
Review

Programmed cell clearance
B. Fadeel

Division of Toxicology, Institute of Environmental Medicine, Nobels väg 13, Karolinska Institutet, 171 77 Stockholm
(Sweden), Fax: +46 8 32 90 41, e-mail: bengt.fadeel@imm.ki.se

Received 16 April 2003; received after revision 22 May 2003; accepted 26 May 2003

Abstract. Apoptosis, a physiological process of self-an-
nihilation, is essential during development and for the
maintenance of tissue homeostasis. Considerable efforts
have been made in recent years to elucidate the molecu-
lar mechanisms that govern this mode of cellular demise;
however, the subsequent recognition and removal of
apoptotic corpses by neighboring phagocytes has re-
ceived less attention. Nevertheless, macrophage engulf-
ment of apoptotic cells is known to be important in the re-
modeling of tissues, and contributes to the resolution of
inflammation through the removal of effete cells prior to
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the release of noxious cellular constituents. Moreover,
apoptotic cells are a potential source of self-antigens, and
clearance of cell corpses is thought to preclude the in-
duction of autoimmune responses. The view is thus
emerging that tissue homeostasis is dependent not only
on the balance between mitosis and apoptosis, but also on
the rate of apoptosis versus that of cell clearance. This re-
view aims to discuss the mechanisms and consequences
of macrophage recognition and disposal of apoptotic
cells, a process which will be referred to as programmed
cell clearance.
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On Your Sleeve

You had on your sleeve
the last yellow butterfly
mistakenly roused
by the sun’s mocking power.
When it noticed how vain that rousing had been,
it darted away from your hand
and interwove its flight with the falling leaves.

Harry Martinson

Introduction

Cell death is a normal part of animal development [1, 2].
Glücksmann [3], in his seminal report more than 50 years
ago, cites numerous examples of naturally occurring cell
death during vertebrate ontogeny, and emphasizes the im-

portance of cell degeneration in the sculpting of tissues
and organs. Similarly, Saunders [4], in a landmark de-
scription of death in embryonic systems, notes that
‘abundant death, often cataclysmic in its onslaught, is a
part of early development in many animals’. Physiologi-
cal cell death is also seen during amphibian metamor-
phosis and in the deletion of larval components in butter-
flies and other insects [1]. Kerr and colleagues [5] high-
lighted the significance of controlled cell deletion in the
maintenance of tissue homeostasis in the adult organism,
and proposed that apoptosis (a term derived from the
Greek for the falling off of petals from flowers, or leaves
from trees) plays a ‘complementary but opposite role to
mitosis in the regulation of animal cell populations’. Nu-
merous subsequent studies have served to delineate the
underlying signaling pathways that regulate this mode of
cellular demise [6, 7].
Apoptosis is a well-choreographed process. First, the cell
undergoes nuclear and cytoplasmic condensation with



pulsation and blebbing of the plasma membrane, which
have been likened to ‘boiling of the cytoplasm’ [8]. The
cell then breaks up into membrane-bound fragments
termed apoptotic bodies, containing intact organelles and
portions of the nucleus. The final and frequently ne-
glected stage of the apoptotic process is the removal of
senescent cells by neighboring macrophages [9]. Impor-
tantly, this occurs prior to the disintegration of the dying
cell and release of noxious intracellular constituents.
Apoptosis is thus well suited to a role in tissue homeosta-
sis since it can result in extensive deletion of cells in the
absence of tissue disruption. By contrast, in necrosis or
accidental cell death, there is irreversible swelling of the
cytoplasm and organelles, and rupture of the plasma
membrane with ensuing tissue scarring and inflamma-
tion. Necrotic cell debris is eventually ingested and de-
graded by phagocytes [8]. The current review focuses on
the mechanisms and consequences of programmed cell
clearance, i.e. on the mechanisms that govern the recog-
nition and removal of effete cells, and on the outcome
thereof, in health and disease.

The mechanism of cell clearance: receptor-ligand
interactions, opsonins, chemotactic factors and more

Recognition signals
Numerous ligands, receptors and serum factors have been
implicated in the recognition of apoptotic cells (fig. 1).
Early reports suggested the presence of lectin-like mole-
cules on the surface of macrophages that recognize
changes in carbohydrates (‘eat-me’ signals) on apoptotic
cells [10, 11]. Consistent with these observations are the
more recent studies on asialoglycoprotein receptor-de-
pendent macrophage ingestion of apoptotic cells in the
liver [12] and the demonstration that peritoneal macro-
phages recognize modified sugar chains on the surface of
virus-infected cells [13]. The most well-studied surface
change during apoptosis is, however, the loss of plasma
membrane phospholipid asymmetry and the concomitant
externalization of phosphatidylserine (PS) [14–16]. PS
exposure is modulated by extracellular calcium [17, 18]
and mitochondrial ATP [19, 20], and is crucial for recog-
nition and engulfment of apoptotic cells to occur [21, 22].
However, egress of PS has also been documented in cells
undergoing necrosis [23], and transient PS exposure is
seen in non-apoptotic cells [24, 25], thus indicating that
additional surface alterations are required for the selec-
tive engulfment of apoptotic cell corpses. Importantly,
the exposition of oxidation-specific epitopes may serve
as auxiliary eat-me signals for macrophages [26, 27]. In-
deed, recent studies have indicated that the externaliza-
tion of oxidized PS is a critical event that serves to pro-
mote macrophage recognition of apoptotic cells [22, 28].
The spatial reorganization during apoptosis of membrane

2576 B. Fadeel Programmed cell clearance

structures may also serve as an important determinant of
programmed cell clearance. Hence, the characteristic
membrane protrusions (blebs) on the surface of apoptotic
cells have been shown to provide a context for the exter-
nalization of PS [29, 30], and recent studies suggest that
the colocalization in discrete membrane patches of PS
and annexin I, a protein that is recruited from the cytosol
of apoptotic cells to the cell surface, is critical for pro-
grammed cell clearance [31].

Engulfment receptors
The first phagocytosis receptor to be identified, more
than 10 years ago, was the vitronectin receptor, aVb3 [32].
Since that time, numerous other receptors, including aVb5

[33], CD14 [34], the so-called PS receptor (PSR) [35]
and the scavenger receptors, SRA [36], CD36 [37], CD68
[38], and LOX-1 [39], have been implicated in the recog-
nition of apoptotic cells. Several of these receptors bind
PS on apoptotic cells, either directly or indirectly [9]. By
contrast, CD14 was shown to mediate engulfment of
apoptotic cells through its interaction with intercellular
adhesion molecule-3 (ICAM-3), an eat-me signal on
apoptotic cells that is distinct from PS [40]. Recent data
also suggest that repulsive signals transmitted through
cell surface molecules such as CD47 [41] or platelet en-
dothelial cell adhesion molecule-1 (PECAM-1, also
known as CD31) [42] may prevent phagocytosis of vi-
able, non-apoptotic cells. The reason for the vast array of
macrophage phagocytosis receptors is unclear, although
cell- and tissue type-specific differences in receptor us-
age [43, 44] may provide a partial explanation. The trig-
ger to cell death may also determine the efficiency with
which cells doomed to die are ingested [45], suggesting
that receptor usage may vary depending on the nature of
the apoptotic ‘meal’. It is also possible that the engulf-
ment process requires the serial engagement of distinct
receptors, some of which are involved in the initial teth-
ering of apoptotic cells and others in the cytoskeletal re-
arrangement that is required for ingestion of cells [46].
Further support for the receptor cooperativity model was
provided by Sambrano and colleagues [47], who reported
that disruption of phospholipid asymmetry is sufficient
for tethering of erythrocytes to macrophages, while addi-
tional oxidative changes are required for engulfment to
occur. Moreover, the recent observation that apoptotic
cells display both oxidized and non-oxidized PS on their
surface [48] suggests that the serial or concomitant en-
gagement of distinct, PS-binding receptors may be re-
quired for programmed cell clearance. Scavenger recep-
tors, such as CD36 and CD68, are likely candidates for
sensors of oxidized PS and other modified lipid moieties
on the surface of dying cells. In keeping with the in-
volvement of these receptors in the uptake of apoptotic
cells in mammals [49], the scavenger receptor homologs,



CED-1 (cell death abnormal-1) and croquemort (‘catcher
of death’), have been demonstrated to play a critical role
in engulfment in Caenorhabditis elegans [50] and
Drosophila melanogaster [51], respectively.

Bridging molecules (opsonins)
Early work indicated that macrophage engulfment of
apoptotic thymocytes depends on the presence of a heat-
labile factor in serum [8]. Subsequent studies have con-
firmed that serum factors may, in fact, serve as ‘bridging’
molecules, or molecular liaisons, between phagocytes
and apoptotic cells. Hence, thrombospondin is known to
bind to aVb3 on the macrophage surface and to poorly
characterized structures on the surface of apoptotic cells
[37, 52]. Similarly, Nagata and his group [53] have shown
that MFG-E8 (milk-fat globule epidermal growth factor-
8, also known as lactadherin) binds to aVb3 on macro-

phages, and to externalized PS on the surface of apoptotic
cells, thereby potentiating phagocytosis. A number of
other PS-binding proteins, including b2-glycoprotein I
[54] and protein S [55], may act as a bridge between
phagocytes and their prey. In addition, recent studies have
shown that several molecules of the innate immune sys-
tem, including complement components [56, 57] and
pentraxins [58–61], may act as opsonins that stimulate
macrophage ingestion of apoptotic cells. The involve-
ment of molecules of the innate immune system in pro-
grammed cell clearance indicates that the recognition of
‘unwanted’ (i.e. apoptotic) self is a primitive function that
shares certain features with the mechanism of non-self
recognition. Of note, CD14, another element of the innate
immune system, induces proinflammatory responses
upon recognition of bacterial lipopolysaccharide, yet me-
diates clearance of apoptotic cells without inciting in-
flammation [62]. The reason for these divergent out-
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Figure 1. Programmed cell clearance: the mechanism of uptake of apoptotic cells. Dying cells expose ‘eat-me’ signals, including the
aminophospholipid phosphatidylserine (PS), that interact with an array of receptors on the phagocyte surface, resulting in the tethering and
ingestion of cell corpses. In addition, a number of bridging molecules (opsonins) have been shown to facilitate the uptake of apoptotic cells.
Chemotactic factors that are released from the dying cell may also serve to attract neighboring phagocytes. b2-GPI, b2-glycoprotein I; CRP,
C-reactive protein; Gas-6, growth arrest-specific gene-6; ICAM, intercellular adhesion molecule-3; iC3b, inactivated C3b; LOX-1; lectin-
like oxidized low-density lipoprotein receptor-1; MBL, mannose-binding lectin; MFG-E8, milk-fat globule epidermal growth factor-8;
SAP, serum amyloid P component; SRA, class A scavenger receptor; TSP, thrombospondin.



comes of CD14 ligation is unclear, but may depend on the
differential engagement of macrophage coreceptors by
microbes and cell corpses, respectively, as well as on the
cytokine milieu and, hence, the degree of macrophage ac-
tivation.

Cytoskeletal rearrangements
Gräper observed, some 90 years ago, that physiological
elimination of cells during the shrinkage of organs in-
volves the engulfment of dying cells by ‘sister cells’, i.e.
neighboring cells endowed with phagocytic abilities [63].
Numerous cells, including fibroblasts, endothelial cells,
Sertoli cells, renal mesangial cells and immature den-
dritic cells have since been identified as amateur (non-
professional) phagocytes [64]. Amateur phagocytes ful-
fill an important backup function, as evidenced in
macrophage-less (PU.1-deficient) mice, in which the task
of phagocytosis of apoptotic cells in the developing foot-
plate is assumed by neighboring mesenchymal cells [65].
However, these cells are reluctant undertakers, in the
sense that they are poorly phagocytic and respond slowly;
in contrast, professional phagocytes (macrophages) are
motile and can infiltrate tissues, and possess a high
phagocytic capacity [66, 67]. C. elegans lacks dedicated
macrophages [68] and is a suitable model for the elucida-
tion of nonprofessional (or semiprofessional) phagocytic
responses. Seven genes have been characterized to date
that regulate the clearance of cell corpses in the nematode
(fig. 2). CED-2, CED-5 and CED-10, homologs of mam-
malian CrkII, DOCK180 and Rac-1, respectively, are in-
volved in cytoskeletal reorganization during engulfment

[69, 70]. CED-12 also belongs to the CED-2/CED-
5/CED-10 signaling pathway [71, 72], and ELMO (en-
gulfment and cell motility), its mammalian counterpart,
was shown to form a complex with CrkII and DOCK180
that results in activation of Rac-1 [73]. CED-1, the human
SREC (scavenger receptor from endothelial cells) ho-
molog, and CED-7, a homolog of the ABC (ATP-binding
cassette) transporters, work in concert to mediate phos-
pholipid- and/or annexin-dependent engulfment of cell
corpses [31, 50, 74]. Finally, CED-6, and its mammalian
homolog GULP (engulfment adaptor protein), was shown
to act downstream of CED-1 and CED-7 [75–78]. Recent
studies have provided further insight into the coupling of
receptor-ligand interactions and cytoskeletal signaling in
mammalian systems. Hence, Albert and colleagues [79]
have shown that engagement of the aVb5 integrin recep-
tor on the surface of human phagocytic cells triggers the
recruitment of the CrkII/DOCK180/Rac-1 molecular
complex. Moreover, PS-dependent recognition through
the PSR induces membrane ruffling, a process dependent
on PSR-mediated activation of Rac-1 and the related Rho
family GTPase, Cdc42 [46]. The Wiskott-Aldrich syn-
drome (WAS) protein (WASp) is activated by Cdc42 and
stimulates actin polymerization [80], and recent studies
revealed an impairment in phagocytosis of apoptotic cells
by macrophages derived from WASp-deficient mice [81].
In addition to rearrangements of the actin cytoskeleton,
large amounts of membrane are needed at the macrophage
cell surface to form the phagosome. Interestingly, Gagnon
and colleagues [82] have shown that the phagosomal
membrane is derived, in part, from the endoplasmic retic-
ulum (ER). This observation suggests that the ER, through
its fusion with the plasma membrane, may provide a
source of molecules involved in the engulfment of cell
corpses. Indeed, cell surface exposure of calreticulin, a
protein normally present in the ER, has been shown to me-
diate macropinocytosis and uptake of apoptotic cells by
human monocyte-derived macrophages [57].

Chemotactic factors
When apoptosis occurs on a large scale, as in certain
phases of embryogenesis, hordes of phagocytes appear
on the scene; a classical example is the programmed cell
clearance that takes place in the interdigital zones [4, 63].
However, the nature of the signals that trigger the migra-
tion of macrophages to the site of apoptosis has remained
poorly understood. Horino and colleagues [83] have pro-
vided evidence that a cross-linked homodimer of S19 ri-
bosomal protein can function as a chemotactic factor in
the recruitment of monocytes from the circulation to
apoptotic lesions. Moreover, blebs derived from apop-
totic germinal center B cells were shown to be chemotac-
tic for monocytes in vitro, and it was hypothesized that a
gradient of apoptotic blebs released from dying B cells

2578 B. Fadeel Programmed cell clearance

Figure 2. Programmed cell clearance in the nematode. Genetic
analyses have defined seven genes that regulate corpse removal in
C. elegans. CED-2, CED-5, CED-10 and CED-12 are involved in
the cytoskeletal rearrangement that occurs upon engulfment of ef-
fete cells, as well as in the migration of so-called distal tip cells.
CED-1 is a scavenger receptor-like molecule, and is thought to rec-
ognize a phospholipid ligand, alone or in conjunction with NEX-1,
on the surface of cell corpses. CED-6 and CED-7 act in the same
pathway as CED-1. CED, cell death abnormal; NEX, annexin.



may attract macrophages in vivo [84]. More recent stud-
ies suggest that in addition to its role as a bridging mole-
cule [37], thrombospondin derived from apoptotic cells
may act as a signal to recruit macrophages [52]. Detailed
assessment of in vivo models of physiological cell death,
such as the involuting mammary or pituitary glands [85,
86], is likely to provide further information on the mech-
anism of macrophage recruitment to apoptotic lesions.

The meaning of cell clearance: engulfment of
apoptotic cells in development and disease

Macrophage responses
The consequences of programmed cell clearance, or its
failure, are manifold (fig. 3). Hence, the removal of apop-
totic cells is thought to play an active role in the resolu-
tion of inflammation, through macrophage production of
antiinflammatory cytokines and downregulation of proin-
flammatory cytokine production [87–89]. In addition, ef-
ficient clearance of apoptotic cells may be important to
prevent inadvertent immune responses to self-antigens
(discussed below). Macrophages are also important in tis-
sue remodeling in vivo, not only as scavengers of apop-
totic debris, but also through the active induction of apop-
tosis, as seen during ocular tissue remodeling [90, 91].
Degradation of DNA into oligonucleosomal fragments is
a hallmark of apoptosis, and the endonuclease responsi-
ble for this event is termed CAD (caspase-activated
DNase) [92]. Macrophages have been shown to provide
an auxiliary mode of DNA fragmentation upon engulf-
ment of the dying cell [93]. Mice deficient for the
macrophage-specific endonuclease, DNase II, are ane-
mic and die before birth [94, 95], and it was concluded

that macrophages are required for the destruction of nu-
clear DNA that occurs during erythropoiesis [94]. Fur-
thermore, thymic development is perturbed in mouse em-
bryos deficient for both CAD and DNase II [96], thus
providing additional support for the role of macrophage-
driven dismantling of cells during development. Interest-
ingly, recent studies in C. elegans suggest that phagocy-
tosis may actively promote the execution of cell death.
Hence, cells expressing a partial loss-of-function muta-
tion of the ced-3 ‘killer’ gene appeared to be poised be-
tween life and death, and could recover completely if en-
gulfment was prevented [97, 98].

Control of inflammation
The accumulation and persistence of leukocytes, includ-
ing polymorphonuclear granulocytes or neutrophils, is a
characteristic feature of chronic inflammation [99]. Im-
portantly, neutrophils, replete with potentially deleterious
contents, need to be removed prior to their lysis, as con-
tents would otherwise expel into the extracellular milieu
and perpetuate inflammation. Studies in recent years have
suggested that apoptosis and subsequent macrophage in-
gestion (i.e. programmed cell clearance) of neutrophils
may aid in the resolution of the inflammatory response
[100, 101]. Chronic granulomatous disease (CGD) is a
rare hereditary condition characterized by severe recur-
rent bacterial and fungal infections, and an inability of
neutrophils and other phagocytes to generate reactive
oxygen species (ROS); the underlying genetic defect is a
mutation in the nicotinamide adenine dinucleotide phos-
phate (NADPH) oxidase [102]. Importantly, ROS-depen-
dent externalization of PS is defective in CGD neutrophils
[103]. The absence of this crucial recognition signal on
the surface of neutrophils may disrupt the clearance of
cells in vivo, thus contributing to the formation of inflam-
matory granulomas and tissue destruction evidenced in
these patients. Indeed, an increased accumulation of neu-
trophils was observed in peritoneal exudates of NADPH
oxidase-defective mice injected with heat-inactivated
bacteria, indicative of a clearance defect in this model of
CGD [104]. In addition, macrophages derived from CGD
patients are compromised in their ability to produce anti-
inflammatory mediators upon ingestion of apoptotic tar-
gets [105]. The latter findings thus provide further sup-
port for the notion that defects in programmed cell clear-
ance may contribute to persistence of inflammation in
CGD. Cystic fibrosis (CF) is a chronic inflammatory con-
dition characterized by a massive influx of cells into the
airways and release of intracellular proteases, including
neutrophil elastase [106]. Vandivier and colleagues [107]
have provided evidence for elastase-mediated cleavage of
the PSR on macrophages and ensuing disruption of pro-
grammed cell clearance in the airways of CF patients. The
latter findings suggest that the sustained inflammation ev-
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Figure 3. The consequences of programmed cell clearance.
Macrophage engulfment of apoptotic cells is not a passive event,
but results in numerous effects on the immune system. Dead cells
that are ingested by phagocytes (macrophages or dendritic cells) are
thus ‘gone, but not forgotten’ [142]. In addition, pathogens and tu-
mor cells can, in some instances, subvert macrophage responses to
apoptotic cells. Active promotion of the execution phase of cell
death is seen in C. elegans, and has yet to be demonstrated in a
mammalian system.



idenced in these patients may result, at least in part, from
defective clearance of inflammatory cells. Elastase re-
leased from damaged neutrophils is also known to stimu-
late macrophage secretion of proinflammatory cytokines
[108]. Similarly, HMGB-1 (high-mobility group box
chromosomal protein-1), an abundant chromosomal ar-
chitectural protein, is released from necrotic, but not
apoptotic cells, and stimulates macrophage production of
proinflammatory mediators [109]. Furthermore, necrotic,
but not apoptotic, cells release heat shock proteins, in-
cluding gp96, which deliver maturation signals to den-
dritic cells [110]. CD91 is a receptor for gp96, and has
been proposed to act as a sensor for necrotic cell death
[111], just as the PSR, in conjunction with other phago-
cytic receptors, may act as a sensor for apoptotic cell
death [35].

Role in autoimmune disease
Apoptosis dysregulation has been implicated in the
pathogenesis of autoimmune disease in numerous stud-
ies. Hence, evidence has accrued for a role of ‘too much’
apoptosis in the effector (i.e. tissue destruction) phase in
insulin-dependent diabetes, multiple sclerosis and other
organ-specific autoimmune diseases, as well as for ‘too
little’ apoptosis (of autoreactive B and T cells) in the ini-
tiation phase of systemic autoimmune conditions, such as
SLE (systemic lupus erythematosus) and ALPS (autoim-
mune lymphoproliferative syndrome) [112, 113]. In addi-
tion, disruption of programmed cell clearance may trig-
ger undesirable immune responses to self. Intracellular
autoantigens are known to cluster on surface blebs of
apoptotic cells [114]; moreoever, caspase- and granzyme
B-mediated cleavage of autoantigens occurs during apop-
tosis, and may yield cryptic epitopes to which autoim-
mune responses are targeted [115–118]. C1q, the first
component of complement, binds specifically to surface
blebs of apoptotic cells [119], and has been implicated in
the clearance of apoptotic cells [57, 120]. Interestingly,
mice deficient for C1q have high titers of autoantibodies
and SLE-like glomerulonephritis with evidence of nu-
merous unengulfed apoptotic bodies [121]. Macrophages
isolated from mice that lack a functional Mer receptor ty-
rosine kinase are also deficient in the clearance of apop-
totic cells and display high titers of nuclear autoantibod-
ies [122]. Taken together, these observations lend weight
to the hypothesis that autoimmune disease can result
from impairment of programmed cell clearance. Of note,
macrophages from C1q-deficient humans with SLE-like
disease also show a defect in the phagocytic uptake of
apoptotic cells; this defect could be corrected in vitro by
exogenous C1q protein [123]. Furthermore, macrophages
from SLE patients display an impairment in phagocytosis
of apoptotic cells, and it was suggested that persistently
circulating ‘apoptotic waste’ may serve as immunogen

for the induction of autoreactive responses in these indi-
viduals [124].

Immune modulation
Dendritic cells are antigen-presenting cells whose pri-
mary function is to monitor the environment for ‘danger’
signals and transduce these signals to T cells. Dendritic
cells are also capable of engulfing apoptotic cells, albeit
not as efficiently as professional phagocytes [125]; more-
over, dendritic cells can present antigen derived from in-
gested cell corpses in a major histocompatibility complex
(MHC) class I-restricted manner [126]. However, data
concerning the effect of apoptotic cell ingestion on den-
dritic cells are conflicting. Some investigators have
shown that co-culture with necrotic tumor cells, but not
apoptotic cells, induces dendritic cell maturation [127,
128], and the uptake of apoptotic cells by dendritic cell
was thus proposed to elicit tolerance to self-antigens
[129]. However, others have reported that maturation of
dendritic cells ensues following exposure to apoptotic de-
bris [130]. The latter data thus suggest that the capture of
apoptotic cells by antigen-presenting cells may, under
particular circumstances, evoke immune responses. The
question of whether recognition of ‘unwanted’ (apop-
totic) self induces a tolerogenic or immunogenic response
has significant implications for vaccine strategies and im-
munotherapeutic approaches to cancer [131, 132]. Future
studies will need to assess the cell-intrinsic and/or envi-
ronmental factors that determine whether apoptotic cell
ingestion by dendritic cells favors or prevents the induc-
tion of an immune response [133]. Nevertheless, one can
conclude from the aforementioned data that the process
of programmed cell clearance exerts numerous effects on
the immune system. In other words, apoptosis, and the
subsequent removal of cell corpses, is not always ‘silent’
or immunologically inert [134]. In addition, intracellular
pathogens such as Trypanosoma cruzi can subvert
macrophage responses. Hence, the uptake of apoptotic
cells by infected macrophages can enhance parasite
growth through macrophage production of TGF-b, a ‘try-
panosoma-growth factor’ [135]. Tumors may also take
advantage of apoptotic cell effects on macrophages [136].
Moreover, Holmgren and his group [137] have provided
evidence for the ‘horizontal’ transfer of oncogenes
through phagocytosis of apoptotic bodies. Programmed
cell clearance may thus constitute a mechanism for the
propagation of genetic instability and/or diversity within
a tumor cell population.

Concluding remarks

The view has evolved in recent years that human disease
may result not only from excessive or inadvertent execu-
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tion of cell death, but also from a mismatch between
death and the clearance of cell corpses. Further dissection
of the process of programmed cell clearance may thus
yield novel strategies for therapeutic intervention in nu-
merous diseases, including chronic inflammation, au-
toimmune conditions and cancer. Candidate approaches,
such as CD36 gene transfer to amateur phagocytes [138]
and ligation of macrophage CD44 [139], are beginning to
emerge; moreover, granulocyte-macrophage colony-
stimulating factor (GM-CSF) administration to carci-
noma patients was recently shown to promote
macrophage ingestion of apoptotic tumor cells [140],
thus demonstrating that programmed cell clearance is
amenable to pharmacological intervention in vivo. An
important aim for future studies is to decipher the signals
that determine the outcome of macrophage disposal of
apoptotic versus necrotic cells, and cell corpses versus in-
vading pathogens, respectively. Further development of
relevant in vivo models [120, 141] is also needed, and will
be useful for testing therapeutic strategies directed toward
the modulation of programmed cell clearance.
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