
Biomedicine and Diseases: Review

How retinoids regulate breast cancer cell proliferation 
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Abstract. Breast cancer still remains a major problem in
its incidence, morbidity and mortality; therefore, more
effective strategies for its prevention are urgently needed.
Retinoids, natural and synthetic derivatives of vitamin A,
possess antiproliferative and proapoptotic properties,
making them a promising class of chemopreventive
agents against breast cancer. The efficacy of all-trans
retinoic acid, 9-cis-retinoic acid, LGD1069 (Targretin,
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bexarotene), and N-(4-hydroxyphenyl)retinamide (fenre-
tinide) as breast cancer chemopreventive agents is being
studied. A better understanding of the molecular mecha-
nisms of action of these agents should lead to improve-
ments in their clinical application. In this review, we dis-
cuss the mechanisms by which retinoids exert their an-
tiproliferative and apoptotic effects in breast cancer cells.
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Introduction

Breast cancer has the highest incidence rate and the sec-
ond highest mortality rate of all cancers in American
women. Efforts to lower these rates have focused on the
development of chemopreventive strategies. Chemopre-
vention, which is the administration of natural or phar-
macologic agents to reverse or suppress carcinogenesis,
represents a novel approach to controlling secondary
breast malignancies. Results from the National Surgical
Adjuvant Breast and Bowel Project P-1 Breast Cancer
Prevention Trial (BCPT) and the more recent Multiple
Outcomes of Raloxifene Evaluation (MORE) trial
demonstrated the effectiveness of selective estrogen re-
ceptor modulators (SERMs) such as tamoxifen and ralox-
ifene in preventing the development of secondary breast
tumors [1]. However, the use of these agents is limited by
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their lack of efficacy against estrogen receptor (ER)-neg-
ative breast tumors. There is a major need to further de-
velop methods for the prevention of breast cancer. In par-
ticular, chemopreventive strategies for ER-negative
breast cancer are of critical importance because patients
with these malignancies generally have a poor prognosis.
Retinoids, natural or synthetic vitamin A analogues, can
regulate cell growth, differentiation and apoptosis in var-
ious cell types [2]. The regulation of cell growth by
retinoids is thought to result from direct and indirect ef-
fects on gene expression. These effects are mediated by
the nuclear receptors retinoic acid receptor (RAR)-a, -b
and -g and retinoid X receptor (RXR)-a, -b and -g, which
are ligand-activated transcription factors and members of
the steroid hormone receptor superfamily. Retinoid re-
ceptors activate transcription in a ligand-dependent man-
ner by binding as RAR/RXR heterodimers to retinoic
acid response elements (RAREs) located in the promoter
regions of target genes or as RXR homodimers to retinoic
X response elements (RXREs) in gene promoters.



Both naturally occurring and synthetic retinoids have
been shown to inhibit the growth of breast cancer cells.
The naturally occurring retinoid 9-cis retinoic acid (9-cis
RA, alitretinoin) transactivates both RARs and RXRs [3,
4]. All-trans retinoic acid (ATRA) is a naturally occurring
retinoid that binds RAR with high affinity but does not
bind RXR [5]. The use of these natural retinoids to treat
patients with advanced breast cancer has been limited by
their lack of clinical efficacy and their toxic side effects,
including hyperlipidemia and mucocutaneous and liver
toxicity [6–8]. To increase the potency and reduce the
toxicity of naturally occurring retinoids, synthetic deriv-
atives have been developed. LGD1069 (bexarotene, Tar-
gretin), a synthetic derivative of 9-cis RA, and N-(4-hy-
droxyphenyl)retinamide (4-HPR, fenretinide), a syn-
thetic derivative of ATRA, have been shown to be more
potent and less toxic than their parent compounds. In con-
trast to 9-cis RA, LGD1069 displays selective binding
and activation of the three known RXRs and does not
have significant RAR binding or transactivation of RAR-
responsive genes [9]. The specific activation of RXRs
and not RARs has been shown to reduce the mucocuta-
neous toxicity typically associated with retinoid treat-
ment in both preclinical and clinical trials [10–12]. Un-
like ATRA, 4-HPR appears to induce its inhibitory effects
mainly via retinoid receptor-independent mechanisms
[13–16]. 4-HPR effectively inhibits the proliferation of
breast cancer cells that do not express RARs [13–15]. 4-
HPR has very poor affinity to RARs [13]. 4-HPR could
induce RAR transcriptional activation and repression in
breast cancer cells, but is >100-fold less potent than
ATRA [14, 15]. 4-HPR preferentially accumulates in
breast tissue, and this may account for its reduced toxic-
ity compared with other retinoids [17–19]. Despite fa-
vorable preclinical data, 4-HPR and LGD1069 have
shown limited therapeutic efficacy in patients with ad-
vanced breast cancer [20, 21].

Mechanisms of retinoid-induced antiproliferation
and apoptosis

ATRA

RARS
The main mechanism by which ATRA inhibits the prolif-
eration of breast cancer cells is by inducing G1 cell cycle
arrest [22–25]. ER-positive breast cancer cells are sensi-
tive to the growth inhibitory effects of ATRA, while the
majority of ER-negative cells are resistant [26, 27]. ER-
positive cells respond to ATRA because they express
RARa, whereas the majority of ER-negative cells are re-
fractory toward ATRA treatment because they have little
or no RARa [27, 28]. Overexpression of RARa in ER-
negative MDA-MB-231 cells sensitized the cells to the
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antiproliferative effects of ATRA [26]. Increased ATRA
sensitivity in HER2/neu-overexpressing breast cancer
cells treated with the anti-HER2/neu antibody tra-
stuzumab was correlated with increased RARa protein
levels and increased RARE binding activity [29, 30]. 
Retinoids are known to cause changes in the expression
of genes in target cells. The RARb gene may act as a tu-
mor suppressor, and loss of RARb2 messenger RNA
(mRNA) expression may be an important event in tu-
morigenesis. Reduced RARb2 mRNA expression has
been observed in a number of solid tumor cells, including
lung carcinoma [31–33], squamous cell carcinoma of the
head and neck [34], and breast cancer [33, 35–38].
RARb transcription has been shown to be downregulated
in breast cancer cell lines and tumors and upregulated in
normal mammary epithelial cells [33, 35–38]. Evidence
suggests that the inducibility of RARb expression plays a
role in mediating the growth inhibitory effects of
retinoids. Growth inhibition in response to ATRA has
been associated with RARb2 mRNA induction, while re-
sistance to ATRA has been associated with a failure in
RARb2 inducibility in lung, stomach and breast cancer
cells in vitro [33, 39, 40]. ATRA sensitivity of ER-posi-
tive cells was inhibited by an RARb antagonist and the
expression of RARb antisense [39, 41]. Furthermore, in-
troduction of RARb in ER-negative cells by stable trans-
fection or through an RARb expression vector restored
their sensitivity to ATRA [33, 39, 42]. ATRA-mediated
induction of RARb has also been demonstrated in vivo;
RARb was induced in 33% of breast cancer patients
treated with ATRA for 3 weeks [43].

Cell cycle effects
Alterations in the expression and activity of cell cycle
regulators have been associated with breast cancer [44].
Several cell cycle modulators are important in controlling
the G1 transition to S phase, including retinoblastoma
protein (pRb), cyclins D and E, cyclin-dependent kinases
(cdks) 2, 4 and 6, and their inhibitors, p15, p16 and p21.
Phosphorylation of the tumor suppressor pRb inactivates
its growth suppressive function and is important for the
progression from the G1 to the S phase of the cell cycle
[22, 45, 46]. 
Alterations in the expression and activity of cell cycle reg-
ulators have been associated with the antiproliferative ef-
fects of ATRA in breast cancer cells. Growth inhibition in-
duced by ATRA in breast cancer cells has been correlated
with its ability to decrease expression of cyclin D1 and D3
[47–49], the activity of cdk2 and cdk4 [47–50], and the
expression and phosphorylation of pRb [47, 49–51]. Cdk
inhibitors may also be a target of ATRA. ATRA increased
p21 levels, which were associated with decreased cdk2 ac-
tivity in normal breast epithelial cells [51]. Thus, ATRA
appears to induce its antiproliferative effects predomi-
nantly by blocking the transition from G1 to S phase. 



AP-1
AP-1 is made up of the protooncogenes jun and fos, and
its activity is associated with breast cancer cell prolifera-
tion and transformation [52]. AP-1 activity is inhibited by
ATRA and has been associated with ATRA-mediated
growth inhibition in breast cancer cells [53–56]. Inhibi-
tion of AP-1 activity by ATRA may involve either direct
interaction between ATRA-activated RARs and compo-
nents of AP-1 or competition for common coactivators,
such as cyclic AMP (cAMP) response element-binding
protein (CBP) [57, 58]. ATRA has been shown to inhibit
AP-1 activation by regulating CBP recruitment in cervi-
cal cancer cells [59]. ATRA regulates the expression of
CBP and the homologous protein p300 in breast cancer
cells and may therefore make these proteins unavailable
for AP-1 activation [60]. 

4-HPR
As with ATRA, induction of gene expression and cell cy-
cle effects have been implicated in 4-HPR-mediated
growth inhibition in breast cancer cells. Growth inhibition
by 4-HPR has been correlated with the induction of the
RARb2 gene in lung adenocarcinoma cells [40], stomach
adenocarcinoma cells [40] and ovarian cancer cells [61,
62]. Whether induction of RARb represents a mechanism
of 4-HPR-induced growth inhibition in breast cancer cells
has not been determined. However, in our own unpub-
lished observations we found that 4-HPR did not induce
RARb expression in breast cancer cells. The antiprolifer-
ative effects of 4-HPR have been associated with its abil-
ity to decrease cyclin D1 expression and cdk2 and cdk4
activity and to induce the dephosphorylation of pRb in
breast cancer cells [63]. However, our data suggest that 4-
HPR does not affect cell cycle distribution [64]. In con-
trast to ATRA, induction of apoptosis is an almost uniform
response of cancer cells to 4-HPR [65]. We and others
have reported that 4-HPR is a potent inducer of apoptosis
in breast cancer cells [13, 14, 66, 67]. Caspase activation
has been shown to be an integral event in 4-HPR-induced
apoptosis [68–70]. ATRA may induce apoptosis in breast
cancer cells but only when the cells have been continu-
ously exposed to ATRA for 6 or more days, with replen-
ishment of ATRA in the medium every other day [24]. De-
spite the quantity of research that has been done to eluci-
date the mechanisms of 4-HPR-induced apoptosis in
cancer cells, these mechanisms are still not well defined.
What has become evident from these studies is that the
mechanisms of 4-HPR-mediated apoptosis appear to be
tissue specific, and furthermore, it appears that multiple
mechanisms may operate within specific tissues. 

Nitric oxide
Nitric oxide (NO), a free radical produced from L-argi-
nine by nitric oxide synthases (NOS), can be a proapop-

totic or an antiapoptotic molecule. In breast cancer cells,
NO mainly serves as an antiproliferation and apoptosis
inducer [71–75]. The production of NO by NOSII was
found to be essential for pharmacologically achievable
doses of 4-HPR (1–3 mM) to induce apoptosis in breast
cancer cells [64]. Furthermore, NO production may be an
important mechanism in 4-HPR-based therapies in breast
cancer. One potential mechanism by which tamoxifen
and interferon-g enhance the potency of 4-HPR in breast
cancer cells is by increasing NO production [64]. Inter-
feron-g enhanced 4-HPR-mediated NO production in
both ER-positive and ER-negative breast cancer cells,
while tamoxifen increased 4-HPR-mediated NO produc-
tion only in ER-positive cells [64]. Lim et al. [76] re-
ported that cyclosporin A increased the ability of 4-HPR
to induce apoptosis in breast cancer cells, and this effect
was correlated with increased NO production. Recently,
NOSII-mediated NO production was found to be essen-
tial for the combination of 4-HPR and trastuzumab to in-
duce apoptosis in HER2/neu-overexpressing breast can-
cer cells [77]. HER2/neu suppresses 4-HPR-mediated
apoptosis in breast cancer cells predominantly by sup-
pressing NO production mediated by NOSII [77]. 

Ceramide
Elevations in the levels of the sphingolipid ceramide have
also been implicated in 4-HPR-induced apoptosis. 4-
HPR increases ceramide levels in neuroblastoma cells
[78, 79], leukemia cells [80, 81] and prostate cancer cells
[82]. The blockage of ceramide synthesis [79, 80] or the
addition of agents that block the metabolism of ceramide
[82] were shown to reduce and enhance 4-HPR-induced
apoptosis, respectively, in leukemia and prostate cancer
cells. 4-HPR has also been reported to increase ceramide
levels in breast cancer cells, and inhibitors of ceramide
metabolism enhanced 4-HPR-induced apoptosis [83]. 

Other potential mechanisms
Both the generation of reactive oxygen species (ROS) and
mitochondrial permeability transition (MPT) have been
implicated in 4-HPR-mediated apoptosis in some cancer
cell types; however, whether these mechanisms are in-
volved in the proapoptotic effects of 4-HPR in breast can-
cer cells has not been investigated. The generation of
ROS, such as hydrogen peroxide and superoxide, has
been linked to 4-HPR-induced apoptosis in a variety of
cancer cell types, including cutaneous squamous cell car-
cinoma [84], leukemia [68, 85, 86], cervical carcinoma
[87, 88] and retinoblastoma cells [89]. Exogenous an-
tioxidants have been shown to inhibit 4-HPR-induced
ROS production and apoptosis, demonstrating that ROS
are critical in mediating apoptosis in these cancer cell
types [68, 84–87, 89]. Other types of cancer cells pro-
duce ROS, including prostate carcinoma, non-small cell
lung carcinoma, and neuroblastoma cells, but it does not
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appear to be the main or sole mechanism of apoptotic in-
duction by 4-HPR [78, 90, 91]. ROS production appears
to be specific to 4-HPR; other retinoids such as ATRA
and 9-cis-RA do not induce ROS [85, 87, 92]. 
MPT also appears to play a central role in 4-HPR-induced
apoptosis in some cancer cells [84, 88]. MPT is the open-
ing of mitochondrial megachannels leading to the disrup-
tion of the mitochondrial membrane inner transmem-
brane potential [93]. In cutaneous squamous carcinoma
cell lines, MPT is the main coordinating event of 4-HPR-
induced apoptosis [84]. MPT antagonists, such as cy-
closporin A, rescued squamous carcinoma cells from the
proapoptotic effects of 4-HPR [84]. In contrast, cy-
closporin A increased the ability of 4-HPR to induce
apoptosis in ER-positive and ER-negative breast cancer
cells [76]. The role of MPT in 4-HPR-induced apoptosis
in breast cancer cells has not been determined. However,
given that the MPT inhibitor cyclosporin A has such
markedly different effects on 4-HPR in breast cancer
cells and in cutaneous squamous carcinoma cells, MPT
may not be involved in 4-HPR’s induction of apoptosis in
breast cancer cells. 
While NO production, ceramide, ROS production and
MPT represent separate events in 4-HPR’s induction of
apoptosis, these events may be interrelated. ROS can ac-
tivate ceramide, and conversely, ceramide can induce
ROS production [94]. NO production can be upstream or
downstream of ceramide [94]. MPT can be triggered by
ROS or result in ROS production [93]. 4-HPR-induced
ROS generation was shown to be required for MPT in-
duction in cervical carcinoma cells [88]. A linkage of 4-
HPR’s induction of ROS, release of cytochrome c, induc-
tion of MPT and activation of caspase 3 has been reported
in some cancer cell types, such as cervical carcinoma and
leukemia cells [86, 88]. NO-mediated induction of apop-
tosis in breast cancer cells has been shown to require mi-
tochondrial damage, in particular, cytochrome c release,
disruption of mitochondrial transmembrane potential and
ROS generation, as well as activation of caspases 1, 3 and
6 [75]. 
Given that 4-HPR is an analogue of ATRA, some overlap
in the mechanisms of action of these two retinoids is ex-
pected. In fact, increased NO production and alterations
in the levels of growth factors have been implicated in
both ATRA and 4-HPR-mediated growth inhibition in
breast cancer cells. The antiproliferative effects of ATRA
have been correlated with increased NO production in a
breast cancer cell line [95]. While we have also observed
that ATRA can induce NO production in breast cancer
cells, its induction of NO is less potent and of shorter du-
ration than that observed in response to 4-HPR [77]. 
It has been proposed that retinoids inhibit cell growth by
inhibiting the expression of growth-stimulating factors or
by inducing the expression of growth inhibitory factors,
but whether alterations in growth factors in response to

retinoid treatment are a mechanism or a marker of activ-
ity remains to be determined. Insulin-like growth factor-
I (IGF-I) has been associated with mammary gland de-
velopment and is a potent stimulator of mammary epithe-
lial cell growth in vitro [96]. Elevated circulating levels of
IGF-I have been associated with increased breast cancer
risk in premenopausal women [97–101]. IGF-binding
proteins (IGFBPs) regulate IGF bioavailibility and IGF-I
receptor responsiveness to IGF-I [100]. ATRA-mediated
antiproliferative effects were correlated with the in-
creased secretion of the IGFBPs [102]. IGFBP-3 expres-
sion is induced by ATRA, and inhibition of IGFBP-3 ex-
pression decreased ATRA-induced antiproliferative ef-
fects in breast cancer cells [103–106]. 4-HPR has been
shown to significantly decrease the levels of IGF-I,
IGFBP-4, IGFBP-5 and type I IGF-receptor mRNA in
both ER-positive and ER-negative breast cancer cell lines
in vitro, and these reductions were associated with 4-
HPR-induced growth inhibition [107]. Decreases in IGF-
I have been implicated in the chemopreventive effects of
4-HPR in breast cancer patients. Clinically, decreased
plasma levels of IGF-I were observed in premenopausal
patients with stage I breast cancer in response to a 1-year
treatment with 4-HPR [108, 109]. The decline in IGF-I
induced by 4-HPR appears to be a durable response, with
reductions maintained for up to 5 years in premenopausal
women [110]. 
Transforming growth factor-b (TGF-b) is a potent growth
inhibitor of epithelium-derived cells [111]. ATRA has
been shown to increase active TGF-b in breast cancer
cells; however, a TGF-b antibody was unable to block
ATRA-induced antiproliferative effects [51]. TGF-b
mRNA levels increased in tumors from breast cancer pa-
tients after 3 weeks of ATRA treatment [43]; however, the
correlation between ATRA-induced increases in TGF-b
mRNA and therapeutic activity was not determined.
TGF-b involvement in 4-HPR-induced apoptosis in
breast cancer cells was demonstrated by the blockage of
4-HPR-induced apoptosis with neutralizing TGF-b anti-
bodies, the transient transfection of cells with antisense
oligomers to TGF-b1 or TGF-bII receptor, and the inhi-
bition of latent TGF-b activation [67]. Furthermore, it has
been shown that breast cancer cells defective in TGF-b1
signaling are resistant to 4-HPR-induced apoptosis [67],
and TGF-b1 was not increased in cells resistant to 4-HPR
[112]. 
Despite in vitro evidence for the involvement of TGF-b in
4-HPR-induced apoptosis, increases in TGF-b have not
been observed in preclinical animal models or clinical tri-
als. This discrepancy may be explained by the fact that
TGF-b acts on both the tumor cell and its environment.
Despite the growth inhibitory effects of TGF-b on early
breast cancer cells, TGF-b predominantly possesses
oncogenic activities [113, 114]. TGF-b mRNA has been
detected in breast cancer cell lines and tumors, and its ex-
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pression has been associated with tumor aggressiveness,
increased metastatic potential, increased drug resistance
and immunosuppression [115]. Despite demonstrated
chemopreventive efficacy, 4-HPR alone or in combina-
tion with tamoxifen had no significant impact on TGF-b
expression in mammary epithelial or stromal cells in a rat
model of mammary tumorigenesis [116]. Plasma concen-
trations of TGF-b1 were not significantly different in un-
treated controls or women with stage I breast cancer
treated with 4-HPR for 1 year [117] and in women with
metastatic breast cancer treated with 4-HPR and tamox-
ifen for 3 months [118]. 

9-cis RA and LGD1069

Cell cycle effects
9-cis RA decreased cyclin D1 and D3 expression levels as
well as the expression and activity of cdk2 and cdk4 in
breast cancer cells; changes in these cell cycle regulators
were correlated with the antiproliferative activity of 9-cis
RA in vitro [48].

Induction of gene expression
LGD1069 has been shown to increase the expression of
adipocyte-related genes both in vitro and in vivo [119].
Expression of aP2, adipsin, Peroxisome Proliferator acti-
vated receptor g (PPARg) and lipoprotein lipase was
higher in LGD1069-responding tumors than in controls
or nonresponding rat mammary tumors [119]. Similar
changes in gene expression and inhibition in growth were
seen in tumor cells exposed to LGD1069 in vitro. These
studies demonstrate a correlation between the increased
expression of the adipocyte-related genes aP2, adipsin
and PPARg, and the LGD1069-mediated regression of rat
mammary carcinomas. Importantly, aP2 protein was also
more highly expressed in regressing tumors than in con-
trol tumors and was found in the tumor cells as well as in
the adipocytes present in the tumor. Agarwal et al. [119]
have proposed that LGD1069 causes tumor regression by
inducing adipocyte differentiation in the tumor cells,
which is followed by terminal cell division and cell death. 

Telomerase
Telomerase is expressed in a vast majority of cancer cells,
and telomerase activation may play a critical role in tu-
morigenesis by sustaining cellular immortality [120]. The
presence of telomerase has been proposed as a biomarker
of breast cancer development and progression [121]. 
9-cis RA inhibited telomerase activity in a dose-depen-
dent manner in MCF-7 breast cancer cells, which was
correlated with its antiproliferative effects [122]. Reduc-
tions in telomerase activity are also a potential mecha-
nism of ATRA- and 4-HPR-mediated growth inhibition
in breast cancer cells. ATRA reduced human telomerase

reverse transcriptase mRNA expression and subsequent
telomerase activity in breast cancer cells, which was cor-
related with ATRA-mediated growth inhibition [122]. 4-
HPR decreased telomerase activity in the bronchial ep-
ithelium of cigarette smokers [123, 124]. The suppressed
growth of N-methyl-nitrosourea (NMU)-induced mam-
mary tumors by 4-HPR was associated with decreased
telomerase activity [125]. 

Retinoids as chemopreventive agents against breast
cancer

4-HPR and LGD1069 hold promise as chemopreventive
agents against breast cancer. Results of a phase III clini-
cal trial suggest that 4-HPR may be effective in reducing
local recurrent and contralateral breast cancer in pre-
menopausal women [126]. LGD1069 has been shown to
be superior to its parent molecule, 9-cis RA, in the pre-
vention of breast cancer in both ER-positive and ER-neg-
ative animal models [4, 127]. LGD1069 has demon-
strated chemopreventive efficacy in the ER-positive
NMU-induced rat mammary tumor model [128, 129] and
has chemopreventive effects in ER-negative animal mod-
els of breast cancer, including C3(1)-SV40 transgenic
mice [12, 130] and mouse mammary tumor virus-erbB2
transgenic mice [131, 132]. The favorable toxicity pro-
files of these two synthetic retinoids also make them can-
didates for breast cancer chemoprevention [10–12, 133,
134]. 
To improve the clinical effectiveness of retinoids in breast
cancer chemoprevention, their use in combination thera-
pies has been investigated. The addition of tamoxifen en-
hanced the chemopreventive effects of 9-cis RA and 4-
HPR in breast cancer rodent models [135, 136].
LGD1069 and other RXR-selective retinoids have also
been tested in combination with antiestrogens. The com-
bination of LGD1069 with tamoxifen had greater effi-
cacy against the development of NMU-induced mam-
mary tumors than did either agent alone [137]. In addi-
tion, mammary tumors that had become resistant to
tamoxifen were sensitive to LGD1069 in this rat model
[138]. Suh et al. [139] also recently reported that the com-
bination of RXR selective retinoid LG 100268 with the
SERM arzoxifene is more effective than either agent
alone in preventing mammary tumor development. 
The combination of retinoids and interferons has been
shown to enhance the inhibition of breast cancer cell
growth. Interferon-g in combination with ATRA or 9-cis
RA resulted in a synergistic inhibition of proliferation in
ER-positive and ER-negative breast cancer cell lines
[140–142]. Interferons have also been shown to enhance
the growth inhibitory effects of 4-HPR in vitro [64, 143]. 
A novel synthetic retinoid 6-[3-(1-adamanty1)]-4-hy-
droxyphenyl]-2-naphthalene carboxylic acid (CD437)
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has been shown to induce growth arrest and apoptosis in
breast cancer cells in vitro [144, 145]. Like 4-HPR, this
retinoid appears to induce apoptosis in a retinoid recep-
tor-independent manner in breast cancer cells [146, 147].
CD437-mediated growth arrest and apoptosis in breast
cancer cells have been associated with elevated expres-
sion of p21 [144, 148], induction of growth arrest and
DNA damage-inducible gene 45 (gadd45) [149], activa-
tion of caspases [148] and downregulation of Bcl-XL ex-
pression [150]. Recently, a cell cycle and apoptosis regu-
latory protein (CARP)-1 was identified as a novel medi-
ator of CD437 apoptotic signaling in breast cancer cells
[145]. It remains to be determined whether CD437 has
breast tumor chemopreventive activity in vivo.

Concluding remarks

Gaining a better understanding of the mechanisms by
which retinoids induce their antiproliferative and apop-
totic effects should improve the clinical application of
these agents in breast cancer chemoprevention. Further-
more, the development of mechanism-based combina-
tions of retinoids and other agents will be critical to im-
proving the efficacy of retinoids as breast cancer chemo-
preventive agents. Determining the mode of action of
retinoids will also help identify appropriate biomarkers
with which to measure their efficacy and patients who
will best respond to them. The clinical application of
retinoids may also be improved by identifying genes and
other factors in breast tumors that may decrease their ac-
tivity. These genes may be used as biomarkers to predict
the efficacy of retinoids against breast tumor develop-
ment and may allow us to utilize retinoids more effec-
tively by combining them with other drugs that can in-
hibit the function or expression of those particular genes. 
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