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Abstract. Oxygen depravation in mammals leads to the
transcriptional induction of a host of target genes to meta-
bolically adapt to this deficiency, including erythropoi-
etin and vascular endothelial growth factor. This response
is primarily mediated by the hypoxia-inducible factors
(HIFs) which are members of the basic-helix-loop-he-
lix/Per-ARNT-Sim (bHLH/PAS) transcription factor fam-
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ily. The HIFs are primarily regulated via a two-step 
mechanism of HIF post-translational modification, in-
creasing both protein stability and transactivation capac-
ity. This review aims to summarise our current under-
standing of these processes, and discuss the important
role of the HIFs in the pathophysiology of many human
diseases.
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Introduction

Oxygen homeostasis in mammals is tightly regulated, ne-
cessitated by the need to maintain sufficient levels for
critical oxygen-dependent processes, whilst minimising
the production of reactive oxygen species (ROS) that are
capable of causing oxidative damage to DNA, lipids and
protein. In a state of hypoxia, where oxygen demand ex-
ceeds supply, a physiological response is mounted which
increases the capacity of blood to carry oxygen to tissues,
and alters cellular metabolism, for example facilitating
ATP production by anaerobic glycolysis. The hypoxia-in-
ducible factors (HIFs) are key transcriptional regulators
of this hypoxic response in both adult and embryonic or-
ganisms. In addition, these factors have been implicated
in the pathophysiology of many major human diseases,
including cancer, myocardial infarction, ischaemia and
preeclampsia.

* Corresponding author.

HIF discovery and classification

The discovery of HIF was enabled by the identification of
a minimal hypoxically responsive element (HRE) in the
3¢ enhancer of the erythropoietin gene [1]. Subsequent
analysis identified HIF as a phosphorylation-dependent
protein which binds the major groove of DNA under hy-
poxic conditions [2]. Purification of this DNA-binding
factor revealed HIF was a heterodimeric complex con-
sisting of a novel protein, HIF-1a, and the aryl hydrocar-
bon nuclear translocator (ARNT, also termed HIF-1b),
previously identified as a binding partner of the
dioxin/aryl hydrocarbon receptor (DR/AhR) [3–5]. Sub-
sequently, HIF-1a has been independently cloned as a
binding partner of both ARNT and p300/CBP [6, 7].
HIF-1a and ARNT belong to a class of transcription fac-
tors termed basic helix-loop-helix (bHLH)/PAS proteins,
grouped by two conserved domains (fig. 1). The basic re-
gion consists of approximately 15 predominantly basic
amino acids responsible for direct DNA binding. This re-
gion is adjacent to two amphipathic a helices, separated
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by a loop of variable length, which forms the primary
dimerisation interface between family members [8]. The
PAS domain, named after the first three proteins in which
it was identified (Per, ARNT and Sim), encompasses
200–300 amino acids containing two loosely conserved,
largely hydrophobic regions of approximately 50 amino
acids, designated PAS A and PAS B [9]. This domain
forms a secondary dimerisation interface between family
members in addition to other roles, for example ligand
and chaperone binding in the dioxin receptor (DR) [10].
Despite not directly binding DNA, the PAS domain has
also been reported to confer target gene specificity to the
Drosophila proteins Trachealess (Trh) and Single minded
(Sim) [11]. The mechanism by which this occurs remains
unknown, as does the full extent of functions played by
the PAS domain in the HIFs. All known members of the
bHLH/PAS family function as dimers, with ARNT and its
paralogs the ubiquitous partners. HIF-1a homologs are
highly conserved and function in similar roles in organ-
isms other than mammals, including Drosophila [12, 13]
and fish [14, 15]. HIF regulation mechanisms between
organisms are also conserved, which, as will be dis-
cussed, predominantly involves a two-step mechanism of
posttranslational regulation involving both protein stabil-
ity and transactivation (fig. 2).
ARNT is an obligate heterodimeric partner for HIF-1a,
as well as additional bHLH/PAS proteins such as the DR.
The requirement of ARNT in multiple signalling path-
ways has therefore prompted investigation of competition
for ARNT binding. Although several studies have demon-
strated the capacity for functional interference between
the dioxin and hypoxic signalling pathways [16, 17], at
least one study indicates that any cross-talk between these
pathways does not occur through competition for ARNT
[18]. Hence, the role of competition for ARNT by other
bHLH/PAS proteins in vivo remains unclear.

The chaperone Hsp90 binds the PAS domain of the DR
and maintains it in a ligand-responsive cytoplasmic state
[19, 20]. Similarly, Hsp90 coimmunoprecipitates with the
bHLH/PAS domain of HIF-1a but is not detectable
translocating into the nucleus [21]. This chaperoning role
may explain the requirement for Hsp90 in both heat and
hypoxia-induced HIF-1a accumulation, as well as a re-
cent report implicating Hsp90 in a novel HIF-1a degra-
dation pathway [21–23].

Additional HIFs and expression patterns

A closely related protein, HIF-2a [also termed endothe-
lial PAS (EPAS), HIF-like factor (HLF), HIF-related fac-
tor (HRF) and member of PAS superfamily 2 (MOP2)]
[24–27], was identified shortly after HIF-1a was cloned.
HIF-2a shares 48% amino acid sequence identity with
HIF-1a and accordingly was found to heterodimerise
with ARNT and bind HREs [24, 25]. Deletion analysis
has demonstrated both HIF-a proteins share a common
functional domain architecture (fig. 1). In addition to the
amino-terminal bHLH and PAS domains, the HIF-as
possess two transactivation domains (TADs), separated
by a region termed the inhibitory domain (ID), which is
responsible for normoxic repression of TAD activity.
Overlapping the amino-terminal TAD (N-TAD) is an
oxygen-dependent degradation domain (ODDD), which
confers normoxic instability to the HIFa- proteins (fig. 2)
[28–31].
RNA expression patterns have indicated that both HIF-1a
and HIF-2a are largely ubiquitously expressed in human
and mouse tissues in an oxygen-independent manner
[24–26, 32, 33]. Analysis of cell-type-specific expres-
sion patterns, however, indicate that in contrast to ubiqui-
tous HIF-1a, HIF-2a messenger RNA (mRNA) is pre-

Figure 1. HIF-1a, HIF-2a and ARNT domain structure. HIF-1a, HIF-2a and ARNT are basic helix-loop-helix/Per-ARNT-Sim homology
(bHLH/PAS) transcription factors, grouped by conserved amino-terminal bHLH and PAS domains. In addition to the carboxy-terminal
transactivation domain (C-TAD), similar to ARNT, HIF-1a and HIF-2a also possess an additional amino-terminal transactivation domain
(N-TAD), an inhibitory region (ID) that negatively regulates TAD activity and an oxygen-dependent degradation domain (ODDD) that me-
diates oxygen-regulated stability. Amino acid similarity between domains of HIF-1a and HIF-2a are given.
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dominantly expressed in specific cell types such as en-
dothelial, epithelial, neuronal, fibroblast and macrophage
cells [24, 26, 33, 34].
A third HIFa gene has also been discovered, designated
HIF-3a. Like the better-characterised HIF-1a and HIF-
2a, it is expressed in a variety of tissues, dimerises with
ARNT, binds to HRE DNA sequences and upregulates re-
porter expression in a hypoxia-inducible and ARNT-de-
pendent manner [35]. A splice variant of HIF-3a, termed
inhibitory PAS (IPAS), has recently been identified [36].
IPAS possesses no endogenous transactivation capacity,
but appears to act as a dominant-negative regulator of
HIF, interacting with the amino-terminal region of HIF-
1a and preventing DNA binding. IPAS is predominantly
expressed in the Purkinje cells of the cerebellum and
corneal epithelium, and antagonises HIF-dependent an-
giogenesis despite tissue hypoxia [36]. This alternately
spliced HIF-3a transcript is also hypoxically induced in
the heart and lung and may contribute to a negative feed-
back loop for HIF activity in these tissues [37].

HIF splice variants

In mice, two HIF-1a mRNA transcripts (I.1 and I.2) are
produced from different promoters (as opposed to alter-
nate splicing) [38]. These transcripts are both efficiently
translated independently of oxygen, but differ in that
whereas I.1 encodes a protein lacking the first 12 amino-
terminal amino acids and is expressed in a tissue-re-

stricted manner, I.2 is ubiquitously expressed and en-
codes a full-length protein. Despite these differences, no
specificity in DNA binding or transactivation capacity
has been observed [39, 40]. Interestingly, the I.1 tran-
script is specifically upregulated in the elongated sper-
matids of the testes, and after T cell antigen receptor
(TCR)-triggered activation of T lymphocytes, although
the reason for this remains unclear [41, 42]. Several
splice variants have also been identified in humans. One
such example is a HIF-1a splice variant, present in skin
and several cell lines, which lacks exon 14 [43]. This
leads to a frame shift and encodes a shorter protein (736
amino acids) which, although still hypoxically inducible,
lacks a carboxy-terminal TAD (C-TAD) and hence is less
active than wild-type HIF-1a. [43]. A dominant-negative
isoform lacking exons 11 and 12 has also been reported
[44]. The resultant protein is 516 amino acids long, stable
in normoxia and displays no transactivation or hypoxia-
induced nuclear translocation [44]. Similarly, a zinc-in-
duced splice variant lacking exon 12 also acts as a domi-
nant negative, inhibiting HIF activity by binding to
ARNT and preventing its nuclear accumulation, possibly
accounting for the inhibitory effect of zinc [45]. A natu-
rally occurring antisense transcript complementary to the
3¢ untranslated region of HIF-1a has also been reported
[46]. This transcript is overexpressed in nonpapillary kid-
ney tumour cells at normoxia, and is hypoxically in-
ducible in lymphocytes where there is a concomitant de-
crease in HIF-1a mRNA [46].

Figure 2. Overview of hypoxically regulated gene expression by HIF-a. In normoxia, HIF-a protein is transcriptionally inactive and
rapidly degraded by the ubiquitin/proteasome pathway. Under hypoxia, however, HIF-a becomes stabilised, translocates into the nucleus
and heterodimerises with ARNT. This transcriptionally active complex then associates with hypoxia response elements (HREs) in the reg-
ulatory regions of target genes, binds transcriptional coactivators (p300/CBP) and induces target gene expression.



The reason there are at least four PHD/HPHs remains un-
clear; however, differences in activity, expression patterns
and subcellular localisation may enable a graded or tis-
sue-specific response to hypoxia [70, 71]. At least one
PHD/HPH is also present in Drosophila that mediates the
normoxic instability of the HIF-1a homolog Similar
(Sim a) [70]. Despite the similarity to previously charac-
terised prolyl hydroxylation of collagen, HIF-1a and
HIF-2a do not possess the hydroxylation consensus se-
quences identified in collagen, and collagen prolyl hy-
droxylases are unable to hydroxylate HIF-1a peptides
[65, 66, 76]. Thus, the HIF PHD/HPHs represent a novel
family of hydroxylases related to, but not functionally re-
dundant with, collagen hydroxylases.
The PHD/HPHs are 2-oxoglutarate-dependent enzymes
that require oxygen (O2) for hydroxylation. They contain
iron bound to two histidine and one aspartic acid residue
which, when maintained in its ferrous state by ascorbate,
binds dioxygen. One oxygen is transferred to the target
proline residue of HIF; the second reacts with 2-oxoglu-
tarate to produce succinate and carbon dioxide. Hence,
the absence of oxygen leads to no enzyme activity, non-
modification of HIF proline residues and no VHL/HIF
binding, resulting in stabilised HIFa- protein. Therefore,
it is likely the PHD/HPHs function as a direct oxygen
sensor in cells that directly modulate HIF in response to
physiological oxygen concentration.
The fact that HIF-1a degradation is suppressed by in-
hibiting either cellular transcription or HIF-1a activity
implies that HIF-1a may upregulate a target which de-
grades it [77]. This may at least partially explain the ob-
served reduction of HIF-1a protein during an extended
period of hypoxia [77]. Given that some of the
PHD/HPHs are reported HIF-1a target genes, the
PHD/HPHs may represent a way by which HIF-1a self-
regulates its expression [70, 71].
The regulation of VHL binding by proline hydroxylation
represents the major mechanism by which HIF protein
levels are controlled. The fact that HIF-a is still some-
what labile in hypoxia, however, where VHL cannot bind,
implies the presence of additional mechanisms that influ-
ence degradation. One such mechanism involves p53.
The p53 tumour suppressor gene encodes a multifunc-
tional transcription factor that regulates cellular re-
sponses to diverse stimuli, including hypoxia. p53 is sus-
ceptible to proteasomal degradation and is dependent
upon its physical interaction with HIF for hypoxic stabil-
isation [78]. This interaction has been localised to two
HIF-1a motifs adjacent to the proline hydroxylation sites
and occurs primarily with a dephosphorylated form of
HIF-1a induced in hypoxia [79, 80]. Mdm2 is an E3
ubiquitin-ligase associated with p53 degradation. In con-
trast to the action of HIF stabilising p53 in hypoxia, p53
conversely targets HIF-1a for Mdm2-mediated ubiquity-
lation and degradation, possibly through HIF-1a repre-
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HIF degradation

The normoxic turnover of HIF-a is very rapid, resulting
in essentially no detectable HIF-a protein under nor-
moxic conditions [4, 47, 48]. This normoxic instability is
controlled by the central 200-amino acid ODDD that
overlaps the N-TAD [48]. The rapid accumulation of
HIF-1a and HIF-2a that occurs in hypoxia is mediated by
increased protein stability. In contrast, oxygen tension
does not have a major affect on HIF-a transcription or
translation [32, 48–51]. Similarly, oxygen does not sig-
nificantly affect ARNT mRNA or protein levels, which
are constitutively expressed [48, 49, 51].
The normoxic instability of HIF-a is mediated by polyu-
biquitylation and subsequent degradation by the protea-
some (fig. 2). This has been demonstrated by the use of
proteasomal inhibitors or mutation of the E1 ubiquitin ac-
tivating enzyme [48, 52]. Thus, HIF-a is polyubiquity-
lated under normoxia with the level of ubiquitylation de-
creasing in hypoxia [48, 52, 53]. In further support of
this, HIF-1a physically interacts with the 20S proteaso-
mal subunit PSMA7 [54].
The von-Hippel-Lindau (VHL) tumour suppressor pro-
tein is a component of an E3 ubiquitin-protein ligase
complex containing elongins B and C, Cul2 and Rbx1,
and it is this capacity by which VHL mediates the protea-
somal degradation of HIF-1a and HIF-2a [55]. VHL’s
role in the normoxic degradation of HIF-a was initially
implied by the upregulation of hypoxically responsive
mRNAs in VHL-deficient cell lines [56, 57]. The
VHL/HIF link was confirmed by the presence of nor-
moxically stable HIF-1a in VHL-deficient cells, and sub-
sequently restored normoxic protein instability upon
VHL transfection [58, 59]. VHL is able to exert this effect
by binding to amino acids 557–571 or 380–417 of HIF-
1a in normoxia (amino acids 517–534 and 383–418 in
HIF-2a) via its b domain, while the a domain binds elon-
gins. Ubiquitin is then transferred to unspecified HIF
residues, marking the protein for proteasomal destruction
[59–63]. In addition, VHL is required for the correct as-
sembly of an extracellular fibronectin matrix [64].
It has emerged that the binding of VHL to HIF in nor-
moxia, and hence the major mechanism by which HIF
protein instability is conferred, is mediated by the irre-
versible hydroxylation of two proline residues (P402 and
P564 in HIF-1a, P405 and P530 in HIF-2a) [65–68].
These residues are hydroxylated only in normoxia, en-
abling the high-affinity binding of VHL to HIF [69] (fig.
3). The identification of egl9, a HIF prolyl-hydroxylase in
Chaenorhabditis elegans, enabled the cloning of three
mammalian homologs designated prolyl hydroxylase do-
main containing (PHDs) 1, 2 and 3, or HIF prolyl-hy-
droxylases (HPHs 3, 2 and 1, respectively) [70–74]. A
widely expressed fourth PHD/HPH has recently been
identified [75].
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senting a better Mdm2 target than p53 [81]. This is
demonstrated by p53-deficient cell lines having increased
HIF protein and decreased HIF ubiquitylation in hypoxia,
and expression of the E6 oncoprotein, which promotes
p53 degradation, increasing HIF-1a stability with the hy-
poxia mimetic cobalt chloride [81]. Recently, the Jun ac-
tivation domain-binding protein (Jab1) was shown to
bind HIF-1a, increasing protein stability and hypoxic re-
porter activity via competition with p53 for HIF-1a bind-
ing [82]. It is tempting to speculate that p53 primarily me-
diates slow hypoxic degradation of HIF-1a, whilst VHL
mediates rapid normoxic degradation.

Transcriptional activation of HIF

Modulation of transactivation domain function is a sec-
ond major mechanism by which HIF activity is con-
trolled, whereby transactivation domains are repressed at
normoxia but active under hypoxia. As discussed previ-
ously, HIF-1a and HIF-2a possess two transactivation
domains, the N-TAD and C-TAD [29, 30, 83]. The TADs
function through recruitment of the general coactivators

CBP/p300, SRC-1 and TIF2 [7, 83–87]. The physical in-
teraction of ARNT with CBP/p300 has also been reported
[88]. Overexpression of the nuclear redox regulator Ref1
potentiates the hypoxic induction of a reporter gene dri-
ven by an N-TAD or C-TAD containing HIF-1a protein,
probably by providing an appropriate reductive environ-
ment that enhances the ability of HIF to recruit coactiva-
tors  [83, 86, 89]. These coactivators physically link HIF
to the transcriptosome and function as histone acetyl-
transferases to perform the chromatin remodelling re-
quired for transcription. The structure of the cysteine/his-
tidine-rich 1 (CH1) domain of p300 or CBP bound to the
C-TAD of HIF-1a has recently been solved [90, 91]. Ala-
nine-scanning mutagenesis of the HIF-1a C-TAD has
also revealed key amino acids required for transactivation
and p300/CBP binding [92].
The ability of CBP/p300 to bind HIF-1a is inhibited by
p35srj (also called cited2). This factor competes with
HIF-1a, and other transcription factors, for binding to the
CH1 domain of CBP/p300 and hence blocks coactivator
recruitment [93]. Interestingly, p35srj is itself activated
by HIF-1a under hypoxia and hence may represent a neg-
ative feedback mechanism [93]. Unexpectedly, however,

Figure 3. The oxygen-dependent HIF-1a/HIF-2a degradation pathway. In normoxia, HIF-prolyl-4-hydroxylases (PHD) hydroxylate spe-
cific proline residues of HIF-1a (P402 and P564) and HIF-2a (P405 and P530) in an oxygen, 2-oxoglutarate and iron-dependent manner.
Hydroxylated HIF-a proteins then bind to the von-Hippel-Lindau (VHL) protein, the HIF-a recognition component of an E3 ubiquitin lig-
ase complex. HIF-a is subsequently ubiquitylated, and degraded by the proteasome. In hypoxia, PHD/HPH activity is blocked due to oxy-
gen deficiency, preventing HIF-a proline hydroxylation and VHL binding, and resulting in stabilised HIF-a protein.
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the p35srj mouse knockout displays similarities to VEGF
and HIF-1a knockouts that would be consistent with an
activating role, with decreased levels of hypoxically re-
sponsive mRNAs and an embryonic lethal phenotype dis-
playing cardiac malformation and neural tube defects
[94]. Thus, whilst p35srj may have an important role
modulating HIF-1a activity, the exact nature of this role
remains unclear.
Via a mechanism analogous to proline hydroxylation,
Lando and co-workers demonstrated that the C-TADs of
both HIF-1a and HIF-2a are hydroxylated in an oxygen-
dependent manner (fig. 4) [95]. Similar to proline hy-
droxylation, modification of the C-TAD occurs at nor-
moxia and involves an O2, iron and 2-oxoglutarate de-
pendent hydroxylase. In contrast to the control of protein
stability, however, this hydroxylation modifies an as-
paragine residue (N803 in HIF-1a and N851 in HIF-2a)
and functions to inhibit the association of HIF-1a and
HIF-2a with CBP/p300 at normoxia [95, 96]. Alanine
mutation of the asparagine therefore permits coactivator
binding at normoxia and full transactivation capacity. In

the context of full-length protein however, mutation of
both hydroxylated proline and asparagine residues is re-
quired for the generation of a protein with full constitu-
tive activity [95]. Thus, hypoxic induction of both HIF-1a
and HIF-2a involves a two-step mechanism of increased
protein stability and transcriptional activity, both medi-
ated by O2-dependent hydroxylation.
A yeast two-hybrid screen of the ID and C-TAD of HIF-
1a identified FIH-1 (factor inhibiting HIF) as a HIF (and
VHL) binding protein that negatively regulates HIF-1a
activity [97]. It was subsequently discovered that FIH-1
was in fact a novel O2, iron and 2-oxoglutarate dependent
asparaginyl hydroxylase responsible for regulating HIF-a
C-TAD activity [98, 99]. Other asparaginyl hydroxylases
with specificity for epidermal growth factor-like domains
have previously been characterised, but do not appear to
hydroxylate HIF-1a [100, 101]. Despite the identifica-
tion of at least four PHD/HPHs that regulate HIF-a pro-
tein stability via proline hydroxylation, at present there is
only one demonstrated asparaginyl hydroxylase. Homol-
ogy searches, however, have identified other related hu-

Figure 4. Oxygen-regulated transcriptional activation of HIF-1a and HIF-2a. In normoxia, an oxygen, 2-oxoglutarate and iron-dependent
HIF-a asparaginyl hydroxylase (FIH-1) binds and hydroxylates specific asparagine residues of HIF-1a (N803) and HIF-2a (N851). This
blocks the recruitment of transcriptional coactivators (p300/CBP) by the carboxy-terminal transactivation domain (C-TAD), resulting in
transcriptionally inactive HIF-a. In hypoxia, FIH-1 activity is blocked due to oxygen deficiency, resulting in no asparagine hydroxylation,
and consequently enhanced coactivator recruitment and target gene induction. 



man expressed sequence tags (ESTs) in addition to ho-
mologs conserved in different species throughout evolu-
tion [97, 98]. In contrast to other asparaginyl hydro-
xylases, which produce an erythro-isomer, FIH-1 hydro-
xylates the asparagine b carbon to produce a threo-iso-
mer [102].
Although proline hydroxylation and VHL association
play a critical role in HIF regulation, and complete stabil-
isation of HIF-a protein results in full activity, the regu-
lation of transcriptional activity by FIH-1 is likely to be
crucial under most physiological conditions. For exam-
ple, in VHL-deficient cells, or when HIF-a is grossly
overexpressed, the high levels of stable HIF-a protein ap-
pear to saturate the FIH-1 enzyme, resulting in the ma-
jority of HIF-a being nonhydroxylated and transcription-
ally active [103–105]. Under more physiological condi-
tions, where HIF-a is only partially stabilised, such as
mild hypoxia or growth factor induction, FIH-1 is not sat-
urated and exerts an important role in regulating the tran-
scriptional activity of the stabilised protein [95].

Alternate mechanisms of HIF regulation

Western and immunohistochemical analysis demon-
strates the marked upregulation of HIF-1a and HIF-2a
protein levels under hypoxia in both cell lines and mam-
malian tissue. Interestingly, however, several reports of
HIF protein expression at normoxia, in accordance with
various nonhypoxic stimuli reported to increase HIF ac-
tivity, imply more diverse roles for HIF than solely regu-
lating a hypoxic response. For example, immunohisto-
chemistry has shown normoxic HIF-1a expression in dis-
tinct cell types within diverse tissues [106]. Normoxic
expression of HIF-1a has also been reported in pul-
monary arterial smooth muscle cells and in the midpiece
of spermatozoal tails [41, 47]. Furthermore, high levels
of HIF-2a have been reported in nonhypoxic bone-mar-
row macrophages, fibroblasts, endothelial cells and epi-
thelial cells [33, 34].
Despite the central importance of hydroxylases in sensing
oxygen tension and regulating HIF activity, an array of
cytokines and growth factors have also been implicated in
HIF control. These include insulin, insulin-like growth
factors 1 and 2, fibroblast growth factor 2, epidermal
growth factor, platelet-derived growth factor, transform-
ing growth factor-b1, thrombin, angiotensin 2, hepato-
cyte growth factor, tumour necrosis factor-a and inter-
leukin 1-b [107–117]. Despite this diversity, many of
these factors act upon HIF via common kinase pathways,
increasing HIF-1a stability and/or translation.
Nitric oxide (NO) and carbon monoxide (CO) are also
implicated in modulating HIF activity. The effects re-
ported for NO and CO, however, vary, most likely due to
cell-specific differences and the fact that a transient in-

crease in HIF-1a activity is often observed prior to a pro-
longed decrease in activity. Thus, NO and CO are re-
ported as both activators of HIF-1a via increased protein
accumulation [118–123] or inhibitors [124–127]. A role
for ROS has also been suggested in HIF control, although
again, there is conjecture regarding whether these ROS
have an activating [115, 117, 128, 129] or inhibitory
[130] effect.
The use of kinase and phosphatase inhibitors has demon-
strated the importance of phosphorylation in HIF regula-
tion [131]. To date, however, only the oxygen-indepen-
dent phosphorylation of HIF-2a Thr844 has been identi-
fied [132]. Members of the mitogen-activated protein
kinase (MAPK) pathway have been implicated in in-
creasing the activity of HIF in response to various stim-
uli. Examples of MAPK, and ultimately HIF, stimuli in-
clude Kaposi’s sarcoma-associated herpes virus G-pro-
tein-coupled receptor [133], the organomercurial
compound mersalyl [134], and various cytokines and
growth factors [108, 111]. In addition, HIF 1a and HIF-
2a transactivation during hypoxia requires p42/p44
MAPKs [135–137] and extracellular regulated kinases
(ERKs) [138, 139]. Furthermore, p42/p44 MAPK and
ERK1 mediate the in vitro phosphorylation of HIF-1a
[138, 140].
Likewise, the phosphatidylinositol 3 kinase (PI3K/AKT)
pathway is involved in HIF activation in response to
growth factors [108, 109, 111, 113, 141–143], NO [120],
vanadate [129] and mechanical stress [144]. The restora-
tion of the Akt phosphatase PTEN (phosphatase and
tensin homolog deleted on chromosome 10) into PTEN-
deficient cells ablates hypoxic and insulin-like growth
factor (IGF)-induced HIF activity, and blocks the in-
creased stability of HIF-a caused by Akt activation [145].
Despite this, the hypoxic stabilisation and activation of
HIF-1a has been reported to occur independently of
PI3K [146]. In addition, the GTPase Rac1 and diacyl-
glycerol kinase (DGK) have been implicated in HIF-1a
hypoxic activation [147, 148], whilst HIF translation is
increased by the membrane-linked nonreceptor tyrosine
kinase Src1 [149] and the receptor tyrosine kinase Her2
signalling through a PI3K-dependent pathway [141].

HIF translocation

HIF-1a undergoes nuclear accumulation during hypoxia,
or normoxia with overexpression or proteasome inhibi-
tion, in an ARNT-independent manner [52, 137, 150].
Conversely, HIF-1a is shuttled back into the cytoplasm
during reoxygenation [84, 151]. Despite being required
for activity, however, nuclear translocation per se is not
sufficient to upregulate reporter gene expression, nor
protect HIF-1a from degradation [84, 152]. As with the
DR and ARNT, a constitutively active nuclear localisa-
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tion sequence (NLS) is situated in the bHLH domain and
able to mediate the nuclear translocation of chimeric pro-
teins [84]. Addition of the PAS domain, however, abro-
gates this effect and indicates that it is a second hypoxi-
cally regulated carboxy-terminal NLS which mediates
the translocation of full length HIF-1a, demonstrated by
mutation of Lys719 [84]. Interaction with the p14ARF tu-
mour suppressor protein induces nucleolar relocalisation
of HIF-1a, thereby inhibiting transactivation [153]. As is
becoming apparent with many aspects of HIF-a regula-
tion, the control of nuclear localization is regulated at
multiple levels that may provide a mechanism to activate
target genes in a tissue-specific manner.

HIF target genes

HIF-1, 2a/ARNT heterodimers bind to HREs with the
core consensus (A/G)CGTG in the regulatory regions of
target genes (listed in table 1) to upregulate expression [1,
202–204]. Many of these genes can be grouped by func-
tion. For example, the capacity of red blood cells to trans-
port oxygen is increased through genes involved in ery-
thropoiesis. These genes includes the erythrocyte growth
and survival factor erythropoietin, and various iron-
metabolising genes that control the major erythropoietic
rate-limiting step of haem production. Many pro-angio-
genic genes, such as vascular endothelial growth factor
(VEGF), are also direct HIF targets, as are genes associ-
ated with glucose uptake and glycolysis. Thus, HIF regu-
lates both short-term responses to hypoxia, such as ery-
thropoiesis and glycolysis, and longer-term responses
such as angiogenesis. In addition to these classes of
genes, however, other targets identified do not appear to
fall into the above categories. Thus, it appears that HIF
may regulate a more diverse range of processes than orig-
inally believed, including adipogenesis [205], apoptosis
[193], B lymphocyte development [206] and carotid body
formation [207]. Despite apparently similar modes of
regulation and DNA binding specificity, no bone fide tar-
get genes have as yet been identified for HIF-2a or HIF-
3a, though several studies implicate HIF-2a in VEGF in-
duction [208–210].
Despite the central importance of HREs to the hypoxic
upregulation of target genes, it is apparent that in many
cases, HREs alone are not sufficient for hypoxic in-
ducibility [183, 211]. Synergistic cooperation between
HIF-1a and a number of other transcription factors has
been observed, including Smad3 [212], HNF4 [213],
ATF1/CREB1 [156, 183, 202, 214] and AP1 [215, 216].
Thus, whilst the HREs confer hypoxic inducibility, addi-
tional elements may be required to assemble a fully func-
tional transcription complex in vivo.

Nonredundancy of HIFs

Despite HIF-1a and HIF-2a sharing close similarity in
terms of amino acid sequence, domain architecture,
DNA-binding capacity and hypoxic activation pathway,
HIF-1a and HIF-2a deficient mice manifest distinct phe-
notypes. Hence, HIF-1a and HIF-2a have nonredundant
functions. HIF-1a –/– embryos die by embryonic day 11
(E11) as a result of defective vascularisation, cardiovas-
cular malformation and the failure of neural tube closure
due to mesenchymal cell death. HIF-1a –/– ES cells also
show reduced proliferation and lower levels of hypoxi-
cally induced HIF target genes [217, 218]. Furthermore,
HIF-1 +/– mice develop normally, but display impaired

Table 1. Characterised HIF-1a target genes.

HIF-1a target genes References

Erythropoiesis iron metabolism
Ceruloplasmin [154]
Erythropoietin [1, 155, 156]
Transferrin [157]
Transferrin receptor [158–160]

Vascularisation
Vascular endothelial growth factor [161–163]
Leptin [164, 165]
Endothelin-1 [166–168]
Flt-1 [169]
Plasminogen activator inhibitor-1 [170, 171]
Inducible nitric oxide synthase-2 [172, 173]
Intestinal trefoil factor [174]
Heme oxygenase-1 [175]
Adrenomedullin [176, 177]
a1B-adrenergic receptor [178]

Glucose uptake/glycolysis
Glucose transporter-1,3 [179, 180]
Aldolase-A/C [181, 182]
Enolase-1 [156, 181, 182]
Lactate dehydrogenase-A [181–183] 
Pyruvate kinase M [181]
Glyceraldehyde phosphate dehydrogenase [184]
Phosphofructokinase L [181]
Phosphoglycerate kinase 1 [181]
6-phosphofructo-2-kinase/fructose-2,6- [185]

bisphosphate-3
Hexokinase1,2 [186, 187]
Adenylate kinase-3 [188]
Carbonic anhydrase-9 [189]

Various
VL30 [190]
Insulin-like growth factor 2 [110]
Insulin-like growth factor binding protein-1,2,3 [110, 191]
P35srj [93]
P21 [93, 156]
ETS-1 [192]
NIP-3 [193–195]
DEC1/2 [196]
Collagen prolyl hydroxylase [197]
Tyrosine hydroxylase [107, 198]
TGF-b3 [199]
Cyclooxygenase-2 [200]
Presenilin-1,2 [200, 201]



physiological responses to prolonged hypoxia, including
reduced polycythemia, right ventricular hypertrophy,
aberrant vascular remodelling and pulmonary hyperten-
sion [207, 219]. Selective deletion of HIF-1a from the
cartilaginous growth plate results in hypoxically induced
apoptosis, lack of chondrocyte growth arrest and skeletal
deformation [220].
A vascular phenotype has also been reported for HIF-2a
deficient mice. In contrast to HIF-1a –/– embryos in
which vascularization is impaired, however, embryonic
lethality in HIF-2a –/– mice occurs by E12.5 due to in-
adequate blood vessel fusion and remodelling [221]. In a
second HIF-2a knockout, however, embryonic lethality
occurred at E12.5-E16.5 due to insufficient cate-
cholamine production by the organ of Zuckerkandl, the
embryonic precursor to the carotid body, resulting in
deregulated heart beat and death by bradycardia [222].
Embryonic lethality was rescued by addition of the nora-
drenalin precursor DOPS to the mother’s diet; however,
mice died within 24 h of birth due to discontinued supply
[222]. Lastly, a third HIF-2a knockout phenotype has
been described in which mice not dying by E13.5 due to
cardiac failure, possibly the same phenotype as noted by
Tian and co-workers, die shortly after birth from respira-
tory distress syndrome (RDS). This lethality is a result of
the failure of alveolar type II cells in the lung to produce
sufficient levels of surfactant [210]. Whilst the reason for
these divergent HIF-2a –/– phenotypes remain unclear,
although they are probably related to the use of different
genetic strains of mice and targeting strategies, HIF-2a
nonetheless appears to play important roles in develop-
ment that are different from HIF-1a.
In addition to knockout phenotypes, other differences be-
tween the function of HIF-1a and HIF-2a have been
noted. One such difference is the resistance of HIF-2a
–/– ES cells to hypoglycaemic, but not hypoxically in-
duced, apoptosis. HIF-1a –/– ES cells, however, are re-
sistant to apoptosis initiated by both hypoxia and hypo-
glycaemia [223, 224]. This may indicate a more pro-
nounced role for HIF-2a in response to environmental
stresses other than strictly oxygen. PI3K inhibitors have
also been reported to inhibit HIF-1a, though not HIF-2a,
protein induction in hypoxia [225]. HIF-2a was also re-
ported to activate reporter expression more strongly from
a VEGF promoter than HIF-1a [33, 110]. Lastly, the re-
nal carcinoma cell line 786-0, which expresses a non-
functional truncated form of VHL and detectable levels
of HIF-2a, though not HIF-1a, has also been used to
demonstrate differences between the HIF proteins, in this
case in regard to tumorigenic activity [103, 104]. Specif-
ically, stabilised HIF-1a expression, through P564 muta-
tion, does not increase tumour growth in subcutaneously
injected immunocompromised mice, in contrast to con-
stitutive HIF-2a expression, which promotes tumour de-
velopment [103].

Mechanisms that lead to phenotypic differences in HIF-a
activity, however, remain elusive. One mechanism of dif-
ferential regulation between the HIF-a proteins is the
presence of a Ref1-regulated cysteine residue in the basic
region of HIF-2a that must be in a reduced state for DNA
binding. This cysteine is replaced by serine in HIF-1a,
where DNA binding is constitutive [89].

HIF and disease

As previously stated, hypoxia and the HIFs themselves
have been implicated in the pathophysiology of many ma-
jor human diseases and as such, its manipulation may
prove crucial in the therapeutic management of these
states. In order for solid tumour growth to occur, tumours
must increase oxygen delivery to cells via angiogenesis,
and increase the rate of glycolysis, known as the Warburg
effect [226]. This in turn produces glycolytic end prod-
ucts such as lactate and pyruvate, which have been re-
ported to cause normoxic HIF-a accumulation and hence
a potential positive feedback loop [227]. Given the im-
portance of HIF in the activation of genes essential to
these processes, it is not surprising that both HIF-1a and
HIF-2a have been strongly implicated in tumour progres-
sion and grade, conferring a selective advantage to tu-
mour cells.
Hypoxic conditions within tumours may result in in-
creased HIF stability and activity, or, HIF overexpression
may result from oncogenic activation by Src or Ras [149,
228, 229]. The overexpression of one or both HIF-a pro-
teins has been found in invasive bladder cancer [230],
brain tumours [231, 232], breast cancer [233, 234], cervi-
cal cancer [235], non-small-cell lung cancer [236], non-
Hodgkin’s lymphoma [237], oropharyngeal cancer [238,
239], pancreatic cancer [240] and numerous other tu-
mours including colon, skin, gastric, prostate and renal
clear cell carcinomas [34, 241]. In addition, comparison
of HIF-1a (or ARNT) positive and deficient cells when
subcutaneously injected or xenografted into immuno-
compromised mice identifies HIF-1a as a positive factor
for tumorigenesis [242–244]. Furthermore, a correlation
between HIF overexpression and poor prognosis or treat-
ment resistance has been noted in many of these studies,
often in concert with additional genetic alterations such
as the absence of functional bcl2 [238] or p53 [245].
The VHL protein was previously discussed as a HIF-a
binding component of an E3 ubiquitin ligase complex
that mediates HIF-a normoxic degradation. VHL disease
results from mutation of the VHL tumour suppressor pro-
tein and is a hereditary cancer syndrome characterised by
the development of tumours in multiple organ systems.
These most commonly include the retina, cerebellum,
spinal cord, kidney, pancreas, epididymis and adrenal
gland [246, 247]. In most cases, VHL disease is mani-
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fested as a consequence of deregulated HIF expression
[104, 248]. An exception is type 2C VHL mutations,
which retain the ability to downregulate HIF but demon-
strate an increased risk of pheochromocytoma, possibly
due to defective fibronectin matrix assembly or an inabil-
ity to regulate unidentified factors [249]. One candidate
is Jade1, a protein of unknown function expressed highly
in the kidney which interacts with, and is stabilised by,
VHL [250].
Preeclampsia, a pregnancy disorder in which trophoblasts
fail to invade the myometrium and cause vascular remod-
elling during placentation, may also be associated with
HIF overexpression. During the first 10 weeks of devel-
opment, hypoxic conditions activate HIF, which acts up-
stream of transforming growth factor (TGF)-b3, prevent-
ing trophoblast differentiation. An increase in placental
oxygen levels is then believed to decrease HIF-a expres-
sion and enable trophoblast invasion. A failure of this nor-
moxic HIF-1a/TGF-b3 downregulation to occur causes
the maintenance of trophoblasts in an immature, nonin-
vasive state, resulting in reduced uteroplacental perfusion
[251]. Similarly, analysis of ARNT –/– placentas reveals
aberrant trophoblast differentiation. [252].
HIF activity has also been demonstrated in the physio-
logical response to ischaemia, with sheep and rat models
of myocardial and cerebral ischaemia increasing HIF-1a
expression and inducing target genes such as VEGF and
glycolytic enzymes [253–255].
Such studies indicate that therapeutic strategies to treat
ischaemic diseases such as stroke and heart disease may
involve HIF activation. As proof of principle, one poten-
tial mechanism to upregulate HIF is the macrophage-
derived peptide PR39, which decreases HIF ubiquitin-
proteasome dependent degradation, thereby increasing
angiogenesis in vivo [256]. A recent study has also de-
monstrated that transgenic mice overexpressing HIF-1a
in skin basal keratinocytes show increased expression of
VEGF and vascularization, without the vascular leakage
and inflammation noted with the overexpression of
VEGF alone [257]. Interestingly, deletion of the HRE
within the VEGF promoter reduced VEGF expression in
the spinal cord, causing adult onset motor neuron degen-
eration in a manner similar to the neurodegenerative dis-
ease amyotrophic lateral sclerosis [258]. Identification of
the importance of hydroxylation to HIF regulation also
suggests targeting of proline and asparaginyl hydroxy-
lases as potential strategies for increasing HIF activity.
In contrast to ischaemic disease, where the activation of
HIF may be advantageous, therapeutic strategies to treat
cancer and preeclampsia would aim to develop agents that
inhibit HIF activation. One example is a HIF-1a C-TAD
polypeptide that competes for p300 binding and decreases
the expression of VEGF and tumour growth in mice [259].
Several small molecule inhibitors of the HIF transcrip-
tional activation pathway have also been identified [260].

Conclusion

Rapid advances in understanding the molecular nature of
hypoxic responses have led to the elucidation of oxygen
sensors, hydroxylation mechanisms that relay this infor-
mation to key proteins (HIF-1a an HIF-2a) and the iden-
tity of hypoxically regulated target genes that counteract
oxygen depravation. Despite this, many questions remain
unanswered, including the functions of HIF-3a, the
mechanisms of nonredundancy between HIF-1a and
HIF-2a, and the identity of additional targets of HIF, the
PHD/HPHs, FIH-1 and VHL. These processes have direct
relevance to both development and human disease and
will, in all probability, aid the formulation of effective
therapeutic agents.
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