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Abstract. The formation of amyloid fibrils is associated
with several devastating diseases in humans and animals,
including e.g. Alzheimer’s disease (AD) and the spongi-
form encephalopathies. Here, we review and discuss the
current knowledge on two amyloid peptides: lung surfac-
tant protein C (SP-C) and the amyloid β-peptide (Aβ),
implicated in human lung disease and in AD, respectively.
Both these hydrophobic peptides are derived from the
transmembrane region of their precursor protein, and can
transit from a monomeric α-helical state to a β-sheet fib-
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ril. The α helices of SP-C and Aβ are composed of amino
acid residues with inherently higher propensities for β
strand than helix conformation. Their helical states are
stabilized by a membrane environment, and loss of mem-
brane association thus promotes structural conversion
and fibril formation. We speculate that the loss of struc-
tural context for sequences with a high propensity for for-
mation of β sheets may be a common feature of amyloid
formation in general.
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Synthesis, processing and secretion of SP-C

Surfactant protein C (SP-C) is expressed by only one cell
type in the body, the alveolar type II epithelial cell of the
lung [1, 2]. Human SP-C is synthesized in the form of a
197-amino acid integral membrane proprotein (proSP-C)
that is processed to the 35-amino acid mature peptide
within the secretory pathway of the type II cell [3, 4] (fig.
1). The mature peptide (residues 24–58 of proSP-C) en-
codes a signal sequence that anchors the newly synthe-
sized proprotein in the membrane of the endoplasmic
reticulum (ER) orienting the C-terminal peptide (residues
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59–197) in the ER lumen [5, 6]. Two-thirds of the 35-
amino acid mature peptide resides in the transmembrane
domain, while the remaining N-terminal portion is lo-
cated in the cytosol. The latter domain is palmitoylated on
adjacent cysteine residues and is flanked by an N-termi-
nal propeptide (residues 1–23). Trafficking of proSP-C
from the ER to the distal secretory pathway is dependent
on the cytosolic N-terminal propeptide [6, 7]. In contrast,
the lumenal C-terminal domain of proSP-C is dispens-
able for intracellular trafficking and secretion of SP-C.
Trafficking of proSP-C to the multivesicular body in the
distal secretory pathway is necessary for processing to
the mature peptide [3, 6]. Proteases in the lumen of the
multivesicular body remove the C-terminal peptide from
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proSP-C. Cathepsin H has recently been implicated in
this process [8], but the precise number and identity of
proteases involved in maturation of proSP-C is not
known. Inward budding of the limiting membrane of the
multivesicular body results in the release of small SP-C-
containing vesicles into the lumen [6, 9]. Fusion of the
multivesicular body with a lamellar body (a secretory
granule specialized for intracellular storage of surfactant)
leads to incorporation of the internal SP-C-containing
vesicles into the highly packed bilayer membranes of the
lamellar body. The lipid bilayer contents of the lamellar
body, including surfactant protein B (SP-B) and SP-C,
are released into the alveolar airspace where they unravel
and ultimately contribute to formation and maintenance
of a phospholipid rich film (pulmonary surfactant) along
the surface of the epithelium. The N-terminal propeptide,
located in the cytosol or inside the internal vesicles fol-
lowing inward vesiculation of the multivesicular body
limiting membrane, is inaccessible to lumenal proteases.
In the absence of SP-B the N-terminal SP-C propeptide is
not cleaved completely [10]. Thus SP-B may facilitate ac-
cess of lumenal proteases to proSP-C by lysing internal
vesicle membranes [9]. The membranolytic properties of
SP-B in vitro are consistent with this hypothesis [11]. The
clearance kinetics of SP-C from the airspaces are similar
to those for SP-B, suggesting that they cotraffic in the re-
cycling pathway [12]. Internalized SP-B has previously
been shown to localize to endocytic vesicles, multivesic-

ular bodies and lamellar bodies [13]. Collectively, these
results suggest that the multivesicular body plays a criti-
cal role in surfactant homeostasis by integrating the sur-
factant biosynthetic and recycling pathways of the type II
cell.

SP-C mutations and interstitial lung disease

Mutations in the SP-C gene have recently been linked to
familial and sporadic interstitial lung disease (fig. 2). The
index case was diagnosed with interstitial pneumonitis
[14]. DNA sequence analysis of the SP-C gene identified
a mutation of one allele that resulted in loss of 37 amino
acids in the C-terminal part of proSP-C. A separate SP-C
mutation, resulting in substitution of glutamine for
leucine (SP-CL188Q) in the C-terminal propeptide, was re-
cently identified in an extended kindred [15]. Affected
family members exhibited variable onset of disease and
variable phenotype. More recently, missense, splice or
frameshift mutations were identified in 11 infants with
chronic lung disease of unknown etiology [16]. More
than half of these infants had a family history of disease,
and one infant carried a mutation not present in either
parent. Therefore, both sporadic and familial interstitial
lung disease are associated with mutations in the SP-C
gene.
To date, all SP-C mutations except one (SP-C P30L) map to
the C-terminal part of proSP-C. Since removal of the C-
terminal propeptide does not affect intracellular traffick-
ing [6], it is possible that retention in the ER is caused by
misfolding of proSP-C. Consistent with this hypothesis,

Figure 1. Proteolytic generation of SP-C. A linear presentation of
proSP-C is shown at the top, with the part corresponding to the ma-
ture peptide (residues 24–58) marked in red, the N-terminal
propeptide in green and the C-terminal propetide in blue. The mid-
dle figure shows a schematic presentation of proSP-C (right) and
the mature SP-C peptide inserted in a phospholipid bilayer. The
amino acid sequence of human SP-C in one-letter code is shown at
the bottom. The wavy lines represent palmitoyl groups linked to
Cys5 and Cys6, and the underlined part is the discordant stretch.

Figure 2. ProSP-C mutation and lung disease. Immunohistochem-
ical analysis of proSP-C expression in normal human lung tissue
(A) and in a patient with the P30L mutation in one allele of the SP-
C gene (B). Robust immunostaining for proSP-C was detected in
the alveolar type II cells of both lung samples. Inset shows a higher
magnification of proSP-C staining of lamellar bodies in the cyto-
plasm of the alveolar type II cells found in the P30L mutation. Note
that the histopathology of the lung in the P30L mutation is typical
of advanced, chronic, interstitial lung disease with markedly thick-
ened alveolar septa and hyperplastic alveolar epithelium composed
of hypertrophic type II cells. Accumulation of alveolar macro-
phages in the airspaces is also frequently found in the SP-C muta-
tions. Panels A and B are shown at identical magnifications. Mate-
rial and figure provided by Dr Larry Nogee, Johns Hopkins Uni-
versity, Baltimore, MD, and Dr. Susan Wert, Cincinnati Children’s
Hospital Medical Center, Cincinnati, OH, USA.



mature SP-C was not detected in the index patient. In
every case to date SP-C mutations have been detected on
only one allele, and the amount of normal proSP-C is sig-
nificantly reduced in association with SP-C mutations
[14, 16]. This suggests that the affected allele produces a
dominant-negative proSP-C that traps the product of the
wild-type allele in the ER. ProSP-C forms oligomers
[17], and mutant proprotein may sequester wild-type pro-
tein, leading to accumulation and degradation early in the
biosynthetic pathway. 
Several independent studies support a cause-effect rela-
tionship between mutations in the SP-C gene and intersti-
tial lung disease (ILD). Cells transfected with the SP-
CL188Q mutant exhibited slower growth and evidence of cy-
totoxicity [15]. Cotransfection of cells in culture with a
C-terminally truncated proSP-C and wild-type proSP-C
resulted in trapping of both proteins in juxtanuclear com-
plexes resembling aggresomes [18]. Expression of the SP-
C peptide in the absence of both flanking domains in type
II cells of transgenic mice resulted in a profound disrup-
tion of lung morphogenesis, leading to respiratory failure
at birth [19]. A similar phenotype was observed in trans-
genic mice expressing C-terminally truncated proSP-C
[20]. Importantly, lung dysmorphogenesis was associated
with high levels of transgene expression and occurred in
the presence of two wild-type SP-C alleles. These results
suggest that mutations in the SP-C gene lead to aggregates
of misfolded protein that induce cell death during lung de-
velopment. Lower levels of mutant protein may cause a
correspondingly milder phenotype, leading to ILD ob-
served in human patients. Chronic ER stress related to re-
tention of unfolded/misfolded protein may lead to apopto-
sis, for review see [21–23]. This pathway may underlie
disrupted lung morphogenesis in transgenic mice express-
ing SP-C24–58 or C-terminally truncated proSP-C.

Processing of the amyloid precursor protein (APP)

The aggregation of the 40- to 42-residue amyloid β-pep-
tide (Aβ) into toxic species is of importance in
Alzheimer´s disease (AD). Elevated levels of Aβ in the
brain are associated with AD, and transgenic mice over-
expressing human APP develop AD-like lesions [24, 25].
Αβ is generated from its precursor, the 695- to 770-
residue APP, by the sequential activities of β-secretase
and γ-secretase (fig. 3) (reviewed in [26]). APP is sug-
gested to be involved in neurite growth, plasticity and cell
adhesion, but the physiological role for Aβ is unknown
[27]. β-Secretase was identified at the end of the last cen-
tury and dubbed beta-site APP cleaving enzyme (BACE)
[28–31]. This enzyme cleaves APP on the lumenal side,
generating soluble APP and a 99-residue membrane-
bound fragment called C99 (fig. 3A). The nature of the γ-
secratase has been more elusive, but this year it was
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shown that four components are necessary and sufficient:
presenilin, nicastrin, Aph-1 and Pen-2 [32, 33]. This com-
plex cleaves not only APP, but also other type I membrane
proteins such as Notch [34]. Interestingly, the cleavage
appears to take place in the membrane and belongs to a
new concept called regulated intramembrane proteolysis
(RIP) [35]. Presenilin seems to be the component that
mediates the actual cleavage generating Aβ40 and Aβ42,
critically depending on two aspartyl residues [36, 37].
Recently it was shown that APP also is cleaved closer to
the cytosol, between residues 49 and 50 (Aβ numbering),
in a presenilin-dependent manner called ε-cleavage (fig.
3B, C) [38]. This activity generates an APP intracellular
domain (AICD) that translocates to the nucleus. The
Notch receptor is processed in a similar way, and the in-
tracellular domain of Notch is a transcription factor.
Therefore, it has been suggested that also AICD is a tran-

Figure 3. Generation of Aβ from APP. The type I membrane pro-
tein APP can be processed to generate Aβ, or in a non-amyloido-
genic pathway (not shown). The membrane is depicted as a light-
blue box, where the lumenal side faces upwards. In the amyloido-
genic pathway, the first cut is mediated by BACE (A). This cleavage
generates soluble APP (APPs) and a membrane-bound 99-residue
fragment, C99. The next step, γ- or ε-cleavage, is presenilin depen-
dent. The sequential order is not known, and at least two possibili-
ties exist (B and C). In (B), C99 is first γ-cleaved in the middle of
the transmembrane region, generating Aβ42 (or A40). The corre-
sponding C-terminal fragment is then ε-cleaved, producing the
AICD (C50–99) and a short fragment (C43–49). In (C), C99 is
first ε-cleaved close to the cytosol. The scissile bond could in this
case (depending on the thickness of the membrane) be exposed to
water. Next, the resulting Aβ1–49 is pulled out of the membrane
and γ-cleaved. No proteolysis occurs in the membrane in this alter-
native. (D) The amino acid sequence of human Aβ1–42 in one let-
ter code, with the discordant stretch underlined.



scription factor [39]. It is not known whether γ-secretase
cleavage precedes ε-cleavage or vice versa. If the ε-cleav-
age occurs first, membrane-bound Aβ1-49 could be
pulled out and then further processed to Aβ40/42 (fig.
3C). Thus, the γ-cleavage could take place in the lumen,
and intramembrane proteolysis would not be required. 
The processing of APP occurs at several different loca-
tions; the ER, the Golgi apparatus, at the cell surface and
in the endosomal/lysosomal compartment [40–43]. It is
possible that certain organelles generate more toxic Aβ
species than others. For example, the ratio Aβ42/40 is
high in the ER, which like lysosomes contains aggregated
Aβ [44-46]. Not only Aβ, but also its precursor C99, has
a strong tendency to aggregate and form fibrils. It is pos-
sible to generate Aβ-like peptides by nonspecific diges-
tion of fibrils formed by C99 [46, 47]. Thus, toxic Aβ
species might be generated in specific compartments and
in a presenilin-independent pathway [48, 49]. It is possi-
ble that APP, as well as C99, to some extent can oligomer-
ize while still inserted in the membrane and thereby affect
processing [50]. The proteolytic degradation of Αβ has
also been studied, and several candidate proteases are
emerging. Of these, neprilysin and insulin degrading en-
zyme seem to be most relevant [51]. Pharmacological in-
hibition of neprilysin in rat, as well as knockout of the
neprilysin gene in mice, result in brain amyloid accumu-
lation [52, 53].

Amyloid fibril formation by SP-C

SP-C is the smallest of the surfactant proteins and it is
very hydrophobic, not only from the presence of the two
fatty acyl chains but also from the fact that 28 out of the
35 residues are aliphatic, with a pronounced dominance
for valine (fig. 1). The poly-valine part forms an α helix
perfectly matching the size of a fluid bilayer composed of
dipalmitoylphosphatidylcholine, strongly suggesting that
SP-C is a transmembrane peptide [54]. SP-C contains un-
expectedly many valine and isoleucine residues for being
a helical polypeptide, as these residues are branched at
the β-carbon and therefore disfavour α helix formation.
No explanation is available as to why SP-C has such an
unusual molecular architecture; few other transmem-
brane helices are composed of almost exclusively a poly-
valine stretch. One possibility is that the rigidity of the
poly-valine helix is required for SP-C function and can-
not be mimicked by amino acid sequences usually found
in transmembrane helices. 
Although the helical structure of SP-C is stable long term
when inserted into lipid micelles or membranes, it is
metastable in aqueous organic solvents [55]. Once it
forms a nonhelical structure, it does not refold but forms
β-sheet aggregates. The short-term stability of the SP-C
poly-valine α helix stems from tight interactions between
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the valine side chains, giving high activation energy for
SP-C helix unfolding [55-57]. The structural conversion
of SP-C from α-helix to β-sheet aggregates results in for-
mation of amyloid fibrils [58]. A summary of our current
understanding of the conversion from monomeric α-heli-
cal SP-C into fibrils is afforded in figure 4. In this model
monomeric α-helical SP-C converts irreversibly to a non-
helical intermediate that rapidly aggregates into higher-
order structures which eventually form fibrils. It is likely
that removal of SP-C from the membrane promotes ag-
gregation, but high concentrations of SP-C in solution
can also form β-sheet aggregates in the presence of
membrane lipids [59]. The irreversible nature of the first
step is deduced from the lack of detectable hydrogen/deu-
terium exchange in the central part of the SP-C helix, as
observed by nuclear magnetic resonance (NMR) spec-
troscopy and mass spectrometry [55, 60]. The proposal
that unfolding of the helix precedes aggregation is in line
with the observed first-order kinetics of disappearance of
helical SP-C. Formation of SP-C fibrils is not limited to
in vitro situations, but occurs in association with pul-
monary alveolar proteinosis (PAP). In bronchoalveolar
fluid from PAP patients, but not from healthy controls,
abundant insoluble SP-C aggregates which exhibit the
characteristic properties of amyloid by Congo red stain-
ing and electron microscopy can be isolated [58].
Whether these fibrils are formed as a result of altered in-
traalveolar metabolism in PAP, or are involved in the eti-
ology of PAP remain to be established.
Removal of the palmitoyl groups of SP-C reduces the me-
chanical stability and surface activity of SP-C/lipid mix-
tures [61, 62]. Moreover, removal of one or both of the
palmitoyl groups of SP-C in vitro destabilizes the peptide
and results in faster unfolding of the α helix [63]. Di-
palmitoylated SP-C forms fibrils within days, whereas
SP-C in which the palmitoyl groups have been removed
forms fibrils within hours. From NMR data a hydrogen
bond between the carbonyl oxygen of the palmitoyl group
linked to Cys6 and the amide proton of Leu10 was pro-
posed [55]. These data together indicate that the acyl
chains stabilize helical SP-C, and that small differences
in helix stability can influence fibril formation in vitro.

Figure 4. Fibril formation by SP-C. In its native state, SP-C is a
membrane-bound α helix. After unfolding SP-C does not refold but
aggregates into β-sheet polymers and amyloid fibrils. The electron
micrograph shows fibrils, composed predominantly of SP-C, iso-
lated from a patient with pulmonary alveolar proteinosis.



SP-C in the PAP-associated fibrils is partly nonpalmitoy-
lated, while it is dipalmitoylated in bronchoalveolar
lavage fluid from healthy individuals [58, 64]. The in-
creased amount of nonpalmitoylated SP-C found in PAP-
associated fibrils could be due to its increased rate of
transformation from an α-helical monomeric state into
aggregated β sheet. Removal of the labile thioester-bound
SP-C palmitoyl groups in vivo may thus destabilize the
peptide, leading to increased aggregation, which poten-
tially could be important in a variety of lung diseases. The
disease-associated mutations in the C-terminal flanking
domain of proSP-C described above lead to severe alter-
ations in protein trafficking and trapping of proSP-C in
the ER. Since retention in the ER is expected to prevent
palmitoylation of proSP-C, this may lead to reduced sta-
bility of proSP-C. It is likewise conceivable that the
metastable nature of mature SP-C affects the stability of
proSP-C, and it is possible that the flanking proSP-C do-
mains are important for preventing aggregation of the
part corresponding to the mature peptide during synthe-
sis, folding and processing. These issues appear to be im-
portant topics for further experiments. 

Aβ aggregation

Extracellular amyloid deposits of Aβ are the hallmark of
AD. Aβ is expressed in most cells, but the Aβ plaques are
only found in the brain. The in vitro aggregation of Aβ
into fibrils is highly concentration dependent, and forma-
tion of an oligomeric seed has been suggested to be the
rate-limiting step [65]. The endogenous levels of Aβ are
magnitudes lower than those used for in vitro polymer-
ization studies, and the mechanism for in vivo polymer-
ization of Aβ is still unclear. Several different factors,
such as high local concentration of Aβ, interaction with
membranes, metal ions, low pH or interaction with other
proteins (pathological chaperones) could promote in vivo
polymerization [66]. 
Several different proteins have been shown by immuno-
staining to be associated with amyloid plaques. Of these,
α1-antichymotrypsin and apolipoprotein E (ApoE) are
among the most extensively studied. Their effect on Aβ
aggregation is not fully understood, but studies in trans-
genic mice overexpressing α1-antichymotrypsin or ApoE
show that they increase the amyloid burden [67, 68].
Serum amyloid P is a plaque component found in all amy-
loidoses. In this case, the protein seems to be important
for maintenance of the plaque, rather than affecting the
initial polymerization [69, 70]. The second AD plaque
component to be sequenced was NAC (non-Aβ compo-
nent of AD amyloid), later identified as α-synuclein [71].
This protein is the main constituent of Lewy bodies, ag-
gregates that are found in several neurodegenerative dis-
orders, including AD and Parkinson’s disease [72]. The

presence of α-synuclein in amyloid plaques is debated,
and it is possible that copurification of Lewy bodies and
amyloid plaques complicate interpretations.
Different proteoglycans are associated with the amyloid
plaques. Negatively charged groups in the glycosamino-
glycan chain seem to be more important than the core
protein for the interaction with Aβ. In the case of heparan
sulfate, the length of the sugar polymer, and the number
and position of the sulfate groups are critical for interac-
tion with Aβ. The saccharide moiety is sufficient for af-
fecting Aβ polymerization, likely by interactions between
the sulfate groups and positively charged side chains in
Aβ. Under certain conditions, Aβ and heparan sulfate
form spherical structures with the same tinctorial proper-
ties as ex vivo plaque cores [73, 74]. Possibly, heparan
sulfate acts as a scaffold and affects the ordering of the
amyloid fibrils, and inhibiting these interactions by short
saccharides has been suggested as amyloid therapeutics
[75]. Also, the interaction between Aβ and phospholipids
has an electrostatic component. In addition, hydrophobic
interactions are involved, and it is not clear whether the
peptide inserts into the membrane or acts at the surface.
There are several possible mechanisms for the increased
polymerization of Aβ in the presence of the phospho-
lipids. One is increased Aβ concentration at the lipid sur-
face, another is that the lipids induce conformational
changes in Aβ and a third possibility is that they favour
the alignment of Aβ molecules in an amyloid-promoting
way [66, 76].
Metal ions are found in plaques, and transgenic mice ex-
pressing human APP show a reduced amyloid burden af-
ter treatment with metal chelators [77, 78]. It is possible
that metal ions coordinate the histidine residues in Aβ and
induce a conformational change. Aβ aggregation is in-
creased at low pH (as in endosomes and lysosomes), and
in this case protonation of the histidines may affect ag-
gregation. Thus, there are several possibilities for Aβ to
form aggregates despite its seemingly low concentration
in vivo.
Numerous studies have shown that Aβ becomes neuro-
toxic upon polymerization. Early studies indicated that
fibrils were the toxic species [79], but recent work shows
that soluble polymeric aggregates are the toxic species
[80, 81]. The use of different systems for studying toxic-
ity may contribute to the discrepancy, as could the fact
that it is difficult to isolate a certain aggregation state 
of Aβ. Low molecular weight aggregates are in rapid
equilibrium with monomers and dimers, and fibrils are
also dynamic structures [82, 83]. Interestingly, soluble
oligomers may be the primary toxic species of amyloids
in general [84]. An antibody recognizing oligomeric, but
not fibrillar or monomeric A, inhibited toxicity in vitro
[85]. This antibody also recognized oligomers of several
other amyloidogenic polypeptides and inhibited their in
vitro toxicity. Thus, amyloidogenic oligomers have a
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common sequence-independent epitope and it is possible
that they also share a common mechanism of toxicity. 
It is of interest to note that mutations linked to AD either
increase the amount of the longer, more hydrophobic and
more amyloidogenic Aβ42 [86], or give rise to a peptide
with altered amino acid sequence. In the first case, the
favoured hypothesis is that more Aβ42 increases the rate
of aggregation. In contrast, the residue substitutions ap-
parently alter peptide aggregation characteristics and give
rise to different pathologies, in most cases with a more
pronounced vascular component [87, 88]. These muta-
tions are all located to the central part of Aβ, A21G,
E22G, E22Q, E22K and D23N. The mutations either in-
crease the flexibility (A-G, E-G), increase the hydropho-
bicity (E-Q and D-N) or bring the net charge closer to
zero (E-G, E-Q, E-K and D-N). It is not clear why these
mutations render a vascular localization of the amyloid.
The arctic mutation, E22G, stabilizes a toxic intermediate
structure called protofibrils [88]. Thus, single substitu-
tions in the Aβ sequence can alter the localization of the
amyloid deposits, the rate of polymerization and the type
of aggregates formed. A green fluorescence protein-A fu-
sion construct was used for an unbiased search for se-
quence determinants of Aβ amyloidogenesis. Amino acid
substitutions that prevented aggregation of Aβ clustered
mainly in the regions covering residues 17–19, 31–32,
34–36, and 39–42 [89]. Most of the mutations replaced
unpolar residues with polar, suggesting that solubility is
one key determinant for Aβ aggregation. However, re-
placements not predicted to enhance solubility, e.g.
V18A, F19L, I32V, were also found to reduce aggrega-
tion. V → A and F → L may influence aggregation by de-
creasing the β-strand propensity (see further below).

Molecular mechanisms in amyloid fibril formation

Amyloid fibril formation is promoted under conditions
where conformations present during unfolding are well
populated. The process of fibril formation may include
local unfolding of the native protein, or dissociation of a
multimeric protein, leading to exposure of regions which
are prone to self-associate, intermolecular association
leading to formation of oligomers, further structural re-
arrangement leading to increased β-sheet content and ac-
quisition of a cross-β-sheet structure and polymerization
into fibrils.
The ability to form amyloid fibrils is not limited to the
proteins that form amyloid in human and mammal dis-
ease. Similar fibrils can be formed in vitro from virtually
any protein under partly denaturing conditions and at
high concentrations [90, 91]. In vitro fibril formation of a
globular protein and of short peptides can be modulated
by changes in the amino acid sequence [92–94]. Al-
though many peptide sequences form a cross-β-sheet

structure under certain conditions, the ability to do so un-
der physiological conditions is apparently limited to a few
proteins. This raises the question of what distinguishes
the small number of proteins that form amyloid under
physiological conditions. 
Synthetic peptides with the SP-C amino acid sequence,
which has a high β-strand propensity, are inefficient in
helix formation and form insoluble aggregates. Replac-
ing the poly-valine sequence of SP-C with sequences
with high helical propensities yields helical peptides [54,
95]. Thus α helices for which β strands are predicted may
be prone to undergo α helix → β strand transition and
amyloid formation. Sequences seven residues or longer
showing discordance between experimentally determined
α helices and predicted β strands were found in 3% of
nonhomologous proteins [96]. These α /β discordances
include helix 2 of the prion protein, Aβ (residues 16–23),
and SP-C (residues 12–27). The native states of the prion
protein and SP-C are metastable [55, 97]. The discordant
helix of SP-C contributes to the metastability, while for
the more complex prion protein it is not established to
what extent helix 2 contributes to the metastability.
Residues 16–20 of Aβ are essential for Aβ intermolecu-
lar contacts and fibril formation, and destabilization of a
helix covering residues 11–24 (in particular residues
17–24) is critical for α-helix → β-sheet conversion and
fibril formation [98, 99].
Secondary structure predictions indicate that by replac-
ing valines in the SP-C discordant helix with leucines
should give stable α-helical peptides [96]. Such a peptide
forms an α helix experimentally and does not form β-
sheet aggregates or fibrils [60]. Likewise, the ability of
Aβ to form fibrils can be modulated by residue ex-
changes that favour helix formation. For example, the
mutations K16A/L17A/F20A [98] and V18A [100] abro-
gate fibril formation in vitro and these changes reverse
the discordant nature of the 16–23 region of Aβ. More-
over, placement of residues that favour β-strand confor-
mation (F or V) in the X positions in the tetrapeptide
KXXE promotes fibril formation, while L or A in the
same positions give random coil structure and no fibril
formation [93]. Also, in short oligopeptide segments de-
rived from the fibril-forming peptide calcitonin, F
favours fibrillation and A prevents it [94]. 
For both Aβ and SP-C, removal of the discordant nature
by residue replacements thus abrogates fibril formation
in vitro, suggesting that increasing the helical occupancy
can reduce the tendencies of fibrillogenic polypeptides to
form amyloid fibrils. This hypothesis is supported by the
findings that optimal stabilization of helical Aβ by addi-
tion of trifluoroethanol prevents fibril formation [101].
However, partial stabilization of the helical structure of
Aβ instead accelerates formation of β-sheet aggregates
and fibrils, and transient formation of the α-helix struc-
ture from unstructured Aβ was observed before forma-
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tion of β-sheet structure and fibrils [102]. This led the au-
thors to suggest that partially helical forms of Aβ may be
on-pathway to fibril formation. In these studies full-
length Aβ peptides were used, in which both the central
and the C-terminal parts can form helical structures. It
should be noted that addition of trifluoroethanol will
favour peptide hydrogen bonding in general. Further
studies are required to determine how stabilization of dif-
ferent helices in Aβ affects fibril formation. 

Conclusions and open questions

A growing number of proteins have been shown to be
able to lose their native structure and form insoluble amy-
loid fibrils. This is associated with a number of severe
diseases but can also occur in vitro under partly dena-
turing conditions. Proposed determinants underlying
metastability and fibril formation include solubility,
charge state and electrostatic interactions, hydrophobic
interactions, destabilizing mutations, specific side-chain
interactions and conflicts in tertiary structures and local
secondary structure propensities. Similarities between
Aβ and SP-C regarding membrane localization and pro-
cessing suggest that removal of peptides from their mem-
brane-associated states can result in loss of a stabilizing
environment with concomitant aggregation and fibril for-
mation. SP-C and Aβ clearly represent special cases and
differ in amino acid sequence and site of expression, but
the apparent similarities in the mechanisms underlying
fibril formation of these two polypeptides suggest that
loss of stabilizing interactions may be involved in fibril
formation of other polypeptides as well. The loss of a sta-
bilizing environment can be caused by different factors
such as (i) proteolysis and release of fibrillogenic pep-
tides from nonmembrane regions; (ii) exposure of hy-
drophobic regions and unpaired β strands as a result of lo-
cal unfolding and (iii) loss of protein subunit interactions,
as exemplified by dissociation of the transthyretin tetra-
mer into monomers [103, 104]. In the latter case certain
mutations shift the equilibrium from the native tetramer,
resulting in a loss of stabilizing structural context for the
liberated monomers, which in turn can form fibrils.
Many different factors affect fibril formation, among
those the primary structure of the aggregating peptide.
Since the amyloid fibrils and oligomers seem to be ho-
mogenous in terms of protein composition, the side
chains are important for selection of the polypeptides to
be incorporated. However, the only true common denom-
inator of amyloid-forming peptides is the peptide back-
bone. Oligomers formed by several polypeptides share a
common antibody epitope. Also in this case the only
common denominator appears to be the polypeptide
backbone. Since the antibody was reactive only to
oligomers and not to fibrils or monomers, the conforma-

tion of the backbone differs between these entities. Fibrils
have a common β sheet structure. Thus, both amyloido-
genic oligomers and fibrils have specific and different
structures which are dictated by the backbone. These fea-
tures suggest that a common approach could be used for
prevention and treatment of amyloid disease. Alterna-
tively, specific stabilization of the native non-fibrillo-
genic conformations, rather than blocking peptide poly-
merization, may be explored as a means to prevent amy-
loid diseases.
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