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Abstract. Cholesterol is a multifacetted molecule. First,
it serves as an essential membrane component, as a co-
factor for signaling molecules and as a precursor for
steroid hormones; second, its synthesis, intercellular
transport and intracellular distribution present a logistic
tour de force requiring hundreds of cellular components,
and third, it plays a crucial role in major human diseases.
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Despite intense research on this molecule, its metabolism
in the central nervous stystem and its role in neuronal de-
velopment and function are not well understood. Here I
summarize recent results and hypotheses about how neu-
rons maintain their cholesterol level and how cholesterol
influences the establishment and maintenance of synaptic
connections.
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Introduction

Cholesterol is probably one of the most notorious natural
substances due to its role in arteriosclerosis and coronary
heart disease [for reviews see refs 1–3, but also ref. 4].
However, the molecule is fascinating per se because of
several pecularities. The synthesis, intracellular sorting
and intercellular transport of cholesterol require hun-
dreds of cellular components, and cholesterol serves as a
multipurpose molecule [5], which determines the proper-
ties of cellular membranes and protein components
[6–9], and serves as a precursor [10–13] or cofactor [14,
15] for other signaling molecules.
We have come a long way in understanding the biology of
cholesterol since the discovery of the substance by Poul-
letier de la Salle in 1769 and its naming in 1815 by
Michel Chevreul [16]. However, there are still many open
questions, particularly concerning its metabolism and
function in the brain. In the first part of this review, I will
discuss recent findings on cholesterol homeostasis in
neurons. In the second part, I will highlight evidence for
a link between cholesterol and synapse development.

Complementary information on cholesterol metabolism
in the brain can be found elsewhere [17–23].

Cholesterol synthesis

Eukaryotic cells form the 27 carbon atom-bearing cho-
lesterol molecule from scratch starting with acetate as
substrate. The complex synthesis pathway requires doz-
ens of enzymes and large amounts of energy. The rele-
vance of cholesterol synthesis in mammals is drastically
illustrated by the fact that its breakdown due to genetic
defects [24–27], ingestion of plant-derived substances
[28, 29] or pharmacological interference [30] causes se-
vere malformation of the embryo.
The brain contains five to ten times more cholesterol than
any other organ and this sterol represents 2–3% of the to-
tal weight and 20–30% of all lipids in the brain. There is
solid evidence that most if not all of this cholesterol is
produced in situ rather than imported from the blood
[31–33], probably because lipoprotein particles, which
mediate the intercellular transport of sterols and other



CMLS, Cell. Mol. Life Sci. Vol. 60, 2003 Review Article 1159

lipids, cannot pass the blood-brain barrier. Nervous tissue
is capable of cholesterol synthesis and the synthesis rate
and cholesterol content increase drastically during brain
development [for reviews see refs 22, 34, 35]. So far,
however, we do not know whether neurons contribute to
the cholesterol pool.
Swanson et al. [36] showed by in situ hybridization that
3-hydroxy-3-methyl-glutaryl coenzyme a (HMG-CoA)
synthase (EC 2.3.3.10) is expressed in hippocampal and
sensory neurons of young rabbits. However, the presence
of this enzyme is not sufficient to establish cholesterol
synthesis, since it is also required to form isoprenoids.
Surprisingly, expression of enzymes that catalyze choles-
terol-specific steps like squalene synthase (EC 2.5.1.21)
[37] or delta7-sterol reductase (EC 1.3.1.21) [38–40] has
not been analyzed in neurons in vivo.
However, cholesterol synthesis has been deteced in cul-
tured neurons derived from embryonic or newborn mice
[41], chicken [42] and rats [43–45]. An analysis in older
neurons has not been possible, since primary cultures
from postnatal brains invariably contain glial cells,
whose cholesterol synthesis confounds the results. This
would require cultures, in which neurons are completely
separated from non-neuronal cells and grown under de-
fined, serum-free conditions. A culture preparation that
meets these requirements has been established for a spe-
cific central nervous system (CNS) neuron, the rat reti-
nal ganglion cell (RGC) [46, 47]. A recent study on this
model revealed that neurons require glia-derived choles-
terol to form numerous and efficient synapses [48; for
reviews see refs 49–51]. So far, it is not clear whether
purified RGCs that grow under defined culture condi-
tions synthesize cholesterol, albeit in insufficient
amounts, or whether they lack synthesis and must cope
with the sterol content acquired prior to culture prepa-
ration. Support for the idea that neurons produce insuf-
ficient amounts of cholesterol comes from a study on
primary cultures of rabbit dorsal root ganglion cells,
which showed that addition of cholesterol promotes neu-
rite outgrowth [52]. Notably, in cell cultures derived
from embryonic chicken, the rate of cholesterol synthe-
sis was several-fold higher in glial cells than in neurons
[42, 43].
Together, these observations provoke the hypothesis [50]
that during postnatal development, neurons downregulate
their cholesterol synthesis and import the component
from astrocytes, which differentiate postnatally and re-
lease cholesterol-rich lipoproteins (fig. 1). The idea of an
obligatory cholesterol shuttle from astrocytes to neurons
goes beyond previous proposals that after injury glial
cells take up cholesterol and other lipids that are liberated
from degenerating neurons and deliver them back to sup-
port their regeneration [53, 54].
Why should neurons reduce or even abandon cholesterol
biosynthesis? A simple explanation may be the high cost

of this pathway, which consumes large amounts of energy
metabolites (18 acetyl-CoA + 18 ATP + 29 NADPH per
cholesterol molecule) and requires more than 20 dedi-
cated enzymes. It may be more cost-effective for neurons 
to outsource cholesterol synthesis to astrocytes, particu-
larly in presynaptic terminals and dendritic spines, which
are distant from the soma. The idea that distal compart-
ments depend entirely on import from nearby astrocytes
is supported by work with a special culture model that al-
lows to study neuronal somata and neurites separately.
Such investigations showed that distal axons of sympa-
thetic neurons from newborn rats cannot produce choles-
terol [44, 45].
It is possible that only specific types of neurons depend
on external cholesterol. There is good evidence that cho-
lesterol homeostasis throughout the brain is not uniform,
but differs from region to region [see also note in ref.
34]: the cholesterol content [33, 55] and the expression
level of cholesterol-specific enzymes [56, 57] show
strong region-specific variation. Taken together, our
knowledge of cholesterol synthesis in neurons in vivo is
still marginal. Much more work is required to understand
which cells produce cholesterol in the brain and how 
the synthesis pattern changes during development and
among regions.

Figure 1. Hypothetical model of cholesterol homeostasis in neu-
rons. During the embryonic stage, before astrocytes differentiate,
neurons cover their cholesterol requirements by synthesis. Postna-
tally, neurons reduce their own synthesis and import cholesterol
from astrocytes. Glia-derived lipoproteins contain apolipoprotein
(Apo)E (green ovals), which mediate endocytosis by low-density
lipoprotein receptors (blue hexagons). Neurons dispose of excess
cholesterol via ATP-binding cassette transporters (yellow rectan-
gles) onto lipoproteins containing ApoA1 (red circles) or by forma-
tion and release of oxysterols. The cholesterol level is regulated by
a feedback pathway involving sterol-sensing elements (blue circles)
that regulate cholesterol acquisition and a feedforward pathway via
oxysterol-mediated activation of nuclear liver X receptors receptors
(blue triangle) that increases sterol release. Electrical activity (yel-
low flashes) may modulate homeostasis to allow for plasticity-in-
duced synaptogenesis.



Cholesterol release

In principle, one can think of two reasons why cells in the
body release cholesterol: they produce a surplus to pro-
vide other cells with the component or they get rid of ex-
cess amounts to prevent sterol-induced damage. Depend-
ing on the purpose, cholesterol release is accomplished
by two pathways that involve lipid carriers, so called
lipoproteins, with distinct molecular compositions. The
supply of cells with cholesterol is mediated by low-den-
sity lipoprotein (LDL) particles. They contain apo-
lipoprotein (Apo)B as major protein component and draw
their load from newly synthesized material in the endo-
plasmic reticulum. The reverse cholesterol transport,
whereby cells from different organs eliminate excess cho-
lesterol through the liver, is mediated by high-density
lipoprotein (HDL) particles. HDL particles contain
ApoA1 and acquire cholesterol directly from the plasma
membrane. This transfer is probably mediated by mem-
bers of the ATP-binding cassette (ABC) transporter fam-
ily [22, 23], although the molecular details of the process
remain to be established. Mutations in the gene encoding
one member of this family, ABCA1, lead to disorders like
Tangier disease (OMIM No. 205400), which are charac-
terized by a deficiency in HDLs [58–60].
Are these release pathways established in neurons? So
far, there is no evidence that neurons provide other cells
with cholesterol via LDL-like particles. The observation
that under glia-free conditions neurons do not have
enough cholesterol to support massive synaptogenesis
[48] indicates that they need rather than produce surplus
cholesterol. Moreover, ApoE [61, 62], which replaces
ApoB in the brain, is not expressed by neurons, but as-
trocytes [18, 63]. In fact, astrocytes secrete cholesterol-
rich lipoprotein particles in vitro [64, 65] and in vivo:
cerebrospinal fluid (CSF) of transgenic mice, which lack
wild-type ApoE and express the human version in glial
fibrillary acid protein-positive cells, contains lipopro-
teins with human ApoE [66]. Why astrocytes release cho-
lesterol-rich lipoproteins remains unclear. The aforemen-
tioned hypothesis of an obligatory cholesterol shuttle
from astrocytes to neurons may provide an explanation.
Notably, the lipid and protein composition of astrocyte-
derived lipoproteins differ from those produced outside
the brain [65]. Thus, the classification of blood-derived
lipoproteins does not apply to those produced in the brain
[67; for reviews see refs 20, 68].
Little is known about how astrocytes regulate the release
of lipoproteins. Their removal from culture medium
causes upregulation of cholesterol synthesis in different
glial culture preparations [69, 70], but the effects on
lipoprotein release from glia have not been analyzed. Se-
cretion of ApoE and another apolipoprotein, ApoD, is dif-
ferentially regulated in cultured astrocytes from newborn
mice [71] suggesting that astrocytes secrete different

types of lipoproteins. Finally, prenylation of as yet unde-
fined proteins is required for release of ApoE from cul-
tures of mixed rat glial cells [72] and acidic fibroblast
growth factor enhances the secretion of lipoproteins in
cultured rat astrocytes [73].
Neurons, like other cells, likely protect themselves from
cholesterol overload (fig. 1). Do neurons dispose of ex-
cess cholesterol by ApoA1-rich HDL-like particles?
Lipoprotein particles containing ApoA1 are present in
CSF, but so far they are thought to be produced outside
the brain [18]. However, neurons in the rodent CNS ex-
press the ABCA1 transporter, which mediates cholesterol
transfer onto HDL particles and the level of expression
varies in different brain areas [74, 75], supporting the
idea of regional differences in cholesterol metabolism.
Expression of ApoA1, the characteristic component of
HDL particles, has been detected in the chick CNS [76]
and peripheral nervous system (PNS) [77] as well as in
fish optic nerve [78]. Notably, a recent in situ hybridiza-
tion study on spinal cord of adult rats has provided the
first evidence that neurons express ApoA1 [79]. Choles-
terol has been detected in the medium of neuronal cul-
tures [80–82], but since these cultures contain an albeit
small percentage of non-neuronal cells, it remains un-
clear which cells contribute to the release.
Neurons may release cholesterol by conversion to oxys-
terol (fig. 1). This modification, where specific carbon
atoms are oxygenated, enhances its water solubility and
presents a first step in the synthesis of bile acids, which
are used to excrete excess cholesterol [83]. There is evi-
dence for a net flux of a specific oxysterol, 24S-hydroxy-
cholesterol, from brain to blood [84] and this observation
has led to the suggestion that brain cells dispose of cho-
lesterol via this oxysterol [for a review see ref. 85]. The
component, which has been known for a while as cere-
brosterol, is present  in brain tissue at a relatively high con-
centration [86]. Interestingly, the enzyme that synthesizes
this oxysterol, a specific isoform of cytochrome P450
called CYP46 [87], is expressed by neurons from different
regions of the mouse brain, but not by astrocytes or oligo-
dendrocytes [88], suggesting that neurons are equipped to
produce and release the oxysterol. How oxysterols are re-
leased and transported intercellularly is not yet known.
Apolipoproteins other than ApoE may be involved in this
process. Despite recent progress, much more work is re-
quired to define the molecular mechanisms of sterol re-
lease in neurons and glial cells, its regulation and its rele-
vance for brain development and function.

Cholesterol uptake

Apart from de novo synthesis, cells can acquire cholesterol
by uptake of lipoproteins [89]. The classic pathway em-
ploys endocytosis of LDL by specific receptors in the
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plasma membrane [90]. These LDL receptors constitute a
large family of structurally related proteins [91]. In princi-
ple, cells can also acquire cholesterol by direct transfer
from HDL particles to the plasma membrane through scav-
enger receptor class b type I (SRB1) receptors [23, 92].
Do neurons import cholesterol via lipoproteins? There is
evidence for lipoprotein uptake in neuronal cell lines [69,
93–96] and in primary cultures of neurons from the PNS
[45, 52, 97–99] and CNS [48, 100–103, for review see
ref. 20]. Although only some of these studies showed di-
rectly that lipoprotein uptake increases the neuronal level
of cholesterol [48, 99, 103], the data indicate that neurons
can acquire cholesterol from outside (fig. 1).
Which receptor mediates the uptake? Neurons express
different members of the LDL receptor family in a re-
markably region-specific manner [for reviews see refs 91,
104, 105], whereas SRB1 appears mainly expressed in
microglial cells and astrocytes, but absent from neurons
[106]. Blockade of lipoprotein uptake by receptor-selec-
tive antagonists or antibodies revealed that the LDL re-
ceptor and the LDL receptor-related protein 1 (LRP1) are
involved in lipoprotein endocytosis in neuronal cell lines
[94, 95, 107] and in cultures of PNS [52, 97, 99] and CNS
[101] neurons. The finding that LRP1 is present at
synapses and on dendrites [108, 109] supports the idea
that these compartments are capable of lipoprotein up-
take [50]. It will be interesting to see whether this hap-
pens at the endocytotic ‘hot spots’ that have recently been
described in cultured hippocampal neurons [110].
Do neurons take up lipoproteins in vivo? So far, there is
no answer to this question. Mice or even humans lacking
a functional LDL receptor show no defects in the CNS,
but this may be due to activation of compensatory path-
ways [111]. In contrast, elimination of the LRP1 receptor
in mice is embryonically lethal [112], but this may be
caused by the breakdown of other signaling pathways.
LRP1 has a particularly broad binding spectrum includ-
ing more than 30 ligands [113]. Interestingly, a recent
study showed that LRP1 mediates endocytosis of ligands
within several seconds, whereas other receptors operate
five to ten times slower [114]. This suggests that LRP1
functions as a high-speed scavenger for diverse extracel-
lular ligands. LDL receptor protein-related protein 2
(LRP2/megalin/gp330) may play a role in cholesterol
homeostasis during the embryonic stage, where it is ex-
pressed in epithelial cells. Its elimination in mice leads to
holoprosencephaly [115], a malformation that is also
caused by inhibition of cholesterol synthesis. To date, the
role of LRP2 in postnatal neurons is unknown. The very
low density lipoprotein (VLDL) receptor and the
ApoER2 appear to participate in lipoprotein-independent
pathways [116, 117; for a review see ref. 91].
Taken together, the present experimental evidence sup-
ports the idea that cultured neurons acquire cholesterol by
endocytosis of lipoproteins (fig. 1), but future studies are

necessary to determine the relevance in vivo. The ob-
served regional differences in lipoprotein receptor ex-
pression in the CNS [36, 100, 109] imply that their de-
pendence on external cholesterol varies from region to re-
gion. To study these questions, new mouse models are
required, where specific lipoprotein receptors can be
eliminated in a cell-type specific manner. Notably, ani-
mals like Drosophila [118] and Caenorhabditis elegans
[119] may serve as models, since they are not capable of
cholesterol synthesis and therefore depend obligatorily
on sterol uptake. Recent studies have shown that genetic
interference with the sterol metabolism blocks specific
developmental processes in C. elegans [120, 121] and in-
duces neurodegeneration in Drosophila [122].

Intracellular cholesterol transport

Regardless of whether cells acquire cholesterol by syn-
thesis or uptake, the molecule must be distributed to the
different cellular membrane compartments. So far, sur-
prisingly little is known about these processes, even in
non-neuronal cells [for reviews see refs 23, 123, 124].
Several proteins have been identified that may mediate
intracellular sterol transport including MLN64 [125],
sterol carrier protein (SCP) [126–128] and oxysterol-
binding protein [129], but their function in neurons is not
clear. Mice lacking SCP2 show neurological symptoms
including ataxia and die a few weeks after birth [130], but
the causes of these defects are unknown.
Mutations in NPC1 [131] and a related gene NPC2/HE1
[132, 133] cause Niemann-Pick type C disease (OMIM
No. 257220), a rare autosomal recessive lysosomal stor-
age disorder that leads to progressive neurodegeneration
and premature death [134]. A cellular hallmark of this
disease is accumulation of lipoprotein-derived choles-
terol in the endosomal-lysosomal system. This suggests
that the NPC proteins play a role in the intracellular pro-
cessing of externally acquired cholesterol. The molecular
details are still unknown [for reviews see refs 124,
135–138]. Messenger RNA encoding NPC1 is present in
neurons in vivo, with remarkable regional differences in
the expression level [139, 140]. Curiously, in the monkey
brain, NPC1 appears specifically expressed in astrocytes,
but absent from neurons [141, 142]. A defect in NPC1
causes degeneration of axons and dendrites and ulti-
mately loss of neurons, particularly cerebellar Purkinje
cells [141, 143–146]. Assuming that NPC1 steers the in-
tracellular distribution of LDL-derived cholesterol, this
observation supports the hypothesis that neurons depend
on cholesterol from an external source [50]. The fact that
Niemann-Pick type C-related neurodegeneration occurs
not only in humans and mice but also in dogs [147] and
cats [148] implies that neurons are particularly sensitive
to disturbance in cholesterol trafficking despite the strong
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interspecies variation in cholesterol metabolism [149].
How the accumulation of cholesterol in the endosomal-
lysosomal system causes neurodegeneration is not yet
clear. The imbalance may impair neurotrophin signaling
due to defective receptor activation [103, 150, 151],
destabilize microtubules [152, 153] or impair the supply
of neuronal processes with cholesterol and other compo-
nents [81, 154]. Evidently, the question as to how choles-
terol is distributed intracellularly still remains unan-
swered. NPC proteins provide a first clue, but additional
components are likely to be involved. Their identification
will probably rely on new cell biological approaches to
visualize and manipulate cholesterol in cells.

Cholesterol regulation

The cholesterol content of cellular membranes is tightly
controlled by elaborate mechanisms that balance the level
of cholesterol synthesis, uptake and release. A prominent
feedback pathway involves sterol-sensing elements in the
membrane and proteolytic activation of transcription fac-
tors that enhance the expression of cholesterol synthesiz-
ing enzymes and lipoprotein receptors [155–157]. One
of the first studies on cholesterol regulation, which was
performed on neuronal and glial cell lines, showed that
deprivation of cells of serum and thus of cholesterol-rich
LDL particles, enhances the activity of HMG-CoA re-
ductase (EC 1.1.1.34), which catalyzes a rate-limiting
step in cholesterol synthesis [69]. This suggests that the
sterol-sensing mechanism is implemented in neurons
(fig. 1). Interestingly, the time course and extent of these
changes were remarkably different with neuron like cells
reacting more slowly and weakly than glial cells. This
suggests that the two cell types regulate their cholesterol
content differently. In contrast, changing the extracellular
cholesterol concentration did not affect sterol synthesis in
cultured neurons from embryonic and newborn chicken
[42], but this may be due to differences in the cell culture
model. Finally, Ong et al. [158] detected mRNA for a key
element of the sterol sensing pathway, the sterol regula-
tory element-binding protein, in hippocampal and corti-
cal neurons from mice, rats and monkeys in vivo.
The cellular sterol level is probably also regulated by a
feedforward pathway that involves activation of liver X
receptors (LXRs) by oxysterols (see above). These nu-
clear receptors are thought to enhance the expression of
elements that increase cholesterol release from cells in-
cluding ABC transporters and ApoA1 [83, 159, 160]. Is
this pathway implemented in neurons (fig. 1)? Last year,
a study on knockout mice showed that elimination of
LXRs causes major defects in the brain including a strong
reduction in ventricle size, accumulation of lipids and
ApoE in different brain areas and malformation of mi-
crovessels. Importantly, the authors also observed loss of

neurons, an increase in astrocyte number and abnormal
ultrastructure in neurons and glial cells [161]. So far, the
reason for the neurodegeneration is not clear. Given the
observed lipid accumulation, LXR receptors may be re-
quired to drain excess sterols and lipids, and their mal-
function may cause degeneration due to sterol overload.
Another recent study has shown that activation of LXRs
by selective agonists enhances release of added choles-
terol from cultured astrocytes and neurons by increasing
the expression of ABCA1 [82]. Surprisingly, the LXR-in-
duced cholesterol release was less pronounced in neu-
ronal than in glial cultures, corroborating the idea that
neurons and glia regulate their sterol content differently.
The LXR-induced increase in ABCA1 has also been de-
tected in primary cultures of cortical neurons from em-
bryonic mice [74].
Given the scarcity of experimental data, we are far from
understanding how neurons and glial cells maintain their
sterol levels. One reason for this lack of information may
be the tacit assumption that cells in the brain maintain
their sterol levels like other cells of the body. However,
the advanced morphological and physiological differenti-
ation in neurons and glial cells suggests that this assump-
tion may not hold true. If there is a cholesterol shuttle be-
tween astrocytes and neurons [50], how is it regulated?
Do neurons signal their need for cholesterol to astrocytes
and do they downregulate the delivery, once sufficient
sterol levels have been reached? These and many other
questions remain to be answered.

Cholesterol function at synapses

Cholesterol is an essential component of membranes that
determines their biophysical properties by its unique
structure. The polar hydroxy group on one end and the
long hydrophobic tail on the other anchor its orientation
in the phospholipid monolayer, and its flat shape allows
for a neat fit between the hydrophobic tails of fatty acid
chains. Cholesterol lowers the permeability of mem-
branes, possibly by compacting phospholipids, and regu-
lates their fluidity in a temperature-dependent manner by
changing the order of fatty acyl chains. Importantly, cho-
lesterol also determines the functional properties of
membrane-resident proteins like ion channels and trans-
mitter receptors [for reviews see refs 6–9]. Research
within the last 10 years indicates that cholesterol is not
uniformly distributed in biological membranes, but con-
centrated in microdomains or rafts, together with other
lipids like sphingomyelin. These rafts, which measure
several tens of nanometers in diameter are thought to
serve as platforms that organize different signaling com-
ponents into dynamic modules and control their subcel-
lular sorting and efficient function [for reviews see refs
151, 162–166].
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vesicles has a higher cholesterol content than those of
other intracellular organelles [168–172] suggesting that
vesicle biogenesis requires large amounts of cholesterol.
This idea is supported by the study of Thiele et al. [173],
who showed that the cholesterol level controls the avail-
ability of secretory vesicles in a neuron-like cell line. It
will be interesting to see whether this also applies to 
CNS neurons. Apart from the high vesicle content, the
reasons for the suggested requirement of cholesterol in
vesicle biogenesis are not clear. Cholesterol-protein in-
teractions and cholesterol-rich microdomains may be
necessary to induce the vesicle curvature and to assemble
vesicle-specific proteins and lipids [174, 175]. The latter
hypothesis is supported by recent evidence that the cellu-
lar cholesterol level determines complexation of two
synaptic vesicle proteins, synaptophysin and synapto-
brevin, which appears to determine synaptic efficacy
[176]. Another interesting aspect has been raised by the
observation that the kinesin-mediated transport of vesi-
cles along microtubuli requires cholesterol and sphin-
gomyelin-rich rafts in the vesicular membrane in vitro
[177]. This corroborates the hypothesis that vesicle mem-
branes contain cholesterol-rich rafts and suggests that
these rafts guarantee the efficient axonal transport of
vesicles (fig. 2).
The idea that the cholesterol level determines the extent
of vesicle formation and transport may explain why addi-
tion of cholesterol to cultures of purified neurons
strongly increased the number of puncta representing
synaptic vesicles [48] and why evoked and spontaneous
synaptic activity rise sequentially following treatment
with glia-conditioned medium [178]. Newly minted vesi-
cles would first be delivered to existing synapses causing
an immediate increase in transmission efficacy. Later on,
the increased vesicle pool would allow for the formation
of new synapses leading to an increase in spontaneous re-
lease. In any case, the suggested link between cholesterol
and vesicle biogenesis provokes the hypothesis that the
number of synapses that a neuron can form may be lim-
ited by its capacity to generate synaptic vesicles. Choles-
terol may also be necessary to assemble the exocytosis
apparatus in the presynaptic plasma membrane (fig. 2).
This is indicated by two recent studies [179, 180], which
showed that SNARE-dependent exocytosis in a neuron-
like cell line occurs at cholesterol-rich domains in the
plasma membrane. The cholesterol dependency of exocy-
tosis may explain, at least in part, why cholesterol
strongly increases the efficacy of transmitter release in
cultured RGCs [48]. The results summarized above sug-
gest that neurons may depend on an external source of
cholesterol to assemble synaptic vesicles and the exocy-
tosis apparatus.
Numerous studies have shown that neurotransmitter re-
ceptors and other postsynaptic components are associated
with cholesterol-rich rafts suggesting that a sufficient
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In the following paragraphs, I will highlight a particular
aspect of cholesterol function in neurons, namely its rel-
evance for the development and function of synapses,
which are highly specialized interneuronal connections
that mediate the exchange of electrical signals. The rele-
vance of cholesterol for synapses has gained new mo-
mentum by the study of Mauch and colleagues [48], who
observed that addition of cholesterol to cultured neurons
strongly enhances the number and efficacy of synapses.

Synapse formation

The observations of Mauch et al. [48] raise the question
as to how cholesterol promotes synapse formation. Two
possible explanations come to mind. First, cholesterol
may serve as a building material for different synaptic
components (fig. 2). Alternatively, cholesterol may serve
as a precursor for steroids, which have been shown to pro-
mote synaptogenesis [167]. The latter possibility appears
less likely due to different concentration requirements:
promotion of synapse development requires 100-fold
higher cholesterol concentrations [48] than steroid-in-
duced effects [167].
Presynaptic transmitter release involves an interplay of
two highly specialized compartments, the membrane at
the docking zone and the membrane of synaptic vesicles.
Earlier studies had shown that the membrane of synaptic

Figure 2. Possible distribution and function of cholesterol at
synapses. Localization of cholesterol-rich domains (green) (1) in
synaptic vesicle membranes to mediate axonal transport via kinesin
(blue circles) along microtubuli (rose rods), (2) in presynaptic ac-
tive zones to organize exocytotic complexes (black diamonds), (3)
in postsynaptic membranes to cluster neurotransmitter receptors
(blue ovals) or in extrasynaptic pools for activity-dependent re-
cruitment and (4) at the edge of synapses to promote cell adhesion
(yellow rectangles). Presynaptic terminals and postsynaptic spines
import cholesterol from astrocytes (green membrane) by endocyto-
sis of lipoproteins (green circles) by LDL receptors (blue hexa-
gons). Synaptic activity (yellow flashes) may regulate cholesterol
release and uptake in astrocytes and neurons, respectively.



cholesterol level may be essential to organize the postsy-
naptic side (fig. 2). Nicotinic acetylcholine receptors
(AChRs) from cultured chick ciliary ganglion neurons
were found in microdomains, which are cholera toxin-
positive and detergent-resistant [181]. AMPA-type gluta-
mate receptors were detected in detergent-insoluble rafts
from rat brain synaptosomes, while NMDA receptor sub-
units, PSD95, glutamate-receptor interacting protein
(GRIP) and several other postsynaptic components were
absent [182]. Other studies detected PSD95 [183] and
GRIP [184] in detergent-insoluble density gradient frac-
tions from rat cerebral cortex and from mouse brain, re-
spectively, but the discrepancy may be due to technical
differences. The GABAB-type receptor partitioned to Tri-
ton-X-insoluble raft-like fractions from rat cerebellum in
a cholesterol-dependent manner, while the metabotropic
glutamate receptor was completely soluble in detergent
[185]. Other postsynaptic components like CASK/Lin-2
have also been localized to rafts based on their sedimen-
tation behavior after density-gradient centrifugation of
detergent-insoluble material [186]. Together, these data
suggest that rafts help to organize the postsynaptic side,
thus mirroring their function at the presynaptic release
zone (fig. 1). Cholesterol may increase the size of gluta-
mate receptor-mediated postsynaptic currents [48] by fa-
cilitating the clustering of postsynaptic receptors via
rafts.
I should mention that most studies detect only a fraction
of a given receptor protein in rafts, indicating the pres-
ence of raft and non-raft pools. Notably, raft association
of postsynaptic components has only been shown bio-
chemically and a postsynaptic localization of receptor-
raft complexes has not been proven. Receptors localized
in rafts may represent an extra-synaptic reserve pool (fig.
2) and rafts could regulate the lateral mobility of recep-
tors [187, 188] and their turnover rate.

Synapse stabilization

In principle, cholesterol could also increase the number
of synapses in cultured RGCs [48] by enhancing their
structural stability: neurons may form synapses continu-
ously, but the connections may perish instantly due to a
cholesterol deficit. So far, the turnover rates of synapses
are not well known. Two recent reports [189, 190] ana-
lyzed the dynamics of dendritic filopodia and spines in
living mice by two-photon transcranial imaging. Despite
diverging observations, they agree that a fraction of
spines and synapses appears and disappears within a few
days.
The stability of synaptic connections probably relies 
on adhesion molecules that tie the pre- and postsynaptic
elements together. Their function may depend on cho-
lesterol, considering evidence that many cell adhesion

molecules are localized in rafts (fig. 2) including GPI-
linked proteins [191, 192], NCAM [193, 194], integrins
[195] and cadherins [for reviews see refs 162, 164,
196–198]. Given the scarcity of data, more studies are
necessary to measure the stability of synapses and to de-
fine the relevance of cholesterol and rafts for synapse
turnover.

Synaptic plasticity

Neurons form synapses not only during development, but
also in certain forms of experience-dependent plasticity
[199; for reviews see refs 200, 201]. This raises the ques-
tion as to whether activity-induced synaptogenesis re-
quires an enhanced cholesterol supply. If this was the
case, an impairment of cholesterol synthesis or lipopro-
tein transport should diminish synaptic plasticity, and
possibly learning and memory. So far, evidence for such
a link is circumstantial. Pharmacological inhibition of
HMG-CoA reductase eliminated the late phase of long-
term potentiation in hippocampal slices [202], but it is
not clear whether this was due to reduced synthesis of iso-
prenoids or of cholesterol. Removal of cholesterol from
hippocampal slices by cyclodextrin abolished tetanic po-
tentiation of evoked synaptic responses [203], but this ef-
fect may have been caused by changes in the biophysical
properties of the plasma membrane. A recent study on
rats revealed that eyeblink conditioning, a form of asso-
ciative learning that involves synaptogenesis [204], is
sensitive to cholesterol inhibitors [205]. Interestingly, the
blockade was transient and the learning behavior was re-
stored a few weeks after treatment with inhibitors. More-
over, the blockade was only observed in 3-week-old rats,
but not in adult animals, suggesting that requirement 
of newly synthesized cholesterol for plasticity-related
changes may change during development.
Does interference with lipoproteins and their receptors
impair synaptic plasticity? Mice lacking ApoE show no
major defects in synaptic plasticity and integrity [206–
210], although this issue is controversial [211–214]. The
lack of major defects may be due to the fact that other
apolipoproteins replace the function of ApoE. An alter-
native way to test for the role of cholesterol in synaptic
plasticity would be to inhibit lipoprotein uptake or pro-
cessing in neurons in a temporally controlled manner. So
far, however, this has not been accomplished. Clearly, the
results presented above do not reveal whether synaptic
plasticity affects cholesterol homeostasis and vice versa.
More studies are required to determine whether local ac-
tivity-dependent structural changes in the adult brain re-
quire cholesterol delivery, whether electrical activity in-
fluences cholesterol metabolism (fig. 2) and whether
changes in the latter modify learning and memory forma-
tion.
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cholesterol and other lipids is interwoven [238], a
‘lipidomics’ approach to decipher their role in brain cells
appears timely. A detailed notion of sterol homeostasis in
the brain is key to understanding how neurons and their
connections develop and function and how their patho-
logical degeneration can be prevented or repaired.
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