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Abstract. Proteasome-mediated proteolysis of defined
target proteins is an important regulatory mechanism,
which contributes to control of various essential path-
ways and programs of the eukaryotic cell. Here, I de-
scribe basic principles and mechanisms of regulatory
proteolysis as observed in a prominent model cell, the
yeast Saccharomyces cerevisiae. Selective proteolysis is
important for balancing of a cell’s proteins. It is used to 
directly limit or neutralize enzymes in response to de-
fined signals. Proteasome-mediated degradation is also
crucial for the regulation of gene transcription. Elimina-
tion of transcription factors as well as mobilization of
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transcriptional activators by limited proteolysis is in-
volved in negative and positive control of transcription.
Moreover, recent data indicate that the proteasomal
degradation system may be spatially linked to the tran-
scription machinery. Selective proteolytic destruction of
regulators and structural proteins is an essential regula-
tory mechanism ideally designed for the regulation and
correct execution of unidirectional processes as are the
cell division cycle or the program of apoptotic cell 
death. Here the proteasomal degradation system acts on
various levels.

Key words. Proteasome; ubiquitin; proteolysis; regulation; enzyme activity; transcription; cell cycle; apoptosis.

Introduction

Balancing of a protein’s concentration is an important
mechanism to regulate its activity. Changing of protein
levels can be achieved by control of synthesis [in most
cases at the level of gene transcription, in some cases at
the level of messenger RNA (mRNA) translation] but
also in an antagonistic way by stimulation or inhibition of
proteolytic degradation. The major cellular tool for regu-
latory proteolysis in the cytoplasm and nucleus of the eu-
karyotic cells is the proteasome, a sophisticated nano-
machine designed for the selective elimination of pro-
teins (for reviews see [1–3] and the article by W.
Heinemeyer et al. in this issue). Research over the last
decade revealed that a large variety of different regulatory
processes is essentially controlled by selective proteoly-
sis via the proteasome. Here, as in research on protea-
some structure, assembly and catalytic activities, work in
the budding yeast Saccharomyces cerevisiae was a pace-
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setter for the whole field. Many processes of regulatory
proteolysis have initially been studied in yeast; discovery
of others greatly profited from research in this model. A
comprehensive description of proteasome function in
regulation of the yeast cell would exceed the scope of this
article. Moreover, a variety of excellent reviews covering
discrete topics of regulatory proteolysis in detail are
found in the recent literature. Thus, focusing on selected
examples, I will present an overview of the basic princi-
ples, mechanisms and objects of proteasome-mediated
regulatory proteolysis in yeast.
Most proteins degraded by the proteasome are marked for
destruction by tagging with multi-ubiquitin chains. Ubiq-
uitination of proteasomal substrates is performed by a
complex enzyme system that consists of E1 (ubiquitin ac-
tivating-) enzymes, E2 (ubiquitin conjugating-) enzymes
and, in most cases, E3 (ubiquitin ligating-) enzymes (for
reviews see [4–6] and the article by S. Fang and A. M.
Weissman in this issue).
Efficient degradation in many cases requires assistance
by proteins that support the transfer of ubiquitin-marked



substrate proteins to the proteasome complex. Such
helpers may simply recruit ubiquitinated targets but may
also, as in the case of the AAA-ATPase Cdc48, contribute
to unfolding of substrates or their liberation from larger
structures as protein complexes or membranes (for
overview see the article by R. Hartmann-Petersen and C.
Gordon in this issue and [7]).

Elimination of enzyme activity

Proteolysis is a straightforward and rapid process to di-
rectly down-regulate the activity of a protein. One of the
best-studied examples of inactivation of an enzyme by
proteasome-mediated destruction is degradation of the
gluconeogenetic enzyme fructose-1,6-bisphosphatase
(FBPase). When grown on non-fermentable carbon
sources, yeast cells produce hexoses by the gluconeoge-
netic pathway. This anabolic pathway shares most of its
enzymes with the antagonistic pathway, the glycolytic
pathway. However, dephosphorylation of fructose-1,6-
bisphosphate by FBPase is a step that is unique to gluco-
neogenesis. When cells are set back to fermentable car-
bon sources, FBPase activity has to be nullified to avoid
a futile cycle of ATP consumption brought about by the
combined action of FBPase and its glycolytic counter-
player phosphofructokinase. For this purpose FBPase in
response to the glucose signal is partially inactivated
(~50%) by phosphorylation and thereafter completely
neutralized by proteasome-mediated degradation [8–10]
(see also the article by D.H. Wolf in this issue)

Regulatory proteolysis in control of gene transcription

As in every type of cell, gene expression in yeast is con-
trolled by a complex network of transcriptional regulation
[11]. Cells modify their transcriptome during the course
of defined cellular programs as, for instance, cell pro-
liferation or differentiation but also in response to 
altered environmental conditions or after the exposure to
stress. Transcriptional reprogramming requires modula-
tion of the activity of transcriptional activators and re-
pressors, including rapid adjustment of transcription 
factors at the protein level. Here, selective proteasome
mediated degradation serves as an important regulatory
mechanism.

The proteasome mediates down-regulation 
of gene expression

Transcriptional activators bind to specific promoter se-
quences with the objective to recruit the transcriptional
machinery, the polymerase II holoenzyme complexes, to
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the respective target genes. Proteasome-mediated de-
struction is a rapid mechanism to limit or to abrogate the
activity of transcriptional activator proteins with the aim
of down-regulation of transcription of the corresponding
target genes (fig. 1A). A well-studied example is Gcn4, a
c-Jun-like transcriptional activator. Gcn4 is a master reg-
ulator of gene expression in S. cerevisiae. In response to
deprivation of any of several amino acids Gcn4 induces
the transcription of multiple genes of amino acid biosyn-
thetic pathways; this mechanism is termed general amino
acid control [12]. However, recent studies demonstrated
that Gcn4 has a broader role and that Gcn4-dependent
transcription is also stimulated by general starvation con-
ditions and stress. Thus, exposure to DNA-damaging
conditions [e.g. ultraviolet (UV) light or methylating
agents (MMS)] can lead to induction of Gcn4-dependent
transcription even when cells are kept on rich medium. In
agreement with this data recent microarray studies un-
covered that Gcn4 is implicated in control of gene ex-
pression of at least 1/10 of the whole yeast genome, in-
cluding genes involved in DNA repair [13, 14].
The cellular concentration of Gcn4 is controlled by bal-
ancing its rate of synthesis and degradation. Under non-
starvation conditions Gcn4 dependent expression is lim-
ited. For this purpose Gcn4 is set to a low level by two
means: (i) Effective synthesis of Gcn4 is prevented by a
unique mechanism of translational control [15], and (ii)
rapid proteolytic destruction of Gcn4 protein via the
ubiquitin-proteasome machinery, which can occur with a
half-life of 5 min, is stimulated under non-starvation con-
ditions [16]. Gcn4 ubiquitination requires the E2 enzyme
Cdc34 and, as the ubiquitin ligase, SCF complexes acti-
vated by the F-box protein Cdc4 [17]. SCF complexes are
sophisticated E3 enzymes, which are mainly responsible
for tagging of cell cycle regulators during the G1, S and
G2 phase (see later section on cell cycle regulation). SCF-
mediated ubiquitination of cell cycle regulators takes
place phase specifically. In contrast, Cdc4-SCF-mediated
degradation of Gcn4 occurs constitutively throughout the
whole cell cycle. These data indicate that SCF-mediated
ubiquitination is primarily triggered on the level of the in-
dividual substrate protein and not by stimulation of the
E3 enzyme. In agreement with this model Gcn4 degrada-
tion requires phosphorylation of specific residues in the
Gcn4 activation domain, notably Thr105 and Thr165.
This modification is executed by two cyclin-dependent
protein kinases, Pho85 and Srb10 [17, 18]. Both kinases
appear to additively contribute to signaling of Gcn4
degradation, as elimination of both kinase activities is re-
quired to stabilize Gcn4 to the same extent as caused by
inactivation of Cdc4-SCF complexes. 
In response to amino acid starvation or deprivation or in-
hibition of protein synthesis transcription of Gcn4-de-
pendent target genes has to be induced. For this purpose
the cellular level of Gcn4 is raised (i) by stimulation of



Gcn4 mRNA translation and (ii) reduction of its prot-
eolytic destruction. For this purpose signaling of degra-
dation by Pho85-dependent Gcn4 phosphorylation is in-
hibited. In contrast, Srb10-mediated degradation of Gcn4
occurs constitutively. Inactivation of Srb10 leads to an in-
crease of the Gcn4 level by only twofold [18]. Derepres-

sion of Gcn4-dependent transcription by this means,
however, is limited to only few Gcn4 target genes, sug-
gesting that Srb10, which is an integral part of the RNA
polymerase II holoenzyme complex, may in addition
have a positive influence on Gcn4-dependent gene tran-
scription [15].

The proteasome controls up-regulation 
of gene expression

It seems to be a paradox. Contrary to its native role of
eliminating proteins, the ubiquitin-proteasome systems
can cause up-regulation of the concentration of certain
target proteins by inducing stimulation of their transcrip-
tion. Here, two major mechanisms are so far well known:
destruction of transcriptional repressor proteins and mo-
bilization of transcriptional activators by limited proteo-
lysis (fig. 1B/C). 
That proteasome-mediated processes might contribute to
stimulation of expression was even described in the case
of Gcn4-dependent gene transcription. Impairment of
proteasome activity, either by mutation of 19S cap sub-
units or mutations of the 20S core, did not affect Gcn4-
mediated transcription when cells were starved for histi-
dine but led to abolishment of UV- or MMS-stimulated
Gcn4-dependent gene transcription on rich medium [19].
This effect, which is attributed to a defect in degradation
of an unknown factor that inhibits Gcn4-dependent tran-
scription, hints at the possible function of proteasomal
pathways in stimulation of gene transcription.
A better-defined example of ubiquitin-proteasome sys-
tem-mediated abolishment of transcriptional repression
is degradation of the yeast MATa2 repressor protein. S.
cerevisiae cells exist in three proliferative forms: two
haploid types a and a and a diploid type a/a brought
about by mating of haploids of opposite types. A unique
genetic locus, the MAT locus encoding mating-type-spe-
cific regulators, governs cell identity [20]. Haploid cells
are typified by expression of either MATa- or MATa-en-
coded sequences present at the MAT locus, whereas
diploid cells are characterized by expression of both MAT
cassettes in parallel. The MATa sequence encodes two
transcriptional regulators a1 and a2, whereas the MATa
sequence harbors a single gene encoding the a1 regulator.
The MATa2 protein is a transcriptional repressor of spe-
cific genes in a cells. Homothallic haploid cells can
switch their mating type by copying the MATa or MATa
cassette from silent loci into the MAT locus. The pheno-
typic switch induced by this genetic alteration occurs
within one cell cycle and requires fast adaptation of the
concentration of the regulators involved. Thus, to neutral-
ize MATa2 repression and to allow fast accumulation of
MATa-specific proteins after a switch from MATa to
MATa, the MATa2 repressor protein is rapidly elimi-
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Figure 1. Proteasome-mediated regulatory proteolysis is involved
in control of transcription. (A) Degradation of transcriptional regu-
lators is used to abrogate transcription. (B) Inhibition of gene ex-
pression is nullified by proteolytic destruction of repressor proteins.
(C ) Precursor forms of transcriptional activators are matured to the
active form by limited proteasome-mediated proteolysis, resulting
in induction of transcription.



nated with a half life of ~4 min in a ubiquitin-protea-
some-dependent manner. The primary signal mediating
MATa2 degradation is a N-terminal 67 amino acid
stretch, termed Deg1. The hydrophobic surface of an am-
phipathic helix present in the Deg1 sequence (amino
acids 14–32) is thought to function as a key determinant
for signaling of MATa2 repressor ubiquitination and
degradation [21].
In diploid cells MATa2 is specified for repression of hap-
loid-specific genes by forming a complex with the a1
protein. Like the MATa2 repressor, the a1 protein con-
tains a Deg1-related sequence and is rapidly degraded in
a ubiquitin-dependent manner in haploid a cells. a1/a2
heterodimeric complexes built in diploid cells are turned
over with much lower rates than the free a1 and a2 pro-
teins. The biological relevance of this behavior remains
undefined. The proteolytic stabilization of a1/a2 het-
erodimers is thought to be the result of coverage of the
amphipathic helix determinants of the Deg1 sequences of
both subunits, which are involved in the a1/a2 interaction
[21]. Masking of determinants that signal ubiquitination
by integration of the substrate into protein complexes
may be a general means to regulate the proteolytic stabil-
ity of proteasomal substrates. 

Transcription factor degradation can be 
locus dependent

For both the transcriptional activator Gcn4 and the Mata2
repressor evidence was obtained that transport to the nu-
cleus is a prerequisite for their degradation. In non-
starved cells Gcn4 is found in a small cytoplasmic frac-
tion, which is proteolytically stable. The larger fraction of
Gcn4 localizes to the nucleus. This fraction is rapidly
turned over [22]. Nuclear transport of Gcn4 is triggered
by two nuclear localization NLS sequences but does not
require a functional general amino acid control system
nor functional Pho85 and Srb10 kinases. As proved by
stabilization of mutated Gcn4 that lacked the NLS se-
quences or of wild-type Gcn4 that was expressed in cells
impaired in nuclear import, transport of Gcn4 to the nu-
cleus is a prerequisite for its rapid degradation. Pho85 ki-
nase, which stimulates Gcn4 degradation under non-star-
vation conditions, is localized within the nucleus inde-
pendent of the presence or absence of amino acids. Taken
together these data lead to the model that Pho85-depen-
dent control of Gcn4 stability is restricted to the nucleus.
Thus, regulation of Gcn4 synthesis, which occurs in the
cytoplasm, and regulation of Gcn4 degradation are inde-
pendent compartment-specific processes. A similar be-
havior has been found for the Mata2 repressor. As shown
by Lenk et al., Ubc6/Ubc7-mediated ubiquitination and
rapid turnover of a reporter protein containing the Deg1
signal requires its effective transport to the nucleus [23].

Endogenous Mata2 is exclusively localized in the nu-
cleus, and its proteolytic destruction is impaired in nu-
clear import mutants. What is the purpose of such spatial
restriction of degradation signaling? Arrival of transcrip-
tional regulators at their locus of action, the nucleus, is a
prerequisite for their proteasomal destruction. Thus,
elimination of transcription factors that had no chance to
execute their function is avoided.

Proteasome-mediated degradation processes 
may be tightly connected to the transcription 
machinery

Overexpression of potent transcriptional activators, such
as Gcn4, can cause a general block in transcription. It is
thought that this effect, termed squelching of transcrip-
tional activation, is based on the sequestration of basal
transcription factors by the overexpressed activator pro-
tein [24, 25]. Strict limitation of transcriptional activator
levels may therefore be important for correct functioning
of the transcription machinery. An ideal tool for this task
is proteasome mediated proteolysis. Moreover, in addi-
tion to regulation of initiation of transcription precise
control of gene expression may require exact and timely
defined nullification of the transcription process. Initial
work indicates that here the ubiquitin-proteasome system
may have a crucial role. Experimental evidence was ob-
tained that core components of the degradation system
may be in direct spatial connection to the transcription
machinery. The proteasome system may thus function be-
yond the scope of simply limiting the concentration of
transcription factors that independent of the transcription
machine float around in the nucleus and cytoplasm. Here
an important observation was that Srb10 kinase, which
signals Gcn4 degradation, is a component of the RNA
polymerase II holoenzyme complex [18, 26]. This find-
ing indicated that signaling of Gcn4 degradation can oc-
cur at the transcription machinery and may be an integral
part of the transcription process. Srb10 seems to mediate
degradation of Gcn4 only after binding of this transcrip-
tion factor to promoter sequences. Such behavior may en-
sure that Srb10-stimulated Gcn4 degradation is limited to
those Gcn4 molecules that have functioned as a tran-
scriptional activator, a process by Tansey colorfully called
the ‘black widow’ mechanism [26]. Coupling of steps of
substrate degradation to transcription may not be re-
stricted to the activation of degradation signals as is
Srb10 mediated phosphorylation of Gcn4. In mammalian
cells CNOT4 protein, a homologue of yeast Not4, was
characterized as a subunit of the CCR4-NOT complex
[27]. This complex acts as a repressor of RNA-poly-
merase II-mediated transcription. CNOT4 was reveal-
ed to be a RING finger E3 ubiquitin-ligase, which inter-
acts with a subset of ubiquitin-conjugating enzymes
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(hUbc5B, hUBC6 and hUbc9), evidencing that even
ubiquitin-tagging processes may take place in spatial
connection to the RNA polymerase complex. Moreover,
evidence was obtained that the entire degradation system
including the proteasome is physically connected to the
transcription machinery. Recently, Morris et al. found
components of the ubiquitin system as well as 19S cap
and 20S core proteasome components associated with the
CDC20 promoter [28]. Periodic association of the protea-
some to the CDC20 promoter, which takes place antago-
nistic to the dissociation of cyclin-dependent kinase com-
plexes (CDKs), is triggered by the CDK binding factor
Cks1. Initial data obtained with proteolytically defective
20S proteasomal mutants may hint at a non-proteolytic
role of the ubiquitin-proteasome system in CDC20 tran-
scription [28]. However, whether this is indeed the case or
whether the proteasome is required for a local proteolytic
process awaits further clarification (see also discussion
by Lipford and Deshaies [29]). Besides limiting the
rounds of RNA polymerase firing, ubiquitin-mediated
degradation processes at the transcription machinery
might serve other purposes. Degradation processes may
for instance act as stimulatory switches, which allow the
RNA polymerase to detach from pre-initiation complexes
(discussed in [29]). Selective proteolysis may in addition
play a role in promoter clearance. Moreover, some evi-
dence for the implication of the ubiquitin-proteasome
system in control of the transcription machinery beyond
the scope of transcription factor elimination was obtained
by the finding that the proteasome degrades the large sub-
unit of RNA polymerase II upon damaging of DNA [30].
Taken together, the data suggest that only the tip of the
iceberg is visible, and that clarification of proteasome-
mediated processes at the transcription machinery awaits
further research.

Activation of transcription factors 
by limited proteolysis

Besides elimination of repressor proteins, regulatory pro-
teasomal proteolysis can contribute to induction of gene
expression by causing mobilization of transcriptional ac-
tivators (fig. 1C). For this purpose inactive precursors are
processed to the active form by limited proteolysis. Such
behavior was initially discovered in the mammalian sys-
tem for the transcription factor NF-kB. To produce ma-
ture p50 NF-kB, the C-terminal domain of p105 precur-
sor molecules is eliminated by destruction via the protea-
some system. However, the N-terminal transcription
factor domain of NF-kB precursors is excluded from pro-
teolysis and left intact [31, 32]. Two models have been put
forward to explain limited proteolysis of NF-kB. Model I
suggested that p105 degradation starts from the C termi-
nus and is terminated by a hypothetical stop-transfer sig-

nal in the center of p105 [33, 34] (for overview see [35]).
The alternative model proposed that p105 is processed by
cotranslational cleavage of a nascent NF-kB polypeptide
chain associated with a second p105 precursor, thereby
producing p50-p105 dimers [36, 37] (for overview see
[35]). Because C-terminal ends of nascent polypeptide
chains are hidden in the ribosomes, such processing of
p105 precursors would require internal cleavage of the
nascent polypeptide chain. 
When expressed in yeast cells, p105 NF-kB precursors
are proteasome dependently matured to p50 molecules of
nearly identical size as in mammalian cells, suggesting
that the proteasomal processing machinery is conserved
from yeast to mammals. New clues to the aims and mech-
anisms of transcription factor mobilization by limited
proteolysis came from studies on two distantly related ho-
mologues of NF-kB in yeast, Spt23 and Mga2 [38, 39].
These transcriptional activators share overlapping func-
tions in expression of the OLE1 gene encoding fatty acid
desaturase. Spt23 and Mga2 proteins are synthesized as
inactive p120 precursors. In contrast to NF-kB, which is
a soluble protein, Spt23 and Mga2 are anchored to the en-
doplasmic reticulum (ER) by their C-terminal tail with
the bulk N-terminal parts containing transcription factor
domains facing the cytoplasm. Both factors are mobilized
by proteasome-mediated processing. Their C-terminal
membrane anchors are eliminated, leaving the transcrip-
tion domains intact. Thus, processing results in release of
soluble p90 proteins, which can reach the nucleus to start
induction of target gene transcription. Processing of
Spt23 occurs post-translationally directly at the ER mem-
brane and is negatively feed-back regulated by unsatu-
rated fatty acids, the products of Ole1, indicating that
Spt23 may act as a sensor for ER membrane composition
[38, 40, 41]. The membrane-embedded C-terminal tails
of Spt23 and Mga2 are thought to be not accessible to
degradation, leading to the conclusion that processing of
Spt23/Mga2 is achieved by internal endoproteolytic
cleavage. Based on this suggestion Rape and Jentsch put
forward an interesting model for the mechanism of pro-
teasome-mediated processing [35]. They proposed the
formation of hairpin loop structures at the processing po-
sition, which reach into the proteolytic chamber of the
20S proteasome and are there attacked by the proteolytic
sites of the proteasome. This model is in agreement with
the architecture of the 20S proteasome. The gates at both
distal ends of the 20S cylinder have a diameter of 1.3 nm,
allowing the entrance of two side-by-side positioned pep-
tide strands or hairpin loop structures. Recent elegant in
vitro experiments on the mechanism of proteasomal sub-
strate admission strongly support this idea. Originally, it
had been thought that substrates are preferentially fed
into the proteasome from their termini and subsequently
degraded in a processive way [42, 43]. To challenge this
model Liu et al. examined the degradation of tester pro-
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teins consisting of naturally disordered protein chains bi-
laterally protected by fusions of non-degradable GFP
(green fluorescent protein) moieties at both termini [44].
Secondly, they inspected circularized tester proteins that
lacked open termini and were made up of a disordered
protein stretch and a non-degradable GFP moiety. When
incubated with activated (open) 26S proteasomes or la-
tent (distal gates closed) 20S proteasomes in vitro, the
disordered domains of theses tester proteins were de-
graded, whereas the tightly folded GFP domains re-
mained unaffected. These results clearly proved that pro-
teasomal degradation does not require substrates with ac-
cessible ends and can be initiated at an internal site. After
endoproteolytic cutting the proteasome is thought to start
processive degradation at both strands of the loop in-
serted into the proteolytic chamber; complete elimination
of the membrane domain in case of Spt23 supports this
model. These findings lead to the interesting question
how particular parts of a target protein can be spared from
destruction.
Several findings indicate that repulse of tightly packed do-
mains that can resist the unfolding forces of the 19S-reg-
ulatory complexes (as e.g. the GFP moieties used by Liu
[44]) may be a key to this puzzle [44–46]. Association
with a protecting partner can be a means to avoid degra-
dation or to exclude defined regions of a target protein
from complete destruction. Interaction with the protecting
partner may cause stabilization of the correct fold of a re-
gion that is left intact, making it inflexible and thus resis-
tant to unfolding and degradation by the proteasome. In
agreement with this model formation of homodimers is a
major strategy in (cotranslational) processing of NF-kB
and has also been proven to be implicated in posttransla-
tional processing of yeast Spt23. Mutations in the IPT
dimerization domain present in both transcription factors
prevents their processing [41, 46]. Thus, the dimerization
domain, which may tightly be packed in the dimers, is
thought to act as a terminator of processive degradation of
the N-terminal part of these transcription factors, whereas
the C-terminal fragments produced by the endoproteolytic
cut, including in case of Spt23 membrane-embedded do-
mains, are completely degraded [35]. Interestingly, release
of the processed subunit from its homologous, intact bind-
ing partner seems to require assistance of special chaper-
ones. Indication exists that in the case of Spt23, this step
and thus the launch of Spt23 from the ER membrane is
supported by Cdc48 ATPase [41]. 

ATP-ase

Regulation of uni-directional processes:
cell cycle control and induction of apoptosis

The cell division cycle is characterized by a defined se-
quence of highly coordinated morphological and mecha-

nistic steps. When entering a new cycle, yeast cells are
committed to complete the entire cycle. In S-phase DNA
is synthesized and S. cerevisiae cells emerge the new
daughter cell as a bud. After completion of DNA synthe-
sis and transition through a second gap phase (G2), which
in budding yeast is less significant, cells enter the M-
phase. They attach the duplicated chromosomes to the
mitotic spindle apparatus, segregate them into the mother
and daughter cell and undergo cell division. The correct
course of these processes is controlled by a complex reg-
ulatory program. Checkpoints are integrated into this
program that survey the correct chronology of the steps
and recognize failures induced by accident or harmful
conditions. 
Proteasome-mediated selective protein degradation is ir-
reversible, and therefore a well-customized regulatory
mechanism to control unidirectional processes as is the
cell division cycle. Regulatory proteolysis is implicated
in control of the cell cycle program on different levels. It
is essentially required for the rapid and correct adaptation
of the cells’ protein equipment to phase-specific tasks.
For instance, cyclin molecules appear and disappear in
oscillating waves with a defined order [47]. The cyclins
associate with certain kinase molecules, in budding yeast
the Cdc28 protein, and modify them for specific tasks.
Cyclin-dependent kinase complexes (CDKs) generated
by these means act as the central governors of the cell cy-
cle program. The ordered sequence of phase-specific
CDKs may be viewed as a central biochemical watch con-
trolling the correct course of the cell cycle processes. Pro-
teolysis is required to (i) timely limit the function of the
CDK species but (ii) also to allow the rebuilding of the
ensuing CDKs, thereby representing both major tasks of
regulatory proteolysis. Neutralization of proteins by
degradation is an important mechanism to trigger certain
cell cycle events. However, in certain cases disposal of
proteins that may already have lost their activity by dif-
ferent means but whose presence would disturb perfect
function of the machinery in the subsequent cycle can be
the major aim of selective proteolysis.
Two large E3 enzyme complexes, the SCF and the APC
(anaphase-promoting complex or cyclosome), which
share some functional homology [48], are mainly respon-
sible for tagging of substrates that function in execution
and control of the cell cycle program (reviewed [49–53].
The SCF is active throughout the whole cell cycle, and
substrates are marked for SCF-mediated ubiquitination
by phosphorylation, whereas the APC is specifically acti-
vated for mitotic tasks. Here, I will describe some promi-
nent examples of cell cycle regulation by the ubiquitin-
proteasome system in yeast that are well understood and
that had a strong impact on the general understanding of
the cell cycle program in eukaryotes.
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How to avoid re-replication:
proteasomal degradation of Cdc6 in S-phase 
is required for accurate DNA reproduction 

To maintain their genome, eukaryotic cells have to pre-
cisely coordinate duplication of the genetic material each
time a cell passes through the division cycle. After entry
into a new cycle, cells initiate replication of DNA at hun-
dreds or even thousands of defined chromosomal sites,
the origins of replication. Start of DNA duplication in the
S-phase is preceded by the formation of pre-replicative
complexes (pre-RC) in G1. Factors including ORC,
Ccd6, Cdct1 and Mcm (minichromosome maintenance)
proteins assemble in a series of ordered steps to build pre-
RCs at the origins of replication. pre-RCs are prepared
for activation by kinases at the transition to replication.
After activation, they bind other components in an or-
dered way, as for instance unwinding factors and multiple
eukaryotic DNA polymerases, which ultimately execute
DNA replication. 
Formation of pre-RCs is a key regulatory event for coor-
dination of DNA replication. Cdc6 plays a critical role in
this process and contributes to the strict prevention of
DNA re-replication within a single division cycle. Origin
recognition complexes (ORCs) composed of six subunits
act as the initiator of replication. ORCs bind to specific
DNA sites (in yeast A and B1 elements of the origins of
replication). Then ORCs, most probably in an ATP-bound
state, interact with the Cdc6 protein. Cdc6, which is an
ATPase of the AAA family, is thought to act as a loader
that uses ATP binding and hydrolysis to load a ring-
shaped DNA processivity factor, assembled from Mcm2-
7 proteins, the so-called clamp, onto DNA (reviewed in
[54, 55]). Cdc6 is regulated through its interaction with
ATP and by changes in its abundance or localization. It
likely acts as a multimer in which ATP binding and hy-
drolysis induce conformational changes that result in the
recruitment of Mcm proteins to DNA. On the other hand,
the cellular level of Cdc6 is modulated during cell cycle
progression. As cells pass into S-phase and origins start
firing, Cdc6 molecules dissociate from pre-replication
complexes, are marked for degradation by SCFCdc4-de-
pendent ubiquitination and are subsequently eliminated
via the proteasome [56–59]. As found for other substrates
of SCF, Cdc6 ubiquitination is triggered by its phospho-
rylation, most probably via Clb-CDK activity. Due to the
absence of Cdc6, the formation of pre-RC is inhibited un-
til cells enter the ensuing G1-phase. It is therefore
thought that proteolytic elimination of Cdc6 is a major
mechanism to prevent re-replication. However, overex-
pression of Cdc6 in S. cerevisiae was not sufficient to in-
duce reduplication, indicating the existence of other re-
dundant mechanisms to avoid re-replication [54]. Inter-
estingly, mammalian cells make use of a different
mechanism for neutralization of Cdc6 after origins have

started firing. Here, CDK phosphorylation induces the
export of Cdc6 from the nucleus during S-phase [60, 61].
Cdc6 is then degraded during the subsequent mitosis via
an APCCdh1-mediated mechanism [62, 63].

Controlling entry into mitosis

Proteasome-mediated destruction of defined regulators is
used to trigger defined steps in cell cycle progression.
The best-understood example is control of entry into
anaphase. To maintain their genomic integrity during pro-
liferation, cells have to correctly distribute the duplicated
chromosomes to both daughter cells during mitosis. Fail-
ures in this process lead to aneuploidy, a situation that
cannot be repaired and may have dire consequences. Ge-
nomic instability based on malfunctions of the machinery
that guarantees segregation of chromosomes with high fi-
delity is a central motor of oncogenesis in human cells
[64, 65]. The sisters of duplicated chromosomes pro-
duced during S-phase have to be untangled and correctly
connected to microtubules of opposite polarity; each of
the two kinetochores of a sister chromatid pair is linked
to one of the two opposing spindle-organizing centers.
Then in anaphase sister chromatids are pulled apart to op-
posing spindle poles. Correct achievement of the status of
bi-oriented spindle connection, called amphitelic attach-
ment, is supervised by the spindle damage checkpoint. A
central attribute of this process is that the cohesion that
holds sister chromatids together is resolved with correct
timing, i.e. only after completion of correct spindle at-
tachment (for a recent review see [42]). Cohesion com-
plexes are built up of two coiled-coil proteins Smc1 and
Smc3, which dimerize with their C-terminal tails, and a
third player Scc1, which connects Smc1 / Smc3 dimers at
their N-terminal heads [66, 67]. Therefore, cohesin com-
plexes are thought to form ring-shaped structures, which
encompass sister chromatids and hold them together in a
topological way rather then by direct binding to chromo-
some structures [68] (reviewed in [42, 69]. The cohesion
between sister chromatids has to be maintained during
metaphase until all chromosomes are correctly connected
to the mitotic spindle. Maintenance of sister cohesion is
an essential prerequisite for the proofing of correct spin-
dle attachment. When the cell enters anaphase, cohesion
is resolved to allow separation of the chromatids. This
step is triggered by a proteasome-mediated regulatory
event, destruction of the Pds1 protein [70, 71] (reviewed
in [50, 72]). Pds1, now also termed securin, functions as
an inhibitor of a cysteine endoprotease, the separase
Esp1. Ubiquitination of Pds1/securin is mediated by the
anaphase-promoting complex (APC, so called because
loss of its function results in inhibition of entry into
anaphase). For this task the APC is activated by a specific
regulator, the Cdc20 protein [73–75]. Proteasome-medi-
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ated elimination of Pds1 leads to release of Esp1 separase
[71], which thereby is authorized to open the ring-shaped
cohesion complexes by endoproteolytic cleavage of Scc1
at one or both of its cleavage sites [76, 77] (reviewed in
[78, 79]). Thus, a distinguishing mark of this proteasome-
mediated regulatory process is, that – in contrast to endo-
proteolytic cleavage of e.g. Spt23 – the proteasome dele-
gates the job of processing to another, highly specific
protease (fig. 2).
Interestingly the C-terminal fragment of the cohesin Scc1
produced by Esp1 clipping is degraded proteasome de-

pendently via the Ubr1-mediated N-end rule pathway
[80]. This step was found to be important to prevent chro-
mosome instability. Here, the obvious task of proteolysis
is disposal of a protein fragment to avoid that this rem-
nant disturbs correct assembly or function of the mitotic
apparatus in the ensuing cycle; for a similar purpose the
spindle component Ase1 (in this case the full-length pro-
tein) is proteolytically eliminated in late mitosis [81]. 
Pds1 destruction and thereby the permission for sister
chromatid separation is controlled by the spindle damage
checkpoint. This checkpoint verifies correct assembly of
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Figure 2. Proteasome-mediated steps regulate mitosis. (A) Pds1 degradation is a prerequisite for entry into anaphase. Cdc20-APC is in-
hibited in response to defective spindle assembly. Incomplete kinetochore-microtubule attachment or lack of tension at kinetochores, which
is surveyed by the spindle damage checkpoint, produces a ‘wait anaphase’ signal presumably generated by an activated form of Mad2 pro-
tein. After completion of chromosome-microtubule attachment, the wait signal breaks down and Cdc20-APC triggers proteasome-medi-
ated elimination of securin Pds1, which functions as an inhibitor of Esp1 separase. Esp1 is thus licensed to cleave the cohesin Scc1, lead-
ing to resolution of the cohesion between sister chromatids. This step is an essential prerequisite for segregation of chromosomes in
anaphase. The C-terminal fragment of Scc1 is removed by a Ubr1-dependent proteasomal pathway. Disposal of remnant Scc1 fragments
seems to be necessary for perfect functioning of the spindle in the ensuing cycle. (B) About 50% of Clb2 is proteolytically eliminated by
a Cdc20-APC-mediated pathway in early mitosis. Upon arrival of the daughter nucleus in the bud cell, the mitotic exit network (MEN) is
activated. Tem1, residing at the daughter spindle pole body, is stimulated by its GTP exchange factor Lte1, which is restricted to the bud
cell. Activated Tem1, through Dbf2/Mob1, triggers release of Ccd14 phosphatase from its storage place, the nucleolus. Cdc14 initiates fi-
nal inactivation of Clb-CDK complexes by different means. It stimulates the Cdh1-APC-dependent pathway of Clb2 degradation by de-
phosphorylation of inactive Cdh1 (also called Hct1). Cdc14 triggers accumulation of the CDK inhibitor Sic1 by (i) stimulating Swi5 de-
pendent transcription and (ii) blocking SCF-mediated degradation of Sic1 protein. As inactivation of Clb-CDK is a prerequisite of mitotic
exit, this pathway ensures that cytokinesis is induced only after arrival of the daughter nucleus in the bud cell (for further details see text).



the mitotic spindle. As long as attachment of kineto-
chores to spindle microtubules is incomplete (presence of
chromosomes that have not acquired a bi-oriented status
or when both kinetochores of a sister chromatid pair are
erroneously connected to microtubules originating from
the same spindle pole) a ‘stop’ signal is generated that 
inhibits entry into anaphase until the failure is repaired
(fig. 2).
Which deviations from the normal status are recognized
by the spindle damage checkpoint is still a matter of de-
bate. Studies in rat kangaroo PTK1 cells have shown that
a single unattached kinetochore can induce inhibition of
entry into anaphase. The stop signal, however, was neu-
tralized after ablation of the unattached kinetochore by
laser-assisted microsurgery and cells restarted progres-
sion through mitosis [82]. These results indicated that un-
attached kinetochores may be a central signaling element
producing the ‘wait anaphase’ signal. On the other hand,
skillful micromanipulation of chromosomes in spermato-
cytes of praying mantid undergoing meiosis pointed to
another attribute. Here, presence of an X chromosome
that by accident was not connected to its normal partner
the Y chromosome and therefore could not acquire a bi-
oriented status caused inhibition of entry into anaphase I.
When such an unengaged X chromosome was hooked up
with a microneedle and stretched, the stop entry into
anaphase signal was neutralized and the cells started to
continue the meiotic cycle [83]. These results indicated
that the ability of correctly attached sister kinetochore
pairs to be set under tension may be an important feature
that is examined by the spindle damage checkpoint. In-
terestingly, data obtained from budding yeast support
both ideas. Studies of kinetochore protein mutants re-
vealed that these structures may play a central role in in-
duction of the metaphase arrest signal in yeast [84]. Dele-
tion of the kinetochore complex CBF3 subunit Ndc10
caused abrogation of kinetochore assembly and elimi-
nated the mitotic delay induced by spindle-destabilizing
drugs; though being unable to attach chromosomes to
spindle microtubules the cells continued nuclear division.
On the other hand, proof for the idea that tension may play
a role in the spindle damage checkpoint of yeast cells
came from video-imaging studies of spindle pole body
and kinetochore movements during metaphase [85]. This
study showed that (as found in other organisms) preced-
ing to anaphase kinetochores were transiently pulled
apart polewards. Moreover, the chromatids were elasti-
cally stretched during this process, suggesting that the
ability of bi-oriented chromosomes to be set under ten-
sion may be a quality probed before cells start entry into
anaphase.
A single mono-oriented sister chromatid pair, existing in
parallel to a large number of correctly attached chromo-
somes, whose wait signal generators are silenced, can
block entry into anaphase [82]. Therefore, the stop signal

sent out from even one incorrectly oriented chromosome
must inhibit the entire Pds1 degradation machinery. Due
to these requirements it appears to be unreasonable that
linkage between kinetochores and Cdc20-APC com-
plexes is brought about by a direct physical interaction
between both structures. Thus, the existence of diffusible
compounds that transfer the stop signal is expected. Pos-
sible candidates for this task are found in a set of proteins,
Mad1-3 and Bub1/3, whose loss of function resulted in
the deficiency to induce metaphase arrest following
drug-induced inhibition of microtubule assembly (re-
viewed in [86, 87]). All these factors bind and act on un-
attached kinetochores. The most promising aspirant is
Mad2. As expected for a regulator that transfers the ‘wait
anaphase’ signal, Mad2 was proven to show up at both
platforms, unattached kinetochores and Cdc20-APC
[88–91]. Mad2 is an abundant protein, which associated
with Mad1 encounters unattached kinetochores with high
dynamics. Studies in rat kangaroo cells revealed that re-
lease and rebinding of Mad2 at kinetochores occurs with
a half-life time of ~25 s [88]. In vivo studies with mam-
malian cells [92] as well as yeast cells [93] proved that
Mad2 is able to form a ternary complex with Cdc20-APC
and block Pds1/securin ubiquitination. 
Current models propose that during its contact with unat-
tached kinetochores, Mad2 is transferred into an active
form (Mad2*), which shuttles to Cdc20-APC and blocks
Pds1 ubiquitination (for recent reviews on this topic and
its limitations see [87]). It is thought that active Mad2 is
relaxed at Cdc20-APC and thereafter travels back to un-
attached kinetochores to be reactivated (fig. 2). Such a
scenario would allow a steady flow of stop information to
the securin ubiquitination machinery until incorrectly at-
tached chromosomes acquire their proper state. Then ac-
tive Mad2 is expected to break down, and silencing of the
ubiquitination machinery is nullified. Crucial elements
of this model remain to be experimentally proven, and in-
dication was obtained that the situation may be more
knotty. For instance, the nature of activated Mad2 re-
mained unresolved. All attempts to identify modified ver-
sions of Mad2 have at yet been unsuccessful. In vitro
Mad2 is capable of tetramerizing. However, no experi-
mental evidence has obtained that oligomerization of
Mad2 may be part of the activation mechanism in vivo.
On the other hand, studies in mammalian cells and yeast
revealed that Mad2 can form associates with Mad3, Bub3
and Cdc20, suggesting that ternary protein complexes
made up of these proteins may contribute to transduction
of the wait anaphase signal [94, 95]. The situation is fur-
ther complicated by the fact that Cdc20 itself cycles at
kinetochores even with higher dynamics than Mad2
(half-life time ~2 s) [96], suggesting that in addition or
alternatively to Mad2 the APC regulator Cdc20 may pick
up information directly at unattached kinetochores. Taken
together, the data indicate that the diffusible signal is

CMLS, Cell. Mol. Life Sci. Vol. 61, 2004 Multi-author Review Article 1623



made up of a complex cooperation of different elements,
which may provide overlapping functions. This interplay
and the exact mechanism of transduction of the block
Pds1 degradation signal await further inspection (for re-
cent reviews see [86, 87].

Mitotic exit: degradation of B-type cyclins 

Control of mitotic exit is a second crucial step of M-phase
whose regulation essentially depends on the ubiquitin-
proteasome system. Initiation of mitosis is promoted by
high Clb2-CDK activity, whereas exit of mitosis requires
a switch to a status of low Clb2-CDK activity delineating
the G1 phase (see [97] and references therein). To guar-
antee down-regulation of Clb-CDKs at the end of mitosis,
nature has evolved two independent redundant mecha-
nisms: inhibition of Clb-CDK activity by a specific in-
hibitor protein, Sic1, and proteolytic elimination of mi-
totic cyclins. 
As recently reported, Clb2 degradation in budding yeast
mitosis occurs in two stages (reviewed in [98]). As found
in all eukaryotes B-type cyclin degradation is initiated at
the metaphase-anaphase transition. In early mitosis
Cdc20-APC is activated to trigger Pds1 destruction and
also becomes engaged in mediating destruction of a frac-
tion of the Clb2-pool during anaphase [99, 100]. How-
ever, ~50% of Clb2 seems to be excluded from Cdc20-
APC-mediated proteolytic destruction and persists until
late mitosis [99] (fig. 2). It remains undefined how ex-
clusion of this Clb2 portion from Cdc20-APC mediated
proteolysis is achieved. The saved fraction of Clb2 is de-
graded later in M-phase when the cell is prepared to exit
mitosis via a different, Cdh1-APC-dependent pathway
[73, 101]. Cdc20-APC and Cdh1-APC activities are con-
trolled by different means. The Cdc20 concentration 
oscillates in a cell cycle-dependent manner. Its level rises
at entry to M-phase due to initiation of synthesis and is
lowered in G1-phase by proteasome-mediated degrada-
tion [75, 102–104]. In contrast, the APC activator Cdh1 
is present throughout the entire cycle with a constant 
concentration [103]. Cdh1 can be kept inactive by Clb-
CDK-dependent phosphorylation and can be switched
into the active status by dephosphorylation [101, 105,
106]. 
To ensure correct distribution of duplicated genomes to
both daughter cells, chromosome segregation must al-
ways precede mitotic exit. Correct chronology of these
processes is surveyed by the spindle-positioning check-
point (reviewed in [107]). A central regulator of this
checkpoint is Cdc14 phosphatase. Throughout almost the
entire cell cycle (G1-, S-, G2- and early M-phase) Cdc14
is kept inactive by a specific inhibitor, the Net1 protein.
Interaction with Net1 holds Cdc14 in a stand-by position
at its depository, the nucleolus (fig. 2). Subsequent to ar-

rival of the daughter nucleus in the bud cell Cdc14 is ac-
tivated by its release from the nucleolus [108–110].
Cdc14 induces Clb-CDK inactivation by turning back the
outcome of phosphorylation steps executed by mitotic
CDKs. Though acting also on other proteins, dephospho-
rylation of three targets is crucial in Cdc14-dependent
regulation of mitotic exit (fig. 2). Cdc14 up-regulates the
level and thereby the activity of the Clb-CDK inhibitor
Sic1 by two different means. Cdc14 dephosphorylates
and thereby proteolytically stabilizes Sic1 [111, 112],
which in the phosphorylated state is proteasome depen-
dently degraded throughout the entire cell cycle via an
SCF (Cdc4)-mediated pathway. Cdc14, on the other hand,
promotes SIC1 transcription by causing dephosphoryla-
tion and thereby nuclear up-take of the SIC1 transcription
factor Swi5 [111, 113, 114]. In addition to up-regulation
of the Sic1 concentration Cdc14 phosphatase triggers
proteolytic elimination of Clb2. For this purpose Cdc14
dephosphorylates Cdh1, thereby licensing this factor to
bind to the APC and to recruit Clb2 to the ubiquitination
machinery [73, 101, 105].
How is release and activation of Cdc14 linked to arrival
of the daughter nucleus in the bud cell? Cdc14 functions
as the ultimate effector of a sophisticated signal trans-
duction pathway termed the mitotic exit network (MEN),
which is a crucial regulatory pathway designed to control
exit from mitosis (fig. 2). The MEN is activated by the
RAS-like G-protein Tem1 (reviewed in [115]). After for-
mation of the mitotic spindle Tem1 preferentially resides
to the cytoplasmic face of the spindle pole body (SPB)
that is destined to enter the newly formed daughter cell
[116, 117]. Tem1 is kept inactive by an unusual GTPase-
activating unit (GAP), a complex made up of two compo-
nents Bub2 and Bfa1, which can prevent mitotic exit in
response to defective spindle assembly. When duplicated
nuclei are separated and the SPB bearing Tem1 enters the
newly formed bud cell, the G-protein is brought into con-
tact with its activator, the guanine-nucleotide exchange
factor (GEF) Lte1, which only exists in the new daughter
cell [116, 117]. Then through an unknown mechanism in-
cluding Dbf2/Mob1 complexes active Tem1 triggers re-
lease of Cdc14 from the nucleolus, inducing final Clb2
degradation and Clb-CDK inactivation. Cdc14 in addi-
tion dephosphorylates Cdc15, which subsequently binds
to the daughter SBP and triggers cytokinesis [118]. Acti-
vated Cdc15 is also thought to fire into a positive feed-
back loop that stimulates further Cdc14 release. The ex-
act composition and interplay of MEN components, for
instance the multiple role of polo kinase Cdc5, in control
of MEN awaits further investigation (for further details
see reviews by [115, 119, 120]). The story is complicated
by the fact that two additional pathways have been dis-
covered that contribute to control of Cdc14 release and
regulation of MEN. The first pathway, called FEAR, is
activated by the Esp1 separase and triggers temporary
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Cdc14 release in early mitosis (anaphase) (for overviews
see [119, 121, 122]). The second, so-called AMEN, which
is centrally governed by the Amn1 protein, negatively
controls MEN [123] (reviewed in [120]). 

Apoptosis, a new field in ubiquitin-proteasome 
research in yeast: destructive processes regulate 
cell death

Apoptosis, a highly coordinated program of cellular 
suicide, plays an essential role in the development, home-
ostasis and maintenance of multicellular organisms.
Apoptosis is implicated in elimination of superfluous
cells and body shaping during development. It is essen-
tially required for removal of harmful cells such as 
autoreactive immune cells, virus-infected cells or cells
with unrepairable DNA damage bearing the risk of 
being transformed to malignant tumor cells. Because of
its impact on human diseases such as acquired immuno-
deficiency syndrome (AIDS), cancer, autoimmune and
neurodegenerative disorders, research on apoptosis 
has become a major issue in biomedical science [124,
125].
A central feature of apoptosis is its tight control and ef-
fectiveness. A variety of external and internal stimuli in-
duce apoptosis, allowing selective and rapid removal of
cells without damage of the surrounding tissue. External
stimuli that can cause apoptosis are receptor ligands, var-
ious toxins [ethanol, reactive oxygen species (ROSs)] or
toxic conditions (UV, g-radiation). Apoptosis-stimulating
internal signals can be brought about by damage such as
mitochondrial leakage, mitotic catastrophe, replication
failures or by specific processes, for instance develop-
mental events. The cell processes complex information
made up of external and internal pro- and anti-apoptotic
stimuli to finally come to a decision of yes or no, i.e.
whether to execute cellular suicide or not. During the
course of the apoptotic program, cells undergo a set of
typical cytological and morphological alterations. Phos-
phatidyl-serine, which in healthy cells exclusively local-
izes to the inner layer of the plasma membrane, flips to
the outer leaflet in early apoptosis. The chromatin con-
denses and is concentrated close to the nuclear envelope
(chromatin margination). The DNA is cut into short frag-
ments, and the cell is broken down to smaller membrane-
enclosed particles, the apoptotic bodies, which may har-
bor whole organelles (for instance mitochondria or frag-
mented nuclei). On the molecular level induction and
execution of apoptosis is controlled by a sophisticated
network composed of ligand receptor proteins, systems
that recognize and signal internal damage, signal trans-
ducers, pro- and anti-apoptotic regulators and effector
molecules that finally carry out the cytological processes
of apoptosis (for review see [126]).

The ubiquitin-proteasome system in apoptosis 
of cells from metazoan organisms

One of the prominent tasks of the proteasome system is
removal of abnormal and damaged proteins, suggesting
that this system may have a fundamental function in elim-
ination of waste and avoidance of intracellular distur-
bances that lead to induction of apoptosis. On the other
hand, the irreversibility of proteolysis suggested ubiqui-
tin-proteasome-mediated degradation of defined targets
to be an ideal regulatory tool for control of the unidirec-
tional program of apoptosis. The ubiquitin-proteasome
system was thus expected to play an important role in the
cell death machinery. Recent research in metazoan cells
has indeed confirmed this idea (see recent reviews in
[127–129]). Proteasome-mediated regulatory proteolysis
can contribute to regulation of apoptosis on different lev-
els. It may directly negatively control regulators that stim-
ulate induction of apoptosis but also affect inhibitor pro-
teins that prevent induction of the cell death program, and
it may influence the level of apoptotic regulators by con-
tributing to control of their transcription (see previous
section). Moreover, cellular pathways or programs, for in-
stance cell cycle or DNA damage response, that are
tightly linked to the cell death program depend on pro-
teasome-mediated regulation. Based on these suggestions
the ubiquitin-proteasome system was expected to fulfill
multiple functions in control of apoptosis and to regulate
both pro- and anti-apoptotic processes. Initial studies
with proteasome inhibitors supported this view. Depen-
dent on the cell line application of proteasome inhibitors
resulted in either stimulation [130–133] or prevention of
apoptosis [134, 135]. Depending on conditions, for in-
stance cell line, genetic background, nature and concen-
tration of the proteasome inhibitor, proteasome inhibition
by chemicals seems to influence anti- and pro-apoptotic
processes to a different extent, in one case resulting in
stimulation, in the other case avoidance of apoptosis. Fur-
ther evidence for functions of the ubiquitin-proteasome
system in apoptosis was obtained by the finding that fac-
tors involved in apoptosis were identified to constitute
components of the ubiquitin-dependent degradation ma-
chinery. It was found for instance that loss of the von Hip-
pel-Lindau tumor suppressor gene (VHL), which codes
for a component of the SCF-related VHL/Elongin-B
ubiquitin ligase complex (VCB complex), leads to inhi-
bition of apoptosis in renal carcinoma cells [136–138]
and that RING finger-containing members of the IAP (in-
hibitor of apoptosis) family are E3/ubiquitin ligases (see
below).
Moreover, studies in metazoan cells demonstrated the in-
volvement of ubiquitin-proteasome-mediated degrada-
tion in regulation of a variety of components of the cell
death machinery. The current view is that cell prolifera-
tion and apoptosis are controlled in a strict antagonistic
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way. In response to DNA damage the cell stops cell cycle
progression to allow repair. If this is impossible, the cell
undergoes apoptotic suicide. A key regulator of this deci-
sion and therefore a crucial factor for maintenance of ge-
nomic integrity and prevention of tumor development is
the tumor suppressor protein p53 [139–141]. This regula-
tor mainly acts as a transcription factor that controls ex-
pression of many target genes, including induction of
pro-apoptotic genes and repression of anti-apoptotic
genes. In addition p53 may act through transcription-in-
dependent mechanisms. Its activity is mainly regulated at
the post-translational level by changing its proteolytic
stability [142, 143]. In unstimulated cells p53 is kept low
by targeting its proteasome-mediated destruction via 
the RING finger-containing ubiquitin ligase Mdm2
[142–144]. In addition to destruction, p53 ubiquitination
triggers its export from the nucleus, thereby keeping p53
away from its transcriptional tasks [145, 146]. In response
to the absence of growth factors, oncogene activation,
DNA damaging agents or hypoxia, the p53 level increases
to either induce growth arrest or initiate apoptosis. For
this purpose p53 degradation is down-regulated. This can
be achieved (for instance in response to irradiation or ap-
plication of chemotherapeutic drugs) by p53 phosphory-
lation, which prevents its interaction with Mdm2. Alterna-
tively, for instance after oncogene activation, p53 degra-
dation can be neutralized by Mdm2 inactivation through
expression of a specific inhibitor, ARF [147, 148].
Proteins of the Bcl2 family are important regulators of
apoptosis, including both pro-apoptotic factors (Bax and
Bak subfamily and BH3-only proteins) and anti-apop-
totic proteins (Bcl-2, Bcl-xL, Bcl-w). These factors func-
tion as key regulators of the integrity of mitochondria and
are thought to organize cytochrome C release from the
mitochondrial intermembrane space to the cytoplasm.
Liberated cytochrome C stimulates caspase 9 activation,
thereby triggering an important internal signaling event
in induction of apoptosis (for overview see [126, 149]).
Pro-apoptotic proteins of the Bcl-2 family are involved in
many types of apoptotic cell death. Moreover, the pres-
ence of anti-apoptotic members of the Bcl-2 family ap-
peared to be an important prerequisite for survival of each
type of cell. Balancing the ratio between pro- and anti-
apoptotic Bcl-2 family members is a crucial factor in reg-
ulation of many types of apoptosis. Here, the proteasome
fulfills an important role. For instance, it was found that
degradation of Bcl-2 is a key regulatory event in tumor
necrosis factor a (TNF-a)-induced apoptosis of human
endothelial cells [150]. In this pathway TNF-a triggers
dephosphorylation of Bcl-2 and thereby its subsequent
ubiquitination. On the other hand, elimination of the pro-
apoptotic factors Bax and Bik via the ubiquitin-protea-
some system appeared to be a mechanism that prevents
induction of cell death and may be used as a survival
mechanism of some tumor cells [151, 152]. Another im-

portant class of proteins that clearly demonstrates the in-
volvement of the ubiquitin-proteasome system in regula-
tion of apoptosis is the IAP family. Members of these
bona fide inhibitors of apoptosis are not only controlled
by proteasome-mediated degradation but appeared to 
execute functions in ubiquitination. One member, the 
528 kDa murine protein BRUCE, harbors a ubiquitin-
conjugating domain (UBC) and was characterized to
function as an E2-ubiquitin-conjugating enzyme [153].
Other IAP members, e.g. XIAP, cIAP1 and cIAP2, pos-
sess RING finger domains typical for E3-ubiquitin lig-
ases. In response to apoptotic stimuli these IAPs perform
autoubiquitination and are degraded [154, 155]. In addi-
tion to triggering their own elimination, IAPs can induce
ubiquitination of other molecules, including proteins of
the caspase family. Caspases are cysteine proteases that
play a central role in initiation of almost any type of apop-
totic cell death. They are activated from inactive precur-
sors by (auto)-proteolytic processing. Different type of
caspases can cooperate as signaling molecules in a cas-
cade causing amplification of the pro-apoptotic signal
but are also crucial executioners of the cell death program
by causing proteolytic cleavage or degradation of various
target proteins (for overview see [126]). xIAP, cIAP1 and
cIAP block apoptotic death through binding and inhibi-
tion of caspases and can in addition promote ubiquitina-
tion and proteolytic destruction of caspase molecules
through their E3 activity [154, 156] (for recent reviews
see [127–129]).

Apoptosis in budding yeast

Apoptosis in metazoan cells is well established and a
field of intensive research. Apoptotic cell suicide seemed
to be useless for monocellular microorganisms because
here it would result in death of the entire individual. How-
ever, on second thought one could imagine that pro-
grammed elimination of individual cells from a colony or
culture can be an evolutionary advantage even for mono-
cellular species. The initial view of absence of an apop-
totic program in yeast was supported by the finding that
no obvious orthologues of players of apoptosis, such as
e.g. Bcl-2 family members or caspases, were found in the
S. cerevisiae genome. 
In 1997, however, Madeo et al. obtained evidence for the
existence of apoptotic cell death in budding yeast. They
showed that S. cerevisiae cells that harbored a special
point mutant allele of the AAA-ATPase gene CDC48
(cdc48S565G) died with the typical attributes of apoptosis.
When cultivated on glucose medium for several days, a
large fraction of cdc48 cells underwent cell death, ac-
companied by resolution of plasma membrane asymme-
try, chromatin condensation and margination, cutting of
DNA into small pieces and even cell fragmentation [157].
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Two years later the involvement of Cdc48 in apoptosis
was confirmed in the mammalian system by the finding
that a human orthologue, the VCP protein, is required for
prevention of apoptosis in mammalian cells [158]. Even
these initial data on yeast apoptosis link cell death to the
ubiquitin-proteasome system. Phenotypic analysis in
yeast revealed Cdc48 ATPase to play a role in a series of
unrelated processes such as homotypic membrane fu-
sions, activation of transcription factors (see previous
section) and, as shown recently, regulation of mitotic exit
and spindle disassembly [41, 159–162]. On the molecular
level Cdc48 was characterized to use ATPase activity to
unfold proteins or dissociate proteins from large struc-
tures [163], thereby playing a crucial role in making sub-
strates accessible to the proteasome [160, 164–166] (re-
viewed in [7]). Interestingly, in mammalian cells another
factor that is connected to apoptosis is engaged in a sim-
ilar task. The Bcl2 binding anthanogene-1 (BAG1),
which harbors a UBL (ubiquitin-like) domain, is involved
in transfer of substrates – for instance delivery of aggre-
gation-prone proteins – to the proteasome system (re-
viewed in [7, 127]). Existence of an apoptotic program in
yeast was further proven by the finding that yeast cells
showed an ability to respond to apoptotic regulators from
the mammalian cell. When pro-apoptotic factors of the
Bcl-2 family, for instance Bax, were expressed in yeast,
the cells did not tolerate the presence of these factors and
died [167]. A closer inspection of cells overexpressing
Bax demonstrated that this effect is based on induction of
a cell death that is accompanied by typical apoptotic phe-
notypes such as phosphatidyl-serine exposition, mem-
brane blebbing, chromatin condensation and DNA frag-
mentation [168]. These effects and cell death, however,
were prevented by the coexpression of the anti-apoptotic
factor Bcl-xL. As in mammalian cells, Bax is targeted to
the mitochondrial membranes of the yeast cell [169] and
causes release of cytochrome C [170]. This release, how-
ever, seemed not to be the central deadly effect, because
Bax could induce lethality even in yeast cells that ex-
pressed a GFP-tagged cytochrome C that was not re-
leased from mitochondria [171]. In addition to Bcl-2
members, expression of caspases [172] and Apaf1 [173],
which is a factor involved in cytochrome C-triggered ac-
tivation of caspase 9, were also lethal for the yeast cell.
Taken together, these data showed that the yeast cell may
possess an ancient apoptotic program that is activated by
these mammalian regulators. Apoptosis in budding yeast
was further established by the discovery of a caspase-re-
lated protease in this species [174]. Based on low se-
quence similarities with mammalian caspases, a family of
metacaspases had been defined with members in protists,
fungi and plants [175]. The S. cerevisiae member, now
called Yca1/Mca1 protein, is a protease with specificity
for caspase substrates. In response to apoptotic stimuli
Yca1 is activated in a caspase-typical manner by prote-

olytic processing and clearly contributes to apoptosis in
yeast. Conditions or signals that lead to induction of
apoptosis in yeast are exposure to ROSs, DNA damage,
nutrient limitation and cell aging.
For identification of potential proteasomal substrates
Ligr et al. undertook a screen for genes whose overex-
pression was toxic for cells that due to 20S proteasomal
mutations were defective in proteasome-mediated degra-
dation [176]. Further inspection of 62 candidate genes
showing the expected phenotype of high expression
lethality (HEL genes) yielded six genes [Nsr1, Ppa1,
Sar1, Stm1 and the two unknown ORFs (open reading
frames) Hel10 and Hel13], whose overexpression in pro-
teasome-deficient strains resulted in induction of cell
death with all the hallmarks of apoptosis. In each of these
cases cell death was associated with phosphatidyl-serine
exposure, DNA fragmentation, chromatin-condensation
and -margination, whereas no apoptotic phenotypes were
detected for the other 56 HEL candidates. Thus, these six
genes constitute a first set of endogenous yeast genes
with a pro-apoptotic role. Induction of apoptosis by these
HEL genes may be more or less direct. Accumulation of
such proteins may on the one hand damage the cell in a
way that apoptosis is initiated as a final response. Apop-
tosis-inducing Hel proteins may, on the other hand, in-
clude integral regulators of apoptotic pathways whose ac-
tivation leads directly to execution of the cell death 
program. 
Due to following findings the Stm1 protein is thought to
constitute a direct activator of apoptosis: Stm1 shows di-
rect connection to DNA damage and repair. It is a DNA-
binding protein, which preferentially associates with G-
rich quadruplex DNA in vitro and appeared to be associ-
ated with telomeres in vivo [177]. Cells lacking the STM1
gene show enhanced sensitivity against certain DNA-
damaging conditions, for instance UV irradiation or in-
duction of double strand breaks by the radiomimetic drug
bleomycin [176]. Stm1 interacts with Mec3 [W. Hilt un-
published data], which is a kinase that plays a crucial role
in DNA-damage signaling. As revealed in null mutants,
Stm1 is required to prevent certain types of DNA dam-
age. On the other hand, Stm1 has a pro-active role in
ROS-induced apoptotic cell death. Cells lacking Stm1
cells show reduced sensitivity with a clear decrease in ap-
pearance of apoptotic cells when treated with subtoxic
concentrations of hydrogen peroxide [176]. Thus, though
showing no obvious sequence similarity, Stm1 shares
several overlapping features with the tumor suppressor
p53. Stm1 is involved in the decision between execution
of DNA repair and induction of apoptosis. Moreover,
Stm1, like p53, is post-translationally controlled by pro-
teasome-mediated proteolysis. Recent work links Stm1 to
the yeast caspase Yca1 [W. Hilt, unpublished data]. 
Another interesting protein causing the HEL phenotype
is Sar1. Sar1 is a small GTPase involved in control of
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vesicle transport from the ER to the Golgi compartment
(reviewed in [178]). Several lines of evidence were ob-
tained that blocking of the secretory pathway may lead to
induction of apoptosis [179]. Answering the questions
how Sar1 is controlled by the ubiquitin-proteasome sys-
tem and why enhancing its level leads to induction of
apoptosis awaits further research. 
Interestingly, rapid destruction of the replication factor
Cdc6 can serve as a pathway to apoptosis [180]. Here,
Cdc6 was either destroyed through a caspase-dependent
extrinsically induced pathway or by a ubiquitin-protea-
some-mediated process that was stimulated by treatment
with the DNA-damaging drug adozelesin. The latter path-
way, which in mammalian cells is independent of p53, is
conserved in S. cerevisiae. In proliferative cells that have
committed to undergo apoptosis, DNA replication is of-
ten uncoupled from mitosis through the premature acti-
vation of mitotic CDKs. DNA damage-induced Cdc6
degradation via the proteasome may contribute to such
uncoupling and constitute a ancient pathway of cell death
response. 

Future prospects

Sequencing of the S. cerevisiae genome has uncovered
~6000 potential ORFs. Comparitive sequencing reduced
these ORFs to a number of 5727 genuine genes coding
for proteins with a size larger than 50 amino acids [181].
50% of the genes detected are annotated as unknown
ORFs; a large number of the rest are less characterized
concerning their function. Research on these functionally
less or uncharacterized genes will lead to the discovery of
new proteasomal substrates. A recent proteome-wide
analysis detected more than 1000 yeast proteins that exist
in ubiquitinated forms [182]. Further work will clarify
how tagging of new proteasomal substrates for degrada-
tion is signaled, reveal the players involved and resolve
the detailed mechanism of their proteolytic destruction.
Such work will lead to the discovery of new pathways that
are regulated by the ubiquitin-proteasome system. Inte-
gration of such steps of regulatory proteolysis into larger
cellular networks – presumably including use of compu-
tational modeling and systems biology – will greatly en-
hance our understanding of cell function and regulation. 
In recent years proteasomes have become interesting tar-
gets for pharmacological intervention. Proteasome in-
hibitors are now in clinical trials as pharmaceuticals for
the chemotherapy of certain types of cancer [183, 184].
The better understanding of defined pathways of regula-
tory proteolysis will open new opportunities for develop-
ment of strategies for the treatment of severe diseases.
Future research in yeast will provide further basic insight
into this field.
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