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Abstract. The research upon the genetics of mammalian
endocrine pancreas development gave rise to the detection
of several genes that mediate decisions between different
cell lineages that finally lead to four different hormone-
producing cell types. Transcription factors such as Pdx1,
Hnf6, ngn3, NeuroD/BETA2, Pax6 or Pax4 act within reg-
ulatory cascades and networks of transcriptional regula-
tions that provide the genetic background for endocrine
pancreas development. In adult animals the anatomical
unit of the endocrine organ, the Islets of Langerhans, is
built out of a, b, d and PP cells producing the peptide hor-
mones glucagaon, insulin, somatostatin and pancreatic
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polypeptide, respectively. Numerous promoter analyses of
genes expressed in endocrine cells during development
and adulthood have been performed. It turns out that the
sequences of cis-regulatory elements within promoters of
both, developmental control genes and peptide hormones,
can show significant similarities. The relevance of such el-
ements has been demonstrated by several deletion exper-
iments and protein-DNA interaction assays. This review
summarizes the currently known cis-regulatory elements
that are important for islet development and provides the
opportunity of detecting further pancreatic genes by dis-
cussing common promoter structures.

Introduction

The development of individual organisms is based on ge-
netic regulation and interaction. The underlying genetic
process, namely the control of gene activity, begins with
the very first step of gene expression, transcription of
DNA. Accordingly, influencing the activity of the re-
sponsible enzyme, RNA polymerase II and its cofactors,
evolved as a critical mechanism in gene regulation. Thus
tight control of the genetic network underlying ontogene-
sis, and gene-regulated formation of complex organs and
structures was established throughout evolution. One ex-
ample of such a structure are the pancreatic Islets of
Langerhans, which represent the endocrine subunit of a
complex organ [1–3]. 
The main compartment of the pancreas is exocrine tissue.
It is anatomically organized as acini that produce digestive

enzymes and release them into the duodenum. The en-
docrine units of the organ, the Islets of Langerhans, are
embedded in exocrine tissue and contain four distinct cell
types. The great majority of islet cells are centrally po-
sitioned insulin-producing b cells. In the periphery,
glucagon-producing a cells, somatostatin-secreting d
cells and PP cells for synthesizing pancreatic polypeptide
are found. These hormones mediate regulation of blood-
glucose levels.
The genetic regulation that underlies endocrine pancreas
development is still under intensive investigation. The
first-known major step initiating pancreatic organogene-
sis is an induction event. The notochord touches the 
duodenum, and mesodermal activin repels endodermal
Shh activity [4–6]. This allows Pdx1 expression to mark
duodenal cells, which later in development give rise to 
the dorsal pancreatic outgrowth. A second, ventral out-
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growth, however, is induced differently, since it is inde-
pendent of the notochord [7–9]. Upon activation of Pdx1,
other genes, e.g. Hlxb9, Hnf6, Foxa1, Foxa2, Hnf1a,
ngn3, NeuroD/BETA2, Pax6, Pax4, Nkx2.2, Nkx6.1, Mist1
and p48, influence further cell fate decisions within the
developing organ [10–25]. For example, the choice be-
tween duodenal and exocrine cell fate is influenced by p48
[26]; Hnf6, ngn3, NeuroD/BETA2 and Pax6 mediate the
switch between an exocrine and endocrine cell fate [27].
Since all of the genes mentioned are transcription factors,
they operate by binding to regulatory DNA sequences of
target-gene promoters [28–32]. 
The genetic information of an individual is identical
within every single cell of an organism. As a consequence,
a distinct pattern of transcription factor expression dictates
the fate of a given cell by acting on cis-regulatory DNA
sequences. Consequently, it is possible to deduce a cell’s
determination and differentiation status from its observed
gene expression pattern. The chain links between this reg-
ulatory environment and the executive genes are cis-reg-
ulatory elements of genes, and the investigation of gene
interactions leading to distinct cell fates will always in-
clude research about the according cis-regulatory ele-
ments. This review summarizes the scientific results cur-
rently available concerning direct gene interactions during
endocrine pancreas development and function, emphasiz-
ing apparently conserved promoter structures of endocrine
genes.

The dual task of Pdx1

During pancreatic organ genesis, the homeodomain tran-
scription factor Pdx1 represents the most important factor
for regulation of pancreas development among the cur-
rently known genes [2]. Disruption of the Pdx1-gene leads
to a loss of exocrine as well as endocrine tissue [8, 9]. To-
gether with Hlxb9 its expression domain appears in the
duodenum early in development [8–11] and marks a pop-
ulation of cells that represent the earliest pancreatic pre-
cursors [33, 34]. Once activated, Pdx1 mediates expres-
sion of a huge variety of continuative factors [35, 36].
Some of them subsequently are necessary to demarcate
distinct cell lineages [20, 21, 27]. To date, direct regulation
of three transcription factors by Pdx1 protein has been de-
scribed (fig. 1). Cis-regulatory elements that mediate pan-
creas-specific expression of Pax4, Nkx6.1 and of Pdx1 it-
self are regulated by Pdx1 protein [37–41]. 
Considering Pdx1 as a gene on top of a genetic regulatory
cascade governing pancreas development – comparable to
Pax6 in eye morphogenesis – it might be expected to di-
rectly activate even more transcription factors that are re-
sponsible for further fate decisions later in development.
However, no direct regulation even of promising candidates
such as Hlxb9, Hnf6 or ngn3 by Pdx1 has yet been reported.
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On the other hand, many data exist regarding Pdx1-medi-
ated transcriptional control of peptide hormones in the
mature organ (fig. 1). This is the second task of the pan-
creatic Pdx1 gene. After initiating pancreas development
and being expressed in pancreatic precursors in general,
Pdx1 activity is restricted to b and d cells [42, 43]. In these
cells the protein becomes assigned to tasks concerning
cell function throughout adulthood [35, 44–46]. For ex-
ample, Pdx1 regulates the cell-specific and glucose-de-
pendent hormone production of insulin [47–49], islet
amyloid polypeptide (IAPP) [50, 51] and other factors
[52–54].
This dual-task existence makes Pdx1 an especially inter-
esting candidate gene to investigate the principles of gene
regulation. Since Pdx1 governs early developmental
processes as well as function of the mature endocrine pan-
creas, a regulatory circuit can be proposed. Genes that
have been directly or indirectly activated by Pdx1 will
later in development have to tightly control Pdx1 itself to
orchestrate glucose homeostasis. Interestingly, during the
islet regeneration process – most probably from duct cells
– Pdx1 is again found at the top of the genetic cascade that
triggers this regeneration process [55, 56]. 
Among the DNA sequences recognized by Pdx1 protein,
one easily recognizes the core sequence TAAT, a typical
target for homeodomain-containing proteins. Mutation of
these TAAT motifs leads to a loss of Pdx1 binding [36].
Pdx1 is able to interact with numerous transcription 
and cofactors, such as Hnf1, E47/Pan1, BETA2/NeuroD,
Pbx1, Meis2, Prp1, p300 and Pax6 [39, 46, 57–61] on the
protein level. Because of their ability to create complexes
with Pdx1, these proteins have the potential to influence
the DNA-binding and transactivating properties of Pdx1.
Some of these factors can create a huge variety of differ-
ent protein complexes with or without Pdx1, so that Pdx1
protein has to compete for contribution to distinct protein
complexes [58, 61, 62].

Figure 1. The dual task of Pdx1. Early interactions. Pdx1 has been
shown to interact with cis-regulatory elements of transcription fac-
tors (Pdx1, Pax4, Nkx6.1) as well as of peptide hormones (IAPP, in-
sulin, glucagon). Activin, repressing endodermal Shh, enables Pdx1
expression in early development. After initiating pancreas develop-
ment, Pdx1 participates in regulation of glucose-dependent insulin
response in mature b cells. 



Despite possible variations in the composition of Pdx1-
containing DNA-binding complexes, the alignment of
Pdx1 targets uncovers striking similarities in their DNA
sequences (fig. 2). Obviously acting in a feedback-loop
regulation, Pdx1-containing complexes have been shown
to recognize the following DNA sequences within the
Pdx1 promoter: 5¢-GTCCTGCTAATAAACGACTTTTT-
3¢ (human, nt. –2779 to –2757) and 5¢-ACACTT-
TAATTGGTTTAC-3¢ (human, nt. –2748 to –2727)
[37–39]. 
Regulation of a second transcription factor, Nkx6.1, im-
plicates recognition of its promoter by Pdx1 protein,
which binds to the sequence 5¢-CCCTCATAAGT-
GATAATGATCTAGG-3¢ (mouse, nt. –812 to –788) [63].
In contrast to Pdx1, which itself remains active in mature
b and d cells throughout adulthood [35], the third known
Pdx1-regulated transcription factor, paired-box gene
Pax4, is only transiently expressed during development.
Pax4 is active in early pancreatic precursors and later in
maturing b and d cells. No Pax4 protein is detectable in
mature islet cells [21]. In the Pax4 gene promoter Pdx1
recognizes the Pax4 A2-promoter motif 5¢-TTTGAGT-
TATGTATAATGTGAG-3¢ (human, nt. –1950 to –1926),
and this motif is also bound by Hnf1 protein [40]. In ad-
dition, this motif shows a high degree of similarity to
DNA sequences within the promoter of the peptide IAPP
produced in b and d cells. In the IAPP promoter 
the according motif has been named A2/AT2 element 
[51, 64]: 5¢-ACTGATGAGTTAATGTAATAATGACC-3¢
(human, nt. –163 to –138). The hormone IAPP is 
expressed similarly to the late expression pattern of Pdx1
but in contrast to Pax4: the peptide is found in the adult 
in mature b and d cells [65–68]. In fact, according to
these observations, highly similar motifs recognizing the
same factor (Pdx1) are present in different genes (Pax4,

IAPP) that are regulated oppositely within mature islet
cells. 
Besides the A2/AT2 element another motif within the
IAPP promoter, the A1/AT3 motif (5¢-GATGGAAAT-
TAATGACAGAGG-3¢; human, nt. –96 to –76) is bound
by Pdx1 [51, 64]. Another DNA sequence with striking
similarity to A2/AT2 can be found within the Pdx1 pro-
moter (5¢-CTGAGTTAATCAAATAAGT-3¢; mouse, –818
to –800), but no functional study has been performed yet
with this Pdx1 promoter element. The same is true for fur-
ther similar motifs appearing in Nkx6.1, ngn3 and Pax6
promoters [69; C. Brink and P. Gruss, unpublished]. 
Within the insulin promoter the so-called A3/A4-element
[70] is recognized by Pdx1 in rat [47]: 5¢-GT-
TAATAATCTAATTAC-3¢ (rat, nt. –224 to –207) and
mouse [71] 5¢-CTTATTAAGACTATAATAACCCTAA-
GACTA-3¢ (mouse, nt. –220 to –191). These sequences
show striking similarity to A2/AT2 as well as the Pdx1-
binding GLUT2TAAT element [52] of the GLUT2 
promoter: 5¢-TGACTTAATAATAACAGTA-3¢ (human/
mouse, nt. –517 to –488). Further interactions have been
demonstrated between Pdx1 and the glucokinase promoter
[54, 72] as well as the glucagon-promoter [73], using the
promoter sequence 5¢-GAACAAAACC-CCATTATT-
TACAGATGAGAA-3¢ (mouse, nt. –103 to –74). Inter-
estingly, using in vitro assays, it was also possible to show
an interaction between Pdx1 and the non-b-cell promoter
of albumin [36]: 5¢-TGAAGCTCAGGTTTAATTC-
CCAGTCACAT-3¢ (mouse, nt. –336 to –308). In vivo,
however, the interactions between Pdx1 and insulin, IAPP,
glucagon, Pdx1 and Pax4 promoters could be verified,
whereas interactions with GLUT2, glucokinase or albu-
min promoters did not appear [36]. This suggests that
chromatin structure has a decisive influence on promoter
activity in these cases.

Exocrine or endocrine:
Hnf6, ngn3 and NeuroD/BETA2

Early in development the decision between exocrine and
endocrine cell fate marks a first bifurcation in the course
of pancreas development after induction [74, 75]. There is
evidence that onecut-homeodomain transcription factor
Hnf6 [12], the basic helix-loop-helix transcription factors
ngn3 [18] and NeuroD/BETA2 [19], and also the paired-
box transcription factor Pax6 [20] participate in control-
ling the switch between endocrine and exocrine tissue
[27]. An influence of a notch-hes1-mediated mechanism
of mutual fate inhibition (fig. 3, red arrows) has been dis-
cussed [27, 76]. 
Except for Hnf6, all of these factors are specifically active
within endocrine cells. For all of them loss-of-function-
analysis was performed, and without exception the phe-
notypes solely affect endocrine cell types, leaving the 
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Figure 2. Pdx1 target sequences. Aligning the DNA sequences that
are recognized by Pdx1 protein reveals a predominance for binding
to 5¢-TAATAAT-3¢ (box). Arrows indicate the orientation of the
given sequence within the given promoter. The sequence out of the
Pdx1 promoter that is marked with an asterisk is listed because of its
similarity to the other Pdx1-targets, but no binding of the protein has
yet been shown for this element.



exocrine solely affect normal. On the other hand, P48 [25,
26] and Mist1 [24] represent factors which particularly in-
fluence exocrine tissue development. Two exocrine cell
types can be found: acinar and duct cells [77, 78]. Inter-
estingly, the decision between exocrine and endocrine 
fate is not necessarily final. At least for regenerative
processes, the duct cells seem to represent a link between
exocrine and endocrine cell fate [56, 79]. In the following
sections, however, this review will focus solely on the en-
docrine factors. The most important currently known in-
teractions between endocrine genes are summarized in
figure 3.
Even though early Hnf6 activity is visible in epithelial
cells that give rise to exocrine as well as to endocrine tis-
sue and later disappears from the islets [80, 81], the loss-
of-function phenotype of the gene exclusively shows ef-
fects that are restricted to the endocrine part of the organ
[12]. Animals missing both functional Hnf6 alleles lack
complete Islets of Langerhans at birth, and at this devel-
opmental stage only a few endocrine cells are found.
Later, however, perturbed islets may appear, but still the
grown-up mice remain diabetic. Interestingly, downregu-
lation of the gene at birth in endocrine cells is also neces-
sary for proper islet formation and function [82]: persis-
tent Hnf6 expression in islets leads to diabetic mice with
disturbed islet architecture and nonfunctional b cells.
Hnf6 is regulated by the interplay between growth hor-
mone (GH), Hnf4a and C/EBP activity [83, 84]. The
mechanism by which Hnf6 is turned off in mature islets,
however, is still unknown. 
Currently known downstream targets of Hnf6 are numer-
ous liver-expressed genes [85] and the pancreatic factors

Foxa2, Hnf4 and ngn3 [12, 79, 86]. Competition be-
tween Foxa2 and Hnf6 for binding the same target se-
quences has been discussed [85]. There are two isoforms
of Hnf6, a and b, which are both capable of binding as a
monomer as well as integrated into complexes [86]. The
p300/CREB binding protein-associated factor (p/CAF) is
– among others – one possible partner of Hnf6 in DNA
binding [87]. 
For binding of Hnf6 the DNA motif 5¢-ATNGA-3¢ turns
out to be most crucial (fig. 4). Out of the Hnf6-regulat-
ed hepatic genes the consensus binding motif 5¢-
TTATT GATTT-3¢ emerged [85, 86], which is highly con-
sistent with the motifs recognized by Hnf6 during 
pancreas development: the Foxa2 promoter (5¢-
CGATATTGATTTTT-3¢; rat, nt. –139 to –126) and the in-
verted Hnf4a promoter element (5¢-AAGTCAATGA-3¢,
nt. –387 to –378) [84]. It is also similar to inverted Hnf6-
bound sequences of the ngn3 promoter (5¢-AAATC-
CATGT-3¢; mouse, nt. –3187 to –3178 and 5¢-GCATC-
CATAG-3¢; mouse, nt. –453 to –444) [12]. A summary of
the Hnf6-bound DNA motifs is depicted and discussed in
figure 4.
Out of all Hnf6-regulated genes, ngn3 seems to represent
the most important factor lining up the main switch for en-
abling islet development – comparable to the role of Pdx1
at the beginning of pancreas development [88]. Like Pdx1,
Ngn3 is capable of inducing endodermal outbudding upon
ectopic endodermal expression. Within these buds, ngn3
mediates the differentiation of endocrine cells that form
islet structures, whereas ectopic Pdx1 induces an – at least
partial – pancreatic cytodifferentiation [88]. This obser-
vation is evident since it has been shown that ngn3-ex-
pressing cells are islet progenitors, whereas pancreas
progenitors are marked by Pdx1 expression [89]. Without
ngn3 activity, no endocrine cell types are present [18]. Be-
sides Hnf6, the factors Hnf1a and Foxa2 as well as the
notch-regulated Hes1 bind to the ngn3 promoter and in-
fluence its expression rate [90].
As a member of the bHLH family of transcription factors
ngn3 directly influences the expression of another islet
specific bHLH gene, NeuroD/BETA2 [29]. A loss of func-
tion assay of NeuroD/BETA2 implicates a phenotype sim-
ilar to, but less severe than, ngn3, leading to a diminished
number of all endocrine cell types [19]. 
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Figure 3. Genetic interactions of pancreatic genes after induction.
An overview of the currently known genetic interactions of genes
important for development and function of the endocrine pancreas
is given. Red arrows mark the genetic network that has been dis-
cussed to mediate the decision between exocrine and endocrine cell
fate [26]. For Hnf1a and Hnf4a only the pancreatic regulation path-
way is shown; in hepatic tissue the regulation hierarchy between
these two factors is inverted [17].

Figure 4. Hnf6 target sequences. The Hnf6 target sequences and
their orientation in the particular promoter are given. The core se-
quence 5¢-ATNGA-3¢ emerges from all Hnf6-bound motifs.



Both bHLH factors, ngn3 as well as NeuroD/BETA2, have
been shown to contribute to protein complexes which reg-
ulate the b- and d-cell-specific transcription factor Pax4
[40] and the insulin gene [91–94] by binding the so-called
E1 motif [70], an E-box sequence within the gene pro-
moters [41, 70]. Like the A2 motif, the E1 element is a cis-
regulatory element which in the pancreas plays an impor-
tant role in the transcriptional control of two diverse
genes: Pax4 as a developmental control gene and the pep-
tide hormone insulin. The E1 elements of both promoters
are related not only in their structure but also in bio-
chemical function concerning the binding of protein com-
plexes [40, 41]. Besides the Pax4 promoter, the E1-type E-
box motif can be also found and features striking
identities in every investigated insulin promoter so far
[70]. Interestingly, the sequence found within the Pax4
gene promoter [41] (5¢-AGCAGATGGC-3¢; mouse, nt.
–1950 to –1941) appears to be inverted in comparison to
the motif of the insulin promoter [95, 96] (5¢-GC-
CATCTGCT-3¢; rat, nt. –100 to –91). E1 elements of
other insulin (insulin I) genes are [70, 97–99]: 5¢-GC-
CATCTGCC-3¢ (mouse, nt. –106 to –97), 5¢-GCCATCT-
GCC-3¢ (rat, nt. –112 to –103) and 5¢-GCCATCTGCC-3¢
(human, nt. –111 to –102). The core sequence CATCTG
representing the E-box motif (CANNTG) [30, 100] fur-
ther shows up within the glucagon promoter [96, 101]. E-
box motifs in general are present in many other pancreatic
promoters [102–105] – among others in Pdx1 [106] – and
are mostly recognized by NeuroD/BETA2 [30, 107] or by
other bHLH proteins, for example ngn3 [29, 40]. 
Binding of a substantial protein complex could be
demonstrated by performing investigations upon the E1
element of the insulin promoter [108, 109]. Within this
complex NeuroD/BETA2 – or ngn3 – in combina-
tion with the E2A gene products E47, E12 and E2/5, 
and HEB gene products, bind to the insulin-E1 sequence
[110]. Even though these ubiquitously expressed cofac-
tors are not necessary for the interaction between Neu-
roD/BETA2 and E1 element [111, 112], this protein ma-
chinery-influencing polymerase II activity seems to be
conserved among several regulatory processes on the bio-
chemical level [93, 113]. The effect of the NeuroD/BETA2
complex on polymerase II activity by binding to the E1 se-
quence has the potential to be positively as well as nega-
tively influenced by factors such as p300 [93] and c-jun or
adenovirus E1A [114–116], respectively. These observa-
tions point up the regulatory potential of the NeuroD/
BETA2 : E47 protein complex. Moreover, recently sup-
plied evidence for an interaction between the E1-binding
complex and the Pdx1 protein, which binds the neighbor-
ing A3/4 motif, of the insulin promoter throws light on a
complex regulation mechanism, at least for insulin ex-
pression [61]. A scheme for possibly according interac-
tions between the proteins acting on the neighboring A2
and E1 elements of the Pax4 promoter is shown in figure

5. The inhibiting activity of adenovirus E1A is mainly
based upon the disturbance of the interaction between
p300 and Pdx1 [61].
Taken together, three observations make it tempting to
speculate that in this case identical biochemical mecha-
nisms might be the basis of oppositional effects: First, in
contrast to Pax4, insulin is expressed in mature b cells af-
ter birth. Second, both genes contain adjacent E1- and
Pdx1-binding A2 elements in their promoters. Third, in
comparison with the insulin promoter the E1 element of
the Pax4 promoter is inverted [41].

Winged-helix transcription factors 

Many genes originally described as hepatocyte nuclear
factors (Hnf genes) also play a role in endocrine pancreas
development and function [117, 118]. Whereas the Hnf6
gene is characterized by a bifunctional onecut-type
homeodomain [12, 28], other members of the Hnf gene
family, Hnf3a, Hnf3b and Hnf3g, belong to the winged-
helix class of transcription factors [119–121]. Therefore
they have been renamed Foxa1, Foxa2 and Foxa3, respec-
tively [122]. Foxa1 is important for a-cell function [13].
It has been shown to recognize and regulate the glucagon
promoter by binding the G2 element (5¢-AGGCACAA-
GAGTAAATAAAAAG-TTTCCGGGCCTCTG-3¢; rat,
nt. –200 to –164) [123]. Foxa2, on the other hand, plays
an important role in early endoderm development [124],
and its malfunction could be linked to pancreatic disorders
[125]. Because of a severe phenotype that leads to early
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Figure 5. Scheme of protein complexes binding and potentially in-
teracting on the A2 and E1 elements in the Pax4 promoter. Within
the insulin promoter an interaction between the E2-element binding
protein complex (NeuroD : E47) and A3/4 element-bound Pdx1 has
been demonstrated [58]. Within the Pax4 promoter Pdx1 and Hnf1a
have been shown to recognize the A2 element, and NeuroD was
identified as a member of the neighboring E1-element-binding pro-
tein complex [37]. The p300 coactivator was shown to mediate an in-
teraction between both complexes. These observations suggest a
similar interaction takes place within the Pax4 promoter.



lethality, insight into the role of Foxa2 in pancreas devel-
opment and function emanates from conditional gene-
targeting experiments. The factor appears to be necessary
for b cell function [126]. Foxa2 interacts with the 
Pdx1 promoter [36, 104, 127–130] at sequences 5¢-
CCGTTTTTGTTTATTTATCCA-3¢ (mouse, nt. –2713 to
–2693), 5¢-CTTTTTTGTTTATTTATCCATA-3¢ (human,
nt. –2727 to –2706), 5¢-GTGCTAAGCAAACATCCT-3¢
(mouse, nt. –2013 to –1996), 5¢-AGTGCAAAGTAAA-
CACTCCGG-3¢ (human, nt. –2102 to –2122) and 5¢-
GAACAGAAAGTAAATAAGCGC-3¢ (mouse, nt –5927
to –5907); 5¢-GGTATTTATTTATATATATATATATAT-3¢
(human, nt. –3591 to –3565). In the ngn3 promoter 
[90] Foxa2 binds to 5¢-TTATTATTATTTTAGCAAA-
CACTGGAGACAG-3¢ (human, nt. –3699 to –3669) and
5¢-GATCTCTCGAGAGAGCAAACAGCGCGGCGG-3¢
(human, nt. –200 to –170). Also, an interaction with the
promoter of the exocrine factor amylase has been described
at recognition site 5¢-CTGTACCTTAAATATTTACTCAT-
GAGCATTTA-3¢ (mouse, nt. –89 to –58) [131]. In general,
the consensus recognition sequence 5¢-(G/A/C)A(T/A)
T(A/G)TT(T/G)(A/G)(T/C)T(T/C)AGTC-3¢ emerged, to
which Foxa2 binds as a monomer [132–134]. An alignment
of Foxa2 binding sites is depicted in figure 6.
Foxa1 and Foxa3 bind to the same or similar sequences.
The glucagon G2 element, for example, is a target of both
genes [135]. The current results suggest that Foxa3 does
not play a role in the developing pancreas, but after birth
a mild phenotype appears upon gene targeting: mature
islets of loss of function mice show defective functions
which are due to the missing regulation of Glut2 by Foxa3
in differentiated cells [136]. 

Hnf1 and Hnf4

The transcription factors Hnf1a, Hnf1b and Hnf4a play
essential roles in pancreas development and function
[137–140]. Hnf1a, like the related gene Hnf1b, con-
tains a homeodomain-like DANN binding domain
[141–143]. No functional role for Hnf1b in pancreas de-
velopment has yet been reported [144–146], but mal-
function of the gene was linked to pancreatic disorders
[147–152]. Further, a pancreatic tissue-specific effect on
the P2 promoter of the Hnf4a gene could be demonstrated
[153]. Hnf1b recognizes the same target sites as Hnf1a,
and they bind DNA as homo- or heterodimers [154, 155],
for example during recognition of the P2 element of 
the Hnf4a gene and during regulation of the insulin A3 
element [156]. 
Especially interesting is the regulation of the P2 promoter
element 5¢-AGTGACTGGTTACTCTTTAACGTATC-
CAC-3¢ (human, nt. –93 to –65) [17], since it drives the
expression of an islet-specific splice variant of Hnf4a in
differentiated islet cells [17, 153]. This process inverts the
regulation pathway that has been described during liver
development, where Hnf1a lies downstream of Hnf4a
[157–159]. 
An important role for Hnf1a itself during pancreas de-
velopment directly emerged from several loss-of-function
studies [160–169]. Accordingly, the interactions between
Hnf1a and several promoters mediating pancreatic gene
activity have been described, and effects on the transcrip-
tional control of Foxa3 (5¢-TGTTAATAGTTAACC-3¢;
mouse, +16 kb) [170], Hnf4a and the factors glut2 and
pklr by Hnf1a were shown [17]. Further Hnf1a target se-
quences exist within the Pdx1 gene, where the previously
described Foxa2 target [130] and the sequence 5¢-GTC-
CTGCTAATAAACGACTTTTT-3¢ (human, nt. –2763 to
–2741) [37] are recognized. As mentioned, together with
Hnf1b the A3 element of the insulin promoter at 5¢-TG-
GTTAAGACTCTAATGACC-3¢ (human, nt. –231 to
–211) [156, 171] can be bound by Hnf1a. In the ngn3 pro-
moter the target sequence 5¢-CTTGTAATTATTTAT-
TAAACGAAATCT-3¢ (human, nt. –3728 to –3702) [90]
and in the Pax4 promoter the target 5¢-TTGAGTTAATG-
TATAATTGTGAGCA-3¢ (human, nt. –1950 to –1926)
[40] are recognized. The favored liver-specific Hnf1a
recognition sequence consensus is GGTTAATNAT-
TANCA [172, 173], which shows high identity to the pan-
creas-specific sites. In general, there seem to exist two
recognition sequences that can be used by Hnf1a as DNA
targets. The first represents the partial palindrome 5¢-
GGTTANNNTTANC-3¢; the second deviates from this
consensus to preferentially recognize 5¢-TTAATAAATA-
3¢. Alignment of the Hnf1a recognition sequences is
shown and discussed in figure 7. Still, Hnf1a has the po-
tential to contribute to the regulation of many more pan-
creatic genes [174]. This potential may include the in-
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Figure 6. Foxa2 target sequences. An alignment of the Foxa2-rec-
ognized DNA sequences within pancreatic promoters shows simi-
larities with the consensus of the Foxa2-bound motifs of hepatic
genes (cons.). Surprisingly, crystallographic analysis has led to iden-
tification of a highly divergent DNA sequence serving as Foxa2 tar-
get (crist.). Sequences and orientation within the promoters are
given, respectively. Highest conservation can be found for the core
sequence 5¢-TGTTTNNT-3¢.



volvement of further cofactors like it has been shown for
p300 on the Glut2 promoter (nt. +200 to +218) [175].
The Hnf4-genes are members of the nuclear hormone re-
ceptor superfamily and contain a zinc-finger DNA bind-
ing motif [176]. Several isoforms of Hnf4 represent re-
lated genes (Hnf4a, b, g), but splice variants have also
been described [177, 178]. Hnf4b and Hnf4g turned out to
recognize Hnf4a-binding DNA motifs and have been
shown to exhibit an expression pattern similar to the 
previously detected Hnf4a [118, 140, 179, 180]. Hnf4a-
to-DNA binding occurs exclusively as homodimers 
[181, 182], is phosphorylation dependent [183] and can be
influenced by coactivators [184]. Hnf4a is involved in nu-
merous developmental and regulatory processes: loss-of-
function studies revealed its important role in its expres-
sion domain, the visceral ectoderm, in early development
[185–187]. Hnf4a is further present in mature pancreatic
islets [188] and is necessary for islet function [189–191].
From the sites recognized by Hnf4a in hepatic genes, the
preferred consensus 5¢-GGGCCAAAGGTCA-3¢ emerged

[192], which is mirrored, for example in the binding site
of the Hnf1a promoter: 5¢-AGTCCAAAGTTCA-3¢ (hu-
man, nt. –66 to –48) [193]. Hnf4a influences the expres-
sion rate of several pancreatic genes [194]. A direct inter-
action between Hnf4a and cis-regulatory elements of
pancreatic promoters could be shown for the Pax4 pro-
moter (5¢-GTGGCAAGACCTTTGAGTTAA-3¢; human,
nt. –1960 to –1940) [40] and for the insulin promoter (5¢-
GCCCTTAATGGGCCAAACGGCAAAGTCCAGG-3¢;
rat, nt. –84 to –54) [195]. The Hnf4a target DNA se-
quences are assembled and discussed in figure 8.

Pax transcription factors

Two members of the Pax family of transcription factors,
Pax4 and Pax6, have been shown to be crucial for cell
identity and islet architecture within the endocrine pan-
creas [196–198] and for gastrointestinal endocrine cell
development [199]. Without Pax4 no b cells, in a Pax6
loss-of-function animal no a cells and no islet structures
form within the organ, and the total number of endocrine
cells is reduced [20, 21, 200]. Several splice variants of
Pax4 have been described that might achieve oppositional
effects, respectively [201, 202]. However, Pax4 was shown
to act as a transcriptional repressor gene [203–206], pos-
sibly binding to and competing for the same motifs as
Pax6 [207]. By affinity selection to random oligonu-
cleotides the bipartite recognition sequence 5¢-
AAAATTA-N15-(C/T)CACCCC-3¢ emerged, and similar
motifs in hormone gene regulatory elements are bound by
Pax4 protein [203]. Pax4 has been shown to bind the se-
quences 5¢-GCCAGACCTGTCCCTGCTCACAGCT-3¢
(human, nt. –262 to –238) in the insulin and to possibly
act on 5¢-ACTTTCTATCTATAGGGATG-3¢ (human, nt.
–111 to –92) in the IAPP promoter [205, 64]. In another
study the binding motif 5¢-GCANTCANGCGTGAA-3¢
for the Pax4 and other paired domains and the palindrome
5¢-TAAT-N1–5-ATTA-3¢ for the Pax4 and other home-
odomains have been described [208]. For Pax6 several
binding sequences emerged that show similarities to the
Pax4 binding sites. Three different studies describe Pax6-
binding sequences, that have been selected by their affin-
ity for Pax6 protein: T5¢-ANNTTCACGC(A/T)T(G/C)
ANT(G/T)(A/C)NT-3¢ [209], 5¢-(G/A)NG(C/A)ANT
(G/C)A(A/T)GCGT(G/A)AA-3¢ [210] and 5¢-TTAGT-
TCCAG GTCAG-3¢ (present in a human soluble guany-
late cyclase large subunit intron) [211]. Pax6 was further
shown to directly bind the Pdx1 promoter (5¢-AATAAAT-
GAAGCGTCGAGAT-3¢; mouse, nt. –2071 to –2052)
[127]. On the G1 element (5¢-CCCCATTATTTACAGAT-
GAGAAATTTATATTGTCAGCGTAATATCTGCAAG-
GCTAAACAG-3¢; rat, nt. –94 to –34) of the gluca-
gon promoter Pax6 builds a complex with Cdx2-, 
MafA- and p300- protein [211–215]. The glucagon 
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Figure 7. Hnf1a target sequences. The currently described Hnf1a
target DNA sequences are aligned, and the corresponding orientation
in the according promoter is given. Two motifs emerge from this
alignment: First, the incomplete palindrome 5¢-GGTTAANNNT-
TANC-3¢ emerges. Second, a consensus sequence similar to the mo-
tif 5¢-TTAATAAATA-3¢ can be recognized within another group of
Hnf1a targets. Tissue-specific regulation of the P2 promoter element
within the Hnf4 promoter shows that these two target motifs are not
representing tissue-specific promoter elements, since the pancreas-
specific P2 promoter uses the palindrome target sequence, which is
highly similar to the consensus sequence recognized by Hnf1a pro-
tein in liver tissue (cons. liver).

Figure 8. Hnf4a target sequences. Alignment of Hnf4a target DNA
sequences shows the similarity between motifs within hepatic and
pancreatic genes (box). The sequence and orientation within the
given promoter are indicated. The core sequence 5¢-CAAA-3¢ is con-
sistent within all Hnf4a-bound motifs.



G3 element (5¢-TTTTTCACGCCTGACTGAGATTG-
AAGGGTGTA-3¢; rat, nt. –265 to –240) contains a se-
quence motif that is responsible for islet-cell-specific ex-
pression of insulin, glucagon and IAPP (5¢-CGCCTGA-
3¢), and is also recognized by Pax6 [216–218]. The
similarity of the particular sequences is given as an align-
ment in figure 9.
A third Pax gene, Pax2, might also contribute to pancreas
development. However, no functional analysis of Pax2 in
the pancreas has been performed yet, but it has been
shown to be expressed in pancreatic islets and to trans-
activate glucagon. It binds the glucagon G1 element 
with lower and the G3 element with higher affinity 
than Pax6 [219]. A screen for Pax2 targets additionally 
revealed the recognition motifs 5¢-GNNTTAANT-
CAAGTGANACAGTT-3¢ [220], 5¢-TCA(T/C)GC(A/G)-
TGACNA-3¢ [221] and for the paired domain 5¢-
(G/C)AAAC(T/A)C-3¢ [222]. 

Nk transcription factors

Nkx2.2 and Nkx6.1 have been demonstrated to have deci-
sive influence on maturation of pancreatic islet cells 
[22, 23, 223]. They both belong to the NK type of home-
obox genes [224]. Nkx2.2 directly regulates Nkx6.1
[23, 225]. In the Nkx6.1 promoter Nkx2.2 recognizes the
sequences 5¢-CCCTCATAAGTGATAATGATCTAGG-3¢
(mouse, nt. –812 to –788) in parallel to Pdx1 and is also
able to recognize 5¢-CGGAAGAGACGCACTTAAACT-
GCTTTTC-3¢ (mouse, nt. –478 to –441) [63]. Nkx6.1 acts
as a repressor on the insulin promoter and recognizes the
sequence 5¢-TTAATTAC-3¢, (5¢-AATCTAATTACCCT-3¢;
rat insulin A3/A4-element), but the COOH terminus in-
hibits this interaction [63, 226]. 

Hlxb9, Isl1, Cdx2 and MafA

The homeobox gene Hlxb9 has been shown to play an im-
portant role in pancreas development and function,
mainly according to the dorsal part of the organ
[227–230]. Despite this fact no search for Hlxb9 target se-
quences has yet been performed. 
Developmental function of the LIM-domain homeobox
transcription factor Isl1 affects the pancreas and the sur-
rounding mesenchyme [231], and it also plays a role for
islet function [232]. It has been shown to bind the insulin
promoter at 5¢-TTAATAATCTAATTA-3¢ (rat, nt. –222 to
–208) [233]. The somatostatin promoter is recognized at
5¢-TTGCGAGGCTAATGGTG-3¢ (rat, nt. –104 to –88)
[234, 235]. Isl1 binds the IAPP promoter at 5¢-GAGT-
TAATGTAATAATGACC-3¢ (human, nt. –156 to –137)
[236] and the glucagon promoter at several sites within the
G1 element (see above) [237].
Cdx2, one of three caudal homologues in vertebrates,
plays an important role in early development and is regu-
lated by Oct1 [238–242]. In endocrine cells it has been
shown to autoregulate itself by using the sequences 
5¢-GTAAACACTCGTTAATCACGTAAGGC-3¢ (mouse,
nt. –18 to +18) and 5¢-TGTGTCATTACTAATA-
GAGTCTTGTA-3¢ (mouse, nt. –41 to –16) [243]. Cdx2
activates glucagon expression by interaction with Pax6
and p300 on the G1 element (see above), where the mo-
tifs 5¢-TAAATATAA-3¢ and 5¢-ATTATA-3¢ are crucial
[244–248]. Further recognition of Cdx2 has been demon-
strated for the insulin promoter (5¢-TGTTAATAATC-
TAATTA-3¢; rat, see above) [249], as for many more AT-
rich elements in various promoters, such as
5¢-AATAAAACTTTAT-3¢ [241], 5¢-TATTTTA-3¢ [250],
5¢-TATTTTACAA-3¢ [251], 5¢-TAAAGACTATAAAA-3¢
[252, 253], 5¢-TTTTAT-3¢, 5¢-TAATTGTTTTATGGTT-
TAA-3¢ [254] and more [255–258], with one example in-
cluding an interaction with Hnf1a [259].
The basic leucine zipper gene MafA, known as a
phosporylation-dependent downstream target of Pax6 in
lens development, has recently been shown to bind the in-
sulin promoter RIPE3b1 element at 5¢-TGGAAACT-
GCAGCTTCAGCCCCTCTG-3¢ (human, nt. –126 to
–101) [260–262].

Conclusion

The development of the endocrine pancreas is an impor-
tant and growing field of research. Learning about the ge-
netic program that underlies the differentiation, regener-
ation and function of distinct endocrine cell types will
enhance our potential to cure hormonal diseases arising
from pancreatic disorders. 
This review summarizes the currently known cis-regula-
tory DNA sequences and the transcription factors and pro-
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Figure 9. Target DNA sequences of Pax4 and Pax6. Target se-
quences for Pax4 and Pax6 have been described based on their abil-
ity to bind protein as random PCR (polymerase chain reaction) frag-
ments. Additionally, the glucagon promoter sequences G1 and
G3 have been described as Pax6 targets and fit to the consensus se-
quences of these findings. However, in the alignment depicted, only
the most similar outcome of investigations upon Pax-targets is
shown. Further potential targets can be found, some of them show-
ing a bipartite consensus. Details about these motifs can be found in
the text.



tein complexes that play a role in endocrine cell differen-
tiation and function. Apparently, in numerous cases the
motifs recognized by a certain protein or protein complex
in different promoters feature striking similarities. Such
sequences might serve as templates for screening further
pancreatic promoters, helping to achieve initial hints about
possible regulatory elements. Large motifs that are highly
consistent might even be used for screening large genomic
sequences or even genomes for pancreatic factors: since
several genomes have been sequenced, ‘reverse genetics’
have become a potent tool of life science. A combinatory
screen ‘in silico’ for open reading frames and certain
neighboring cis-regulatory elements will be a future way
of identifying new genes and their field of activity before
even knowing their biochemical identity. But the bio-
chemical mechanisms of many transcription factors and
protein complexes influencing transcription still need to
be elucidated and will lead to the detection of even more
genes influencing pancreas development.
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