatric variables were adjusted by age, 
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sex, and education levels, and z-scores were produced from these data using established 

coefficients and formulas previously described in detail and adjusted by age, sex, and 

education level [64–66]. Differences between age, education, CDR, CDR sum of boxes, 

MMSE, and all neuropsychological variables between groups (NT, PART, and ADNC) were 

evaluated using multiple t-tests. Proportion of cases with gender, race, APOE status, and 

neuropathologic comorbidities were calculated using Fisher’s exact test. False Discovery 

Rate (FDR) correction was used for multiple comparison testing, and statistical significance 

was set at α = 0.05.

RESULTS

Demographic features of NT, PART, and ADNC groups

The ADNC cohort was older on average than the NT cohort (80.2±0.2 versus 78.6±0.5; p = 

0.0496), while the average age of the PART cohort(82.0±0.8) was greater than both the NT 

cohort (p = 0.0006) and the ADNC cohort (p = 0.0203) (Table 1). No significant differences 

were observed in terms of gender, race, or years of education. There was a higher prevalence 

of APOE ε2 alleles in the PART cohort as compared to ADNC subjects (p < 0.0001) and 

NT subjects (p = 0.0425) and a lower prevalence of APOE ε4 alleles compared to ADNC 

subjects (p < 0.0001). The ADNC cohort had a significantly lower proportion of cases with 

at least one APOE ε2 allele (p < 0.0001) and a significantly higher proportion of cases 

with at least one APOE ε4 allele (p < 0.0001) compared to the group without tauopathy. 

In addition, (1.6%), while the ADNC cohort had 305 cases with APOE ε4/ε4 (11.9%; p < 

0.0001) and only 6 cases with APOE ε2/ε2 (0.2%; p = 0.0184).

Frequency and effects of comorbidities on cognition in NT, PART, and ADNC groups

The ADNC cohort had significantly higher frequencies of stage 2–3 (limbic or neocortical) 

LBD as compared to the NT (32.0% versus 6.9%; p < 0.0001) and PART (13.9%; p < 

0.0001) cohorts, and the PART group had significantly higher LBD compared to the NT 

group (p = 0.0308). Similar findings were present with respect to cerebrovascular disease, 

where ADNC had the highest prevalence (56.3%) compared to PART (41.7%) and NT 

(25.0%), as well as with respect to arteriolosclerosis, where ADNC had a prevalence of 

44.0% compared to PART (35.6%) and NT (24.6%) (Table 2 and Fig. 1). No significant 

difference was found in the prevalence of LATE-NC between any of these groups.

Previous studies have shown that comorbid neuropathologic findings have significant 

influence on the overall cognitive state of the patient [7, 8, 11, 12, 14, 15, 17, 19], 

although it is generally unknown to what extent each specific neuropathologic entity 

contributes to cognition in a given patient. In the subjects without tauopathy, LATE-NC 

and cerebrovascular disease both have a significantly deleterious effect on cognition in terms 

of global CDR, CDR sum of boxes, and MMSE (Table 3). Cases with PART alone do not 

differ from the NPI group of cases in terms of CDR, CDR sum of boxes, or MMSE, however 

LATE-NC, LBD, and CVD all cause significant cognitive impairment when combined with 

PART pathology. As expected, patients with ADNC have significantly worse cognition than 

both the no pathology identified (NPI) group and PART group in terms of global CDR, CDR 
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sum of boxes, and MMSE, and the presence of LATE-NC, LBD, and CVD generally causes 

additional cognitive impairment in these patients (Table 3).

Differing neuropsychological profiles in NPI, PART, and ADNC groups

In terms of more detailed neuropsychological analysis of PART in comparison to NPI 

and ADNC subjects, we evaluated representative variables comprising attention, processing 

speed, executive function, memory, and language [62]. When excluding cases with LATE-

NC, LBD, and CVD from the NPI, PART, and ADNC cohorts, the ADNC group had 

similarly worse outcomes across all clinical measures except TMT-A and TMT-B, which 

were statistically equivalent to the PART cohort. The PART cohort was not statistically 

different from the NPI cohort in terms of global CDR (p = 0.5381), CDR sum of boxes 

(p = 0.5838), or MMSE (p = 0.2737); however, PART subjects performed significantly 

worse than NPI patients in terms of processing speed (TMT-A p = 0.0085; WAIS DS 

p = 0.0021) and executive function (TMT-B p = 0.0488) (Table 4). When converting 

the neuropsychological variables to z-scores (Supplementary Table 1), the PART cohort 

performed significantly worse than the NPI cohort in terms of attention (digit span forward 

and digit span backward) and processing speed (TMT-A and WAIS DS). No other memory, 

attention, or language-related variables were significantly different between the PART and 

NT groups.

PART cases with Braak stage III-IV were not significantly different from the NPI cohort in 

terms of global CDR (p = 0.4258), CDR sum of boxes (p = 0.3806), or MMSE (p = 0.3805), 

but did perform significantly worse than NPI cases in terms of processing speed (TMT-A 

p < 0.0001; WAIS DS p = 0.0018), executive function (TMT-B p=0.0013), and language 

(animal fluency p = 0.0016; vegetable naming p = 0.0066; BNT p = 0.0016) (Supplementary 

Table 2). In contrast, few significant differences were observed between PART cases with 

Braak I-II, ADNC cases with Braak I-II, and cases without pathology, although measures 

of attention appear to be selectively worse in ADNC compared to PART (p = 0.0009) and 

TMT-A is worse in ADNC compared to NPI (p = 0.0073) (Supplementary Table 3).

Importantly, neuropathologic comorbidities have variable effects on cognitive and 

neuropsychological performance in PART subjects (Table 5 and Supplementary Table 4). 

Both LATE-NC and LBD have significantly deleterious effect on global CDR, and there 

is a non-significant trend toward worse global CDR in PART patients with documented 

cerebrovascular disease. CDR sum of boxes (and the individual component domains) 

and MMSE are further impaired by LATE-NC, LBD, and CVD. Additionally these 

three comorbid disease processes have variable deleterious effects in terms of memory, 

attention, processing speed, and language function. Notably, the patients with PART and 

LBD performed particularly poorly in terms of processing speed (TMT-A and WAIS DS) 

and executive function (TMT-B), however this may be due in part to visuospatial issues 

associated with LBD or to more selective impairment in motor skills secondary to LBD in 

these patients, especially since subjects with definite PART and brainstem-only LBD (n = 

13) also had significantly worse WAIS DS (30.2±1.1; p = 0.0218) and TMT-B (169.8±20.4; 

p = 0.0169), although they had statistically equivalent TMT-A (59.3±5.1;p = 0.1562), 

without other significant differences in cognitive domains.
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DISCUSSION

In recent years, there has been mounting evidence suggesting that primary age-related 

tauopathy, previously termed “tangle-only senile dementia” and “tangle-predominant senile 

dementia,” represents an entity distinct from AD, rather than simply a precursor to it, 

with studies demonstrating significant differences in the radiologic, neuropathologic, and 

genetic profiles between PART and ADNC [20, 22, 26, 34, 67, 68]. While clinical symptoms 

and cognitive impairment in AD is thought to be most closely related to the topographic 

distribution of p-tau throughout the brain quantified by Braak staging, this does not appear 

to be the case with PART. Instead, the cognitive status in PART patients is determined 

primarily by overall p-tau-burden in the hippocampus, as well as the presence of comorbid 

neuropathologies, including white matter pathology, ARTAG, LATE-NC, and CVD [22, 27, 

40, 41]. Recent studies have shown that while PART does appear to have a deleterious 

effect on cognition, PART patients have a significantly slower rate of cognitive decline after 

becoming symptomatic comparted to patients with ADNC, and have relative sparing of a 

number cognitive domains, including semantic memory, language, and attention [31, 35, 

36, 38]. In this study, we used the NACC dataset to evaluate the cognitive profile of a 

cohort with definite PART, as compared to patients with no identified tauopathy (or other 

neurodegenerative pathologies) and patients with ADNC, and investigated the cognitive 

contributions of some of the more common neuropathologic comorbidities seen in PART.

When excluding LATE-NC, LBD, and CVD as comorbid pathologies, there were few 

significant differences in the cognitive profile between definite PART cases compared 

to NPI cases, including statistically equivalent global CDR, CDR sum of boxes, and 

MMSE tests (Table 4). The PART patients did perform significantly worse in measures 

of processing speed and executive function compared to the NPI cohort, and PART 

patients with Braak stage III-IV also had significantly worse performance in measures of 

language (Supplementary Table 2), while few meaningful differences were noted in patients 

with Braak stage I-II (Supplementary Table 3). Importantly, however, the majority of the 

cognitive features were significantly worse in ADNC than in PART (Table 4), allowing for a 

level of clinical discrimination between the two neuropathologic entities. It is interesting that 

the PART cohort performed worse than the NPI cohort in terms of WAIS CD, TMT-A, and 

TMT-B tests, which were previously shown to be progressively affected by Braak stage in 

PART patients [63]. These tests assess processing speed and executive function, but are also 

dependent on relatively intact visuospatial function, which may be affected in both PART 

and LBD, both of which show an early predilection for the CA2 hippocampal subregion 

[22, 63, 69, 70]. The precise function of the CA2 subfield is unclear, but studies have 

shown that it has functions in social memory [71–73], face-name pair encoding and retrieval 

[74], and visuospatial memory [39, 75, 76], suggesting that the particular cognitive and 

neuropsychological deficits found in this PART cohort may be due, at least in part, to the 

characteristic CA2 neurofibrillary degeneration pattern seen in these patients [22, 24, 25]. 

In addition, ADNC cases with low Braak stage (“early” AD) do not have selective deficits 

in the same cognitive domains as PART (Supplementary Tables 2, 3), suggesting that the 

particular differences in patterns of hippocampal pathology may result in different clinical 

phenotypes, particularly early in the disease course.
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As demonstrated in numerous other studies [7, 8, 10, 11, 13–16, 18, 19], many autopsy-

confirmed cases of ADNC have additional neurodegenerative findings that may affect 

cognition to various degrees. Our results demonstrate that LBD and various forms of CVD 

are more common in ADNC compared to PART and subjects without tauopathy, and more 

common in PART than patients without tauopathy, while the frequency of LATE-NC does 

not differ significantly between these groups (Table 2). These other neuropathologic findings 

further impair cognition in PART, ADNC, and NT cohorts in terms of CDR and MMSE 

(Table 3), and have variably deleterious effects on logical memory, attention, processing 

speed, language, and executive function (Table 5). Interestingly, while the presence of 

LATE-NC and CVD both cause cognitive impairment in subjects with PART, the presence of 

PART does not appear to cause additional cognitive impairment in subjects with LATE-NC 

and CVD, suggesting that these comorbidities may drive the more significant cognitive 

decline in PART patients.

As previous studies have also noted, the APOE profile differs between PART and ADNC 

[30, 31, 36]. In the current population, there are significantly more cases with at least one 

APOE ε2 allele and with two APOE ε2 alleles in the PART population and significantly 

fewer cases with one APOE ε2 and with two APOE ε2 alleles compared to the ADNC 

population. Given the role of APOE in the regulation of Aβ metabolism in the brain, 

the relatively reduced risk for Aβ accumulation with APOE ε2, and the increased risk 

for Aβ accumulation with APOE ε4 [77–79], this differing genetic profile between PART 

and ADNC is not surprising. However, these findings do suggest that PART and ADNC 

may represent distinct disease processes, where the p-tau deposition in PART is driven by 

mechanisms unrelated to Aβ deposition, unlike in ADNC [21, 24]. In addition, the PART 

patients in this cohort have a significantly higher mean age compared to ADNC patients 

(and have been shown to represent the “oldest old” in other cohorts), suggesting that this 

tauopathy does not simply represent “pre-ADNC” which will eventually develop Aβ plaques 

and convert to ADNC [21, 45].

A significant limitation to this study is that the NACC dataset is not representative of 

the general population. Due to collection methods at nation-wide Alzheimer’s Disease 

Research Centers, the cohorts are enriched for patients with more severe neuropathologic 

findings, more frequent and severe dementia, more APOE ε4 alleles, and more rare diseases 

compared to the general population. The population is also enriched for Caucasian patients 

with higher educational status than the general population and lacks a representative number 

control patients. Given the length of time NACC cases have been collected historically 

and the series of revisions to the NP and UDS variables, as well as the identification of 

new pathologic proteins, development of new antibodies, development of new classification 

systems, and recognition of new entities within this time period there are relevant pathologic 

variables which are unassessed for a subset of cases, particularly with LATE-NC, a 

diagnosis only formally codified in 2019 [51]. In addition, the pathologic variables assessed, 

particularly those related to AD pathology, assess primarily the overall distribution of 

pathology throughout the brain to a greater extent than the density or severity of pathology 

within a given region, which has been shown to be a particularly important predictor of 

cognitive status in PART [40, 42].
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Our findings suggest clinical features which may represent the pure contribution of PART 

neuropathologic changes, and provide cognitive and neuropsychological differences between 

PART and AD. While PART cohorts have significantly better overall cognition than ADNC 

cohorts, processing speed and executive function appear to be selectively impaired in PART 

patients. Given the differing patterns of p-tau deposition in the hippocampus of subjects 

with PART and ADNC, as well as the more limited p-tau distribution and lack of Aβ, 

these clinical findings may help to provide functional insight into hippocampal subregions 

and other brain regions, as well as provide insight into mechanisms by which diffuse and 

neuritic Aβ plaques may contribute to cognitive impairment. Overall, these data help to 

further establish PART as an entity distinct from ADNC in terms of demographic, genetic, 

neuropathologic, and clinical features.
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Fig. 1. 
Pie charts demonstrating the relative number of comorbid pathologies in cases with no 

tauopathy, PART, and ADNC.

Walker et al. Page 16

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker et al. Page 17

Ta
b

le
 1

D
em

og
ra

ph
ic

 d
at

a 
in

 in
di

vi
du

al
s 

w
ith

 A
D

N
C

, P
A

R
T,

 a
nd

 n
o 

id
en

tif
ie

d 
ta

uo
pa

th
y

N
o 

ta
uo

pa
th

y 
(N

T
)

PA
R

T
A

D
N

C
P

 (
N

T
 v

er
su

s 
PA

R
T

)
P

 (
N

T
 v

er
su

s 
A

D
N

C
)

P
 (

PA
R

T
 v

er
su

s 
A

D
N

C
)

n
17

8
20

8
28

84
–

–
–

M
ea

n 
ag

e 
(y

)
78

.6
 ±

 0
.5

82
.0

 ±
 0

.8
80

.2
 ±

 0
.2

=0
.0

00
6

=0
.0

49
6

=0
.0

20
3

G
en

de
r 

(M
:F

)
11

0:
68

12
4:

84
15

72
:1

31
2

=
0.

67
72

=
0.

06
25

=
0.

17
04

R
ac

e
=

0.
83

91
=

0.
73

93
=

0.
27

07

 
C

au
ca

si
an

93
.7

%
92

.8
%

94
.3

%

 
A

fr
ic

an
 A

m
er

ic
an

/B
la

ck
4.

1%
5.

3%
4.

5%

 
A

si
an

1.
6%

1.
4%

0.
8%

 
H

aw
ai

ia
n/

Pa
ci

fi
c 

Is
la

nd
er

0.
4%

0.
4%

0.
1%

E
du

ca
tio

n 
(y

)
16

.8
 ±

 0
.8

16
.7

 ±
 0

.6
16

.1
 ±

 0
.2

=
0.

91
91

=
0.

39
86

=
0.

43
11

A
PO

E
 S

ta
tu

s

≥1
 A

PO
E

 ε
2 

al
le

le
15

.7
%

24
.5

%
4.

2%
=0

.0
42

5
<0

.0
00

1
<0

.0
00

1

≥1
 A

PO
E

 ε
4 

al
le

le
12

.4
%

8.
2%

51
.3

%
=

0.
18

03
<0

.0
00

1
<0

.0
00

1

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker et al. Page 18

Ta
b

le
 2

C
om

or
bi

di
tie

s 
in

 in
di

vi
du

al
s 

w
ith

 A
D

N
C

, P
A

R
T,

 a
nd

 n
o 

ta
uo

pa
th

y

N
o 

ta
uo

pa
th

y 
(N

T
)

PA
R

T
A

D
N

C
P

 (
N

T
 v

er
su

s 
PA

R
T

)
P

 (
N

T
 v

er
su

s 
A

D
N

C
)

P
 (

PA
R

T
 v

er
su

s 
A

D
N

C
)

L
A

T
E

-N
C

, S
ta

ge
 2

–3
*

39
.5

%
26

.9
%

27
.0

%
=

0.
12

83
=

0.
08

06
=

0.
99

81

L
B

D
, S

ta
ge

 2
–3

6.
9%

13
.9

%
32

.0
%

=0
.0

30
8

<0
.0

00
1

<0
.0

00
1

C
er

eb
ro

va
sc

ul
ar

 D
is

ea
se

25
.0

%
41

.7
%

56
.3

%
=0

.0
00

4
<0

.0
00

1
=0

.0
00

1

In
fa

rc
t

9.
1%

17
.3

%
17

.5
%

=0
.0

24
3

=0
.0

03
5

=
0.

97
27

H
em

or
rh

ag
e*

5.
6%

2.
1%

7.
8%

=
0.

11
97

=
0.

59
09

=0
.0

05
1

W
hi

te
 M

at
te

r 
R

ar
ef

ac
tio

n*
30

.6
%

22
.0

%
27

.0
%

=
0.

25
80

=
0.

62
36

=
0.

22
41

A
rt

er
io

lo
sc

le
ro

si
s,

 m
od

-s
ev

er
e*

24
.6

%
35

.6
%

44
.0

%
=0

.0
28

8
<0

.0
00

1
=0

.0
27

0

* no
te

: t
he

se
 v

ar
ia

bl
es

 n
ot

 a
ss

es
se

d 
in

 a
ll 

su
bj

ec
ts

.

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker et al. Page 19

Ta
b

le
 3

C
om

pa
ri

so
n 

of
 c

og
ni

tio
n 

in
 c

oh
or

ts
 w

ith
 v

ar
io

us
 c

om
bi

na
tio

ns
 o

f 
ne

ur
op

at
ho

lo
gi

c 
fi

nd
in

gs

G
lo

ba
l C

D
R

C
D

R
 S

um
 o

f 
B

ox
es

M
M

SE

N
o 

Pa
th

ol
og

y 
Id

en
tif

ie
d

0.
9 

±
 0

.1
4.

8 
±

 0
.3

26
.3

 ±
 0

.3

L
A

T
E

-N
C

2.
0 

±
 0

.2
11

.6
 ±

 0
.9

19
.0

 ±
 1

.6

 
p 

(v
er

su
s 

N
PI

)
<0

.0
00

1
<0

.0
00

1
<0

.0
00

1

L
B

D
–

–
–

 
p 

(v
er

su
s 

N
PI

)
–

–
–

C
V

D
1.

3 
±

 0
.1

6.
9 

±
 0

.4
22

.2
 ±

 0
.7

 
p 

(v
er

su
s 

N
PI

)
<0

.0
00

1
<0

.0
00

1
<0

.0
00

1

PA
R

T
0.

8 
±

 0
.1

4.
4 

±
 0

.6
25

.6
 ±

 0
.5

 
p 

(v
er

su
s 

N
PI

)
=

0.
53

81
=

0.
58

38
=

0.
27

37

PA
R

T
 +

 L
A

T
E

-N
C

1.
8 

±
 0

.2
10

.2
 ±

 1
.1

21
.4

 ±
 1

.2

 
p 

(v
er

su
s 

PA
R

T
)

<0
.0

00
1

<0
.0

00
1

=0
.0

00
4

PA
R

T
 +

 L
B

D
1.

7 
±

 0
.2

9.
5 

±
 1

.2
21

.6
 ±

 1
.1

 
p 

(v
er

su
s 

PA
R

T
)

<0
.0

00
1

<0
.0

00
1

=0
.0

00
2

PA
R

T
 +

 C
V

D
1.

3 
±

 0
.1

7.
0 

±
 0

.6
22

.3
 ±

 0
.6

 
p 

(v
er

su
s 

PA
R

T
)

=
0.

07
27

=
0.

00
51

=
0.

00
03

A
D

N
C

2.
0 

±
 0

.0
2

11
.6

 ±
 0

.1
15

.4
 ±

 0
.2

 
p 

(v
er

su
s 

N
PI

)
<0

.0
00

1
<0

.0
00

1
<0

.0
00

1

A
D

N
C

 +
 L

A
T

E
-N

C
2.

3 
±

 0
.1

13
.6

 ±
 0

.3
14

.5
 ±

 0
.5

 
p 

(v
er

su
s 

A
D

N
C

)
<0

.0
00

1
<0

.0
00

1
=

0.
06

51

A
D

N
C

 +
 L

B
D

2.
3 

±
 0

.0
3

13
.2

 ±
 0

.2
13

.3
 ±

 0
.3

p 
(v

er
su

s 
A

D
N

C
)

<0
.0

00
1

<0
.0

00
1

<0
.0

00
1

A
D

N
C

 +
 C

V
D

2.
1 

±
 0

.0
3

12
.1

 ±
 0

.2
14

.8
 ±

 0
.3

 
p 

(v
er

su
s 

A
D

N
C

)
=0

.0
06

2
=0

.0
28

2
=

0.
10

02

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker et al. Page 20

Ta
b

le
 4

C
om

pa
ri

so
n 

of
 c

og
ni

tio
n 

in
 in

di
vi

du
al

s 
w

ith
 p

ur
e 

A
D

N
C

, p
ur

e 
PA

R
T,

 a
nd

 n
o 

id
en

tif
ie

d 
pa

th
ol

og
ie

s

N
o 

P
at

ho
lo

gy
 I

de
nt

if
ie

d 
(N

P
I)

P
ur

e 
PA

R
T

P
ur

e 
A

D
N

C
A

dj
. p

 (
N

P
I 

ve
rs

us
 P

A
R

T
)

A
dj

. p
 (

N
P

I 
ve

rs
us

 A
D

N
C

)
A

dj
. p

 (
PA

R
T

 v
er

su
s 

A
D

N
C

)

G
lo

ba
l C

D
R

0.
9 

±
 0

.1
0.

8 
±

 0
.1

2.
0 

±
 0

.0
2

=
0.

53
81

<0
.0

00
1

<0
.0

00
1

C
D

R
 S

um
 o

f 
B

ox
es

4.
8 

±
 0

.3
4.

4 
±

 0
.6

11
.6

 ±
 0

.1
=

0.
58

38
<0

.0
00

1
<0

.0
00

1

 
M

em
or

y
1.

0 
±

 0
.1

0.
8 

±
 0

.1
2.

0 
±

 0
.0

2
=

0.
25

79
<0

.0
00

1
<0

.0
00

1

 
O

ri
en

ta
tio

n
0.

8 
±

 0
.1

0.
6 

±
 0

.1
1.

9 
±

 0
.0

2
=

0.
25

79
<0

.0
00

1
<0

.0
00

1

 
Ju

dg
em

en
t

0.
8 

±
 0

.2
0.

8 
±

 0
.1

2.
0 

±
 0

.0
2

=
0.

92
21

<0
.0

00
1

<0
.0

00
1

 
C

om
m

un
ity

 A
ff

ai
rs

1.
0 

±
 0

.1
0.

7 
±

 0
.1

1.
9 

±
 0

.0
2

=
0.

05
22

<0
.0

00
1

<0
.0

00
1

 
H

om
e 

&
 H

ob
bi

es
1.

1 
±

 0
.2

0.
8 

±
 0

.1
2.

0 
±

 0
.0

2
=

0.
25

79
<0

.0
00

1
<0

.0
00

1

 
Pe

rs
on

al
 C

ar
e

0.
9 

±
 0

.1
0.

7 
±

 0
.1

1.
8 

±
 0

.0
2

=
0.

25
79

<0
.0

00
1

<0
.0

00
1

M
M

SE
26

.3
 ±

 0
.3

25
.6

 ±
 0

.5
15

.4
 ±

 0
.2

=
0.

27
37

<0
.0

00
1

<0
.0

00
1

M
em

or
y

 
L

og
ic

al
 M

em
or

y 
Im

m
ed

ia
te

 R
ec

al
l

13
.6

 ±
 1

.0
13

.0
 ±

 0
.6

7.
4 

±
 0

.1
=

0.
61

28
<0

.0
00

1
<0

.0
00

1

 
L

og
ic

al
 M

em
or

y 
D

el
ay

ed
 R

ec
al

l
11

.9
 ±

 1
.0

11
.5

 ±
 0

.6
5.

5 
±

 0
.1

=
0.

70
51

<0
.0

00
1

<0
.0

00
1

A
tte

nt
io

n

 
D

ig
it 

Sp
an

 F
or

w
ar

d
10

.9
 ±

 1
.0

9.
1 

±
 0

.5
7.

4 
±

 0
.1

=
0.

22
89

<0
.0

00
1

<0
.0

00
1

 
D

ig
it 

Sp
an

 B
ac

kw
ar

d
8.

7 
±

 1
.1

6.
3 

±
 0

.6
4.

3 
±

 0
.1

=
0.

13
24

<0
.0

00
1

<0
.0

00
1

Pr
oc

es
si

ng
 S

pe
ed

 
T

M
T-

A
42

.2
 ±

 1
.3

51
.2

 ±
 2

.3
58

.1
 ±

 0
.7

=0
.0

08
5

<0
.0

00
1

=
0.

06
90

 
W

A
IS

 D
S

40
.4

 ±
 1

.0
35

.1
 ±

 0
.9

31
.2

 ±
 0

.3
=0

.0
02

1
<0

.0
00

1
=0

.0
14

8

E
xe

cu
tiv

e

 
T

M
T-

B
11

8.
5 

±
 3

.4
13

2.
1 

±
 5

.6
14

9.
1 

±
 1

.6
=0

.0
48

8
<0

.0
00

1
=

0.
05

13

L
an

gu
ag

e

 
A

ni
m

al
s

15
.7

 ±
 0

.3
14

.8
 ±

 0
.6

11
.8

 ±
 0

.1
=

0.
25

79
<0

.0
00

1
<0

.0
00

1

 
V

eg
et

ab
le

s
12

.9
 ±

 0
.3

12
.3

 ±
 0

.4
9.

8 
±

 0
.1

=
0.

27
37

<0
.0

00
1

<0
.0

00
1

 
B

N
T

26
.5

 ±
 0

.3
27

.1
 ±

 0
.4

22
.8

 ±
 0

.1
=

0.
27

37
<0

.0
00

1
<0

.0
00

1

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Walker et al. Page 21

Ta
b

le
 5

C
om

pa
ri

so
n 

of
 c

og
ni

tio
n 

in
 in

di
vi

du
al

s 
w

ith
 P

A
R

T
 a

nd
 v

ar
ia

bl
e 

co
m

or
bi

di
tie

s

P
ur

e 
PA

R
T

PA
R

T
 +

 L
A

T
E

-N
C

A
dj

. p
PA

R
T

 +
 L

B
D

A
dj

. p
PA

R
T

 +
 C

V
D

A
dj

. p

G
lo

ba
l C

D
R

0.
8 

±
 0

.1
1.

8 
±

 0
.2

<0
.0

00
1

1.
7 

±
 0

.2
<0

.0
00

1
1.

3 
±

 0
.1

=
0.

07
27

C
D

R
 S

um
 o

f 
B

ox
es

4.
4 

±
 0

.6
10

.2
 ±

 1
.1

<0
.0

00
1

9.
5 

±
 1

.2
<0

.0
00

1
7.

0 
±

 0
.6

=0
.0

05
1

 
M

em
or

y
0.

8 
±

 0
.1

1.
6 

±
 0

.2
=0

.0
00

6
1.

3 
±

 0
.2

=
0.

05
35

1.
1 

±
 0

.1
=0

.0
37

8

 
O

ri
en

ta
tio

n
0.

6 
±

 0
.1

1.
6 

±
 0

.2
<0

.0
00

1
1.

4 
±

 0
.2

=0
.0

01
6

1.
1 

±
 0

.1
=0

.0
00

6

 
Ju

dg
em

en
t

0.
8 

±
 0

.1
1.

8 
±

 0
.2

<0
.0

00
1

1.
6 

±
 0

.2
=0

.0
01

6
1.

2 
±

 0
.1

=0
.0

05
9

 
C

om
m

un
ity

 A
ff

ai
rs

0.
7 

±
 0

.1
1.

8 
±

 0
.2

<0
.0

00
1

1.
6 

±
 0

.3
=0

.0
01

2
1.

2 
±

 0
.1

=0
.0

00
6

 
H

om
e 

&
 H

ob
bi

es
0.

8 
±

 0
.1

1.
8 

±
 0

.2
<0

.0
00

1
1.

7 
±

 0
.3

=0
.0

01
2

1.
3 

±
 0

.1
=0

.0
00

6

 
Pe

rs
on

al
 C

ar
e

0.
7 

±
 0

.1
1.

7 
±

 0
.2

<0
.0

00
1

1.
6 

±
 0

.3
=0

.0
01

2
1.

1 
±

 0
.1

=0
.0

05
9

M
M

SE
25

.6
 ±

 0
.5

21
.4

 ±
 1

.2
=0

.0
00

4
21

.6
 ±

 1
.1

=0
.0

00
2

22
.3

 ±
 0

.6
=0

.0
00

3

M
em

or
y

 
L

og
ic

al
 M

em
or

y 
Im

m
ed

ia
te

 R
ec

al
l

13
.0

 ±
 0

.6
8.

2 
±

 0
.8

<0
.0

00
1

9.
2 

±
 0

.9
=0

.0
00

8
10

.3
 ±

 0
.6

=0
.0

02
0

 
L

og
ic

al
 M

em
or

y 
D

el
ay

ed
 R

ec
al

l
11

.5
 ±

 0
.6

7.
9 

±
 0

.9
=0

.0
00

6
7.

8 
±

 1
.1

=0
.0

01
4

9.
2 

±
 0

.6
=0

.0
08

2

A
tte

nt
io

n

 
D

ig
it 

Sp
an

 F
or

w
ar

d
9.

1 
±

 0
.5

8.
4 

±
 0

.4
=

0.
11

87
8.

2 
±

 0
.4

=
0.

10
98

8.
0 

±
 0

.3
=

0.
05

11

 
D

ig
it 

Sp
an

 B
ac

kw
ar

d
6.

3 
±

 0
.6

5.
4 

±
 0

.5
=

0.
11

50
5.

5 
±

 0
.3

=
0.

15
37

5.
8 

±
 0

.3
=

0.
43

12

Pr
oc

es
si

ng
 S

pe
ed

 
T

M
T-

A
51

.2
 ±

 2
.3

64
.4

 ±
 6

.2
=0

.0
06

3
68

.5
 ±

 1
0.

3
=0

.0
12

9
59

.9
 ±

 3
.6

=
0.

05
59

 
W

A
IS

 D
S

35
.1

 ±
 0

.9
33

.3
 ±

 0
.4

=
0.

06
56

23
.1

 ±
 1

.4
<0

.0
00

1
30

.1
 ±

 1
.3

=0
.0

03
0

E
xe

cu
tiv

e

 
T

M
T-

B
13

2.
1 

±
 5

.6
15

0.
5 

±
 7

.3
=

0.
05

79
15

8.
2 

±
 1

4.
4

=0
.0

20
2

14
0.

7 
±

 3
.9

=
0.

19
75

L
an

gu
ag

e

 
A

ni
m

al
s

14
.8

 ±
 0

.6
11

.7
 ±

 1
.3

=0
.0

06
3

11
.9

 ±
 1

.0
=0

.0
06

1
13

.3
 ±

 0
.8

=0
.1

52
1

 
V

eg
et

ab
le

s
12

.3
 ±

 0
.4

9.
1 

±
 0

.8
=0

.0
00

1
9.

2 
±

 0
.7

<0
.0

00
1

10
.5

 ±
 0

.5
=0

.0
07

4

 
B

N
T

27
.1

 ±
 0

.4
24

.2
 ±

 1
.1

=0
.0

01
4

26
.6

 ±
 0

.7
=

0.
19

07
24

.8
 ±

 0
.7

=0
.0

08
3

J Alzheimers Dis. Author manuscript; available in PMC 2024 May 30.


	Abstract
	INTRODUCTION
	METHODS
	Case selection and exclusion criteria
	Neuropathologic variables
	Cognitive and neuropsychological variables
	Data analysis

	RESULTS
	Demographic features of NT, PART, and ADNC groups
	Frequency and effects of comorbidities on cognition in NT, PART, and ADNC groups
	Differing neuropsychological profiles in NPI, PART, and ADNC groups

	DISCUSSION
	References
	Fig. 1.
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

