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Abstract. The past 10 years have witnessed dramatic
progress in our understanding of how natural killer (NK)
cells function and their role in innate immunity. Thanks to
an array of inhibitory receptors specific for different HLA
class I molecules, human NK cells can sense the decrease
or loss of even single alleles at the cell surface. This rep-
resents a typical condition of a potential danger, i.e. the
presence of tumor or virally infected cells. NK cell trig-
gering and lysis of these cells is mediated by several acti-
vating receptors and coreceptors that have recently been
identified and cloned. While normal cells are usually re-
sistant to NK-mediated attack, a remarkable exception is

represented by dendritic cells (DCs). In their immature
form they are susceptible to NK-mediated lysis because of
the expression of low levels of surface HLA class I mol-
ecules. The process of DC maturation (mDCs) is charac-
terized by the surface expression of high levels of HLA
class I molecules. Accordingly, mDCs become resistant to
NK cells. A recent major breakthrough highlighted the
role played by donor NK cells in allogenic bone marrow
transplantation to cure acute myeloid leukemias. ‘Allore-
active’ NK cells derived from donor hematopoietic pre-
cursors not only prevented leukemic relapses, but also pre-
vented graft rejection and graft-versus-host disease.
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Introduction

Natural killer (NK) cells represent a distinct lymphoid
population characterized by unique phenotypic and func-
tional features and account for 5—20% of peripheral blood
lymphocytes. NK cells were originally identified on a
functional basis, the denomination being assigned to lym-
phoid cells capable of lysing tumor cell lines in the ab-
sence of prior stimulation in vivo or in vitro [1]. Both their
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origin and the mechanism(s) mediating their function re-
mained mysterious until recently. Regarding their origin,
NK cells derive from a precursor common to T cells and
expressing the CD34*CD7* phenotype. In addition, func-
tional NK cells can be obtained in vitro and in vivo from
CD34* hematopoietic precursors isolated from several dif-
ferent sources [2—6]. Cell maturation in vitro has been
shown to require appropriate feeder cells and/or inter-
leukin (IL)-15. The molecular mechanisms underlying the
ability of NK cells to discriminate between normal and tu-
mor cells, predicted by the ‘missing self hypothesis’ [7],
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have been clarified only during the past decade. NK cells
recognize MHC class I molecules through surface recep-
tors delivering inhibitory, rather than activating, signals.
Accordingly, NK cells lyse target cells that have lost (or
express low amounts of) MHC class I molecules. This
event occurs frequently in tumors or in cells infected by
some viruses such as certain Herpesviruses or Aden-
oviruses. In addition to providing a first line of defense
against viruses, NK cells release various cytokines and
chemokines. These induce or modulate inflammatory re-
sponses, hematopoiesis, control the growth and function
of monocytes and granulocytes and influence the quality
of subsequent T cells responses, either directly or by their
effect on the maturation and function of dendritic cells
(DCs). This leads to a preferential polarization toward
Th1 responses.

NK cells can be inactivated via MHC-specific
inhibitory receptors

Human NK cells express a wide array of HLA class I-spe-
cific inhibitory receptors (iNKRs). Those referred to as
killer Ig-like receptors (KIRs) recognize shared allelic de-
terminants of HLA class I molecules, while ILT2 (LIR1)
is characterized by a broad specificity for different HLA
class I molecules and CD94/NKG2 A recognizes HLA-E
molecules [§—12]. Of note is that each iNKR is expressed
only by a fraction of (and not all) NK cells [9]. Another
important notion is that all mature human NK cells ex-
press at least one receptor specific for self HLA class I
molecules. The coexpression of two or more self-reactive
iNKRs occurs less frequently. This would mean that the
whole NK cell pool of a given individual can sense the
loss of even a single class I allele on autologous cells[9].
Upon cross-linking, iNKRs recruit and activate SHP-
1 and SHP-2 phosphatases through immunoreceptor tyro-
sine-based inhibition motifs (ITIMs) [11]. This mecha-
nism, utilized by different inhibitory receptors, blocks the
activating signals delivered upon engagement of different
triggering NK receptors.

Switching NK cells ‘on’: the activating receptors
involved in natural cytotoxicity

The need for inactivating NK cells to prevent damage to
HLA class I" normal self cells implies the existence of an
‘on’ signal when NK cells interact with target cells. Acti-
vating receptors that are specific for HLA class I mole-
cules and display a high homology with the correspond-
ing inhibitory receptors have been identified in a fraction
of NK cells [13—15]. However, these cannot explain why
NK cells can lyse HLA class I-negative target cells. In-
deed, the major receptors involved in NK cell triggering
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in the process of natural cytotoxicity do not recognize
HLA class I molecules. Our group described NKp46,
NKp30 and NKp44 molecules, collectively referred to as
‘natural cytotoxicity receptors’ (NCRs). They represent
the first identified and molecularly characterized recep-
tors mediating NK cytotoxicity [16, 17]. Of note is that the
widely used NK cell markers CD16 and CD56 do not pre-
cisely identify NK cells [1, 5]. In contrast, NCRs are
highly NK specific [16, 17]. Thus, NKp46 and NKp30 are
expressed by all resting and activated NK cells [18—-20].
NKp44 is selectively expressed by NK cells upon activa-
tion [21, 22], and may contribute to the higher efficiency
of IL-2-cultured NK cells in tumor cell lysis. NCRs play
amajor role in the lysis of most tumor cell lines, as shown
by monoclonal antibody (mAb)-mediated receptor-block-
ing experiments. Moreover, a direct correlation exists be-
tween the surface density of NCRs on a given NK cell and
the intensity of the NK-mediated cytotoxicity [23]. NCRs
belong to the Ig superfamily with no homology to each
other and a low degree of identity with known human
molecules [19, 20, 22]. Human NK cells can lyse murine
tumor cells however, this interaction involves only a sin-
gle NCR: NKp46. In line with these data, an NKp46 ho-
molog cDNA has been found in mice [24]. An additional
receptor, NKG2D, is present in both NK cells and cyto-
toxic T lymphocytes (CTLs). NKG2D is specific for the
stress-inducible MICA/B [25, 26] or for ULBP proteins
[27, 28]. Remarkably, MICA/B are expressed predomi-
nantly, but not exclusively, by cells of epithelial origin.
NKG2D is involved in NK-mediated cytotoxicity against
certain tumors that express at least one of the above lig-
ands [26, 28]. In contrast, the cellular ligands recognized
by NCR have not been identified so far; however, the
available information is compatible with the concept that
these ligands may also be expressed primarily by activated
or proliferating cells. If this holds true, the lack of ligands
for NCRs (and for NKG2D) would prevent NK cell acti-
vation upon interaction with normal tissues. This, as dis-
cussed below, could be particularly relevant in allogeneic,
mismatched hemopoietic transplantation. Other activating
surface molecules including 2B4, NTB-A and NKp&0
[29—33] may contribute to NK cell triggering during the
process of natural cytotoxicity. However, their role may be
that of coreceptor, i.e. to amplify the NK cell triggering
induced by NCRs or NKG2D [16].

How NK cells have evolved to cooperate with
adaptive immunity

NK cells have long been considered as ‘primitive’ effec-
tor cells. However, today, our understanding of these cells
is substantially different. Thus, NK cells have evolved to
adapt to various mechanisms of specific immunity. For
example, they have acquired Fcy receptors that allow them
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to eliminate with greater efficiency IgG-coated target cells
or pathogens. Moreover, they release cytokines and
chemokines that regulate T cell function. In this context,
early activation of NK cells during defense against
pathogens may influence the quality of the subsequent T
cell response by inducing T cell polarization toward
Th1 cells. As illustrated below, NK cells can also interact
with DCs. This cross-talk may not only influence the
functional capability of both cell types, but may also af-
fect the subsequent induction of specific immunity. In ad-
dition, as discussed above, NK cells have developed a
mechanism leading to the rapid detection and elimination
of potentially dangerous cells characterized by low ex-
pression of MHC class I antigens consequent to tumor
transformation or viral infection (e.g. Herpesviruses).
Remarkably, this mechanism is rather sophisticated, as
human KIRs can detect allelic determinants of HLA
class I molecules. In addition, it is a recently evolved
mechanism since KIRs are absent in mice in which a sim-
ilar function is mediated by structurally different receptors
[8]. Moreover, major differences in the KIR expression
also exist in chimpanzees, i.e. a species that diverged from
humans only approximately 5 million years ago [34].
These findings clearly indicate that KIRs have evolved
recently, in parallel with the rapid evolution of the HL
class I molecules.

Interactions between NK cells and DCs

Until recently, no information existed on the possible in-
teractions between NK cells and DCs. Owing to the ex-
pression of iNKRs, NK cells do not kill normal, MHC
class I cells. However, recent data revealed an important
exception. DCs are susceptible to lysis by autologous NK
cells despite the surface expression of significant levels of
surface MHC class I molecules [35]. This suggested that
DCs may have a unique susceptibility to NK-mediated ly-
sis. This property is of major interest since DCs represent
the most important-antigen presenting cells (APCs) and
play a crucial role in the initiation and maintenance of the
immune response [36—39]. In their immature form (im-
mDCs), myeloid DCs are particularly efficient in antigen
capture and in releasing proinflammatory cytokines and
chemokines [40, 41]. Among the antigens captured by
immDCs, there may be a wide spectrum of invading
pathogens as well as dying cells that are present in the tis-
sue microenvironment. InmDCs are inefficient in antigen
presentation and their further maturation is required for
optimal antigen presentation. DC maturation is charac-
terized by the up-regulation of surface MHC molecules,
de novo expression of costimulatory molecules, as well as
by a parallel down-regulation of surface receptors in-
volved in antigen capture and by changes in the pattern of
expression of chemokine receptors [36—41].
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In recent studies, the effect of the interaction between NK
cells and DCs has been analyzed [42]. A remarkable find-
ing was the occurrence of strong NK cell proliferation
[35, 42] and the up regulation of NK cell cytotoxicity [35].
The iNCRseased NK cytotoxicity was directed not only
toward tumor cells, but also against immDCs themselves
(fig. 1). Another remarkable finding was that the NK-
mediated lysis of DC was mediated by the NKp30 NCRs,
while other activating receptors or coreceptors played
either a marginal role (NKp46) or no role at all [35].

T cell costimulatory molecules such as CD80 and
CDS86 have also been reported to mediate NK cell activa-
tion and to be involved in DC recognition and lysis
[43—45]. Although these molecules might play a role in
the activation of NK cells by DCs, they do not appear to
control DC susceptibility to NK-mediated lysis. Notably,
in the case of involvement of CD80 and CD86, one would
expect an increased susceptibility to lysis of mDCs. In
fact, the high expression of these costimulatory molecules
is one of the hallmarks of mDCs as compared to immDC:s.
However, in different studies, mDCs were consistently re-
sistant to autologous NK cell-mediated lysis [35, 45, 46].
On the other hand, down-regulation of ligands recognized
by triggering NK receptors (in particular NKp30) upon
DC maturation does not occur. Experiments of mAb-me-
diated masking of the HLA class I-specific inhibitory re-
ceptors (or of HLA class I molecules) indicated that the
resistance of mDCs to NK-mediated lysis reflects the
marked up-regulation of HLA class I molecules on these
cells. Indeed, under these experimental conditions, the ly-
sis of mDCs was restored to a level comparable to that of
their immDC counterpart. These data also imply that
mDCs express levels of ligands for NKp30 sufficient to
induce NK cell activation [47].

Conceivably effective DC/NK cell interactions may occur
primarily during infections. In this context, the effect of
live bacteria on the cross-talk between DCs and NK cells
was analyzed. The extracellular bacteria Escherichia coli,
or the intracellular mycobacterium BCG, have been used
[47, 48]. In both systems, bacterial infection of DCs re-
sulted in rapid NK cell activation. These activated NK
cells could efficiently lyse autologous immDCs. However,
those immDCs that had been exposed to bacteria became
rapidly resistant to NK-mediated cytotoxicity due to their
maturation and up-regulation of HLA class I molecules
(fig. 1). This observation is relevant because it provides
information on DC/NK cell interactions that might occur
in the course of bacterial infection in vivo. In addition,
exposure of immDCs to either bacteria resulted in the
expression of CD80 and CD86 coreceptors, HLA mole-
cules and the chemokine receptor CCR7 (allowing DC
migration to lymph nodes) [41]. This would mean that
immDCs, upon encountering pathogens, undergo rapid
maturation, can function as efficient APCs and migrate to
secondary lymphoid organs where they can interact with
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Figure 1. Schematic representation of the interactions between NK cells and DCs and the effect of infection with live bacteria. When NK
cells interact with either immature (i) or mature (m) DCs they undergo rapid proliferation and acquire strong cytolytic activity. Activated
NK cells can efficiently lyse iDCs that express low levels of MHC class I molecules. In contrast, mDCs are resistant to lysis due to the high
surface expression of MHC class I molecules. In the presence of live bacteria (e.g. E. coli or BCG), iDCs undergo rapid maturation into
mDCs, thus becoming resistant to NK cell cytotoxicity. In addition, they become capable of migrating to secondary lymphoid organs and
to function as efficient APCs. The rendezvous between NK cells and DCs can occur in vivo during infection and represents a mechanism
to amplify innate immune responses against pathogens. Moreover, selective killing of iDCs may represent a regulatory mechanism by which

unnecessary (see text) cells are removed.

T cells and induce a prompt specific immune response
against infecting bacteria. In turn, DCs induce a rapid up-
regulation of the NK cell function, thus potentiating an-
other important effector arm of innate immunity. Although
NK cells, under normal conditions, reside in blood, bone
marrow and spleen, in the course of inflammatory re-
sponses they can be addressed by different chemokines to
interact with DCs in tissues or lymph nodes [49]. One may
ask why should NK cells kill immDCs, thus depleting an
important source of APCs. A conceivable answer is that
immDCs, upon exposure to bacteria, rapidly acquire re-
sistance to NK cell cytotoxicity. Accordingly, they escape
killing and migrate to lymph nodes (via CCR7). The
mechanism by which DCs induce a rapid increase in cy-
tolytic activity in NK cells, may conceivably be conse-
quent to the production of large amounts of IL-12 by DCs
following infection [50]. As to the proliferative responses
of NK cells upon interaction with DCs, this could reflect
the production of cytokines such as IL-2 [51] and IL-15
[52]. The potent NK cell activation induced by DCs may
possibly explain why NK cells are required for effective
BCG immune therapy [53]. Thus, the NK cell cytotoxic-
ity that is rapidly induced by BCG-activated DCs could
provide an explanation for the still unclear anti-tumor ef-
fect of BCG therapy. Of note is that the NK cell cytotox-

icity does not mediate any substantial direct anti-bacterial
effect. Why, therefore, is NK cytolytic activity greatly in-
creased during bacterial infections? A possible explana-
tion is that NK cells, upon DC-induced activation, may
play a regulatory role in the homeostasis of the immune
response in the course of bacterial infections. In view of
their ability to distinguish between infected and non-
infected DCs, the NK-mediated lysis of uninfected DCs
could represent a means to eliminate an excess of im-
mDCs that have not engulfed bacteria to be presented to
T cells [47]. The elimination of immDCs could have
several implications for the homeostasis of the immune
response. For example, immDCs recruited to inflamed
regions produce high amounts of proinflammatory cy-
tokines [such as IL-1a, IL-1 and tumor necrosis factor
(TNF)-a] [54, 55]. A prolonged presence of immDCs
might thus represent a threat due to the sustained produc-
tion of these cytokines. NK-mediated lysis of immDCs
might also represent a powerful feedback mechanism to
limit the excess of antigen presentation in secondary lym-
phoid organs and consequent overinflammation. Possible
advantages of eliminating immDCs relate also to the re-
cent information that immDCs may induce IL-10-pro-
ducing regulatory T cells [56—58]. These T cell, by the
suppression of effector T cells functions, could be coun-



CMLS, Cell. Mol. Life Sci.  Vol. 60, 2003

terproductive to the clearance of pathogens. Thus, removal
of an excess of immDCs might be useful to prevent the in-
duction of antigen-specific suppressor T cells at the site of
inflammation. Another important outcome of immDC re-
moval by NK cells might be related to the quality of T cell
responses upon antigen presentation. Recently, polarizing
signals for type 1 or type 2 T cell responses have been
suggested to be initiated by DC-delivered signals in sec-
ondary lymphoid organs [55, 59]. In particular, impaired
DC maturation could lead to an increased T helper 2 (Th2)
response [54, 55, 60]. However, a definite role for im-
mDCs in shaping a preferential Th2 response has not yet
been clearly established. A further mechanism by which
the interaction between NK cells and DCs may indeed in-
fluence T cell polarization is the release of significant
amounts of interferon (IFN)-y by NK cells following in-
teraction with autologous DCs [35]. In vitro studies in
both murine and human systems have demonstrated the
importance of IFN-y in the induction of type 1 immune re-
sponses [61, 62]. IFN-y can mediate this effect through
different mechanisms, including priming for IL-12 pro-
duction by DCs and induction of the IL-12Rf on T cells
[63, 64]. Interestingly, in a murine model of skin graft re-
jection, the recognition of donor APCs by host NK cells
had a dramatic effect on alloreactive Th1/Th2 cell devel-
opment: turning off host NK cells was sufficient to skew
the alloresponse to the Th2 pathway [65].

In conclusion, during infections, the presence in tissues
and lymph nodes of activated NK cells capable of dis-
criminating between infected and non-infected DCs and
producing relevant cytokines upstream of the adaptive im-
mune response suggests that NK cells may play an im-
portant regulatory role at the interface between innate and
specific immunity.

NK cells in mismatched hematopoietic transplantation

Recently, a major breakthrough highlighted the possible
role of NK cells in the cure of the life-threating acute
myeloid leukemias (AMLs). While in an autologous set-
ting, all NK cells are inhibited because they express
iNKRs specific for self alleles, in an allogeneic setting,
some NK cells may lyse allogeneic cells provided they ex-
press HLA class I alleles that are not recognized by their
iNKRs [9]. Because each KIR actually recognizes
allotypic determinants that are shared by different HLA
class I alleles (table 1), an HLA mismatch between NK
cells and allogeneic target cells does not necessarily lead
to NK-mediated killing [9]. Another relevant point is that
the KIR repertoire of NK cells is predictable on the basis
of the HLA class I typing of the donor [66]. This infor-
mation, together with the HLA typing of the allogeneic
mismatched target cells, will allow us to predict the exis-
tence of ‘alloreactive’ NK cells. In addition, adequate in-
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Table 1. Specificity of the main HLA-class I-specific inhibitory NK
receptors (iNKRs).

iNKR HLA class I specificity

(KIR2DL1) p58-1 ‘Group 2” HLA-C alleles (-Cw2, -Cw4,
-Cws, -Cwo)

(Asn77, Lys80)*

(KIR2DL2/3) p58.2  ‘Group 1’ HLA-C alleles (-Cw1, -Cw3,
-Cw7, -Cwg)

(Ser77, Asn80)*

(KIR3DL1) p70 HLA-Bw4 alleles (e.g. HLA-B27)
(KIR3DL2) p140 HLA-A3, -All

ILT2 (LIR1) various HLA class I alleles
CD94/NKG2 A HLA-E

* Note that the two groups of HLA-C alleles can be distinguished
on the basis of alternative amino acid sequence motifs at position
77 and 80. Site-directed mutagenesis unequivocally demonstrated
that these residues are crucial for KIR-mediated recognition.

formation on the degree of alloreactivity of a given NK
cell population can be obtained by assessing the magni-
tude of the NK-mediated cytolysis against the allogeneic
target cells examined. Notably, ‘alloreactive’ NK cells are
confined to NK cells that use KIRs as a source of iNKRs
for self HLA class I molecules (table 1) [9]. KIR-HLA
class I mismatches occur in a fraction of leukemic patients
undergoing haploidentical bone marrow transplantation
(in which donor and recipient pairs are identical for one
HLA haplotype and incompatible at the HLA loci of the
unshared haplotype). All these cases are obviously at high
risk of T cell-mediated alloreactions both in the host-ver-
sus-graft (HvG) and graft-versus-host (GvH) direction
[66]. These responses can be controlled to a large extent
by immunosuppression therapy and T cell depletion of the
graft [to prevent GvH disease (GvHD)]. In patients un-
dergoing haploidentical hematopoietic transplantation, the
occurrence of KIR-HLA class I mismatched (‘alloreac-
tive’) NK cells had important consequences in the clinical
outcome. Indeed, ‘alloreactive’ NK cells could prevent se-
vere complications such as leukemic relapses, GvHD and
graft rejection [67]. The AML patients undergoing hap-
loidentical hematopoietic transplantation displayed a sur-
vival rate as high as 60% (at 5 years) in the presence of
KIR-HLA mismatches (and, thus, of alloreactive NK
cells). In the absence of such mismatches, the survival rate
was only 5% [67]. A likely explanation of these effects,
supported by experimental data in vitro as well as by a
murine model [67], is the following. Donor NK cells orig-
inate from stem cells transplanted into leukemic patients
(who have previously received chemotherapy and radio-
therapy). These NK cells not only eliminate residual
leukemic cells, thus preventing leukemic relapses, but can
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also act on DCs of the patients [66, 67]. Notably, DCs
are responsible for donor T cell priming thus inducing
GvHD. Indeed, in a murine model, alloreactive NK cells
accelerated the loss of bone marrow, spleen and gut DCs,
as compared to mice receiving non alloreactive NK cells
[67]. The same study convincingly demonstrated that the
elimination of recipient APCs was responsible for the pro-
tective effect against GvHD mediated by alloreactive T
cells.

In addition, NK cells kill the residual lymphohematopoi-
etic cells of the patients, including T lymphocytes which
are responsible for graft rejection. Despite their alloreac-
tivity, donor NK cells do not damage normal, non-hemo-
poietic tissues of the host (patient). This may be explained
by the fact that the ligands for the major triggering NK re-
ceptors are not expressed by resting, normal cells (at least
not those of non-hemopoietic origin) [66]. The results of
these studies highlight the possibility of exploiting NK
cell alloreactivity in the therapy of AML and, possibly,
other tumors. In this context, donor selection, at least in
the case of high-risk AML, could now involve a deliber-
ate search for a ‘perfect mismatch’ [68] at certain HLA
class I loci. Moreover, mature alloreactive NK cells could
be selected from healthy donors, expanded in vitro and
deliberately infused to prevent leukemic relapses and
GvHD.

In conclusion, NK cell alloreactivity combines all the
favourable features that make these cells uniquely suited
for transplantation in the therapy of AML and, possibly,
other tumors.
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