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Abstract. At the synapse, neurotransmitters are released
via Ca2+-triggered exocytotic fusion of synaptic vesicles
with the presynaptic plasma membrane. Synaptic vesicle
exocytosis seems to share many basic principles and ho-
mologous proteins with other membrane fusion events.
Conserved components of the general fusion machinery
that participate in synaptic vesicle exocytosis include 
soluble N-ethylmaleimide-sensitive factor attachment
protein receptors (SNAREs), ATPase N-ethylmaleimide-
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sensitive factor, Munc18/nSec1, Rab3 GTPase, and 
the exocyst proteins. In addition, synaptic vesicle exo-
cytosis uses a set of unique components, such as syn-
aptotagmin, complexin, Munc13, and RIM, to meet 
the special needs of fast Ca2+-triggered neurotransmitter
release. This review summarizes present knowledge
about the molecular mechanisms by which these com-
ponents mediate and/or regulate synaptic vesicle ex-
ocytosis.
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Introduction

Regulated release of neurotransmitters mediates neuronal
communication and underlies virtually all functions of
the nervous system, from sensory perception to learning
and memory. At the nerve terminal, synaptic vesicles cy-
cle through a series of trafficking steps (fig. 1). Neuro-
transmitter-filled synaptic vesicles are docked at a spe-
cialized region of the presynaptic plasma membrane
known as the active zone [1]. The docked vesicles then go
through a maturation process called priming to become
fusion competent [2]. In response to action potential-in-
duced Ca2+ influx, primed vesicles undergo rapid exocy-
totic fusion to release neurotransmitters. Following exo-
cytosis, synaptic vesicle membranes and protein con-
stituents are retrieved from the plasma membrane by
endocytosis, and locally recycled for future rounds of exo-
cytosis [3, 4]. Over the past decade, remarkable progress
has been made in our understanding of the molecular
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mechanisms governing synaptic vesicle trafficking and
neurotransmitter release.
In this review, we provide an overview of current infor-
mation concerning the molecular mechanisms of synap-
tic vesicle docking, priming, and fusion. We first summa-
rize the role of conserved protein components of the gen-
eral fusion machinery in mediating synaptic vesicle
exocytosis, and then discuss several unique regulatory
components that contribute additional layers of control
required by fast Ca2+-triggered neurotransmitter release.

Conserved components of the general fusion
machinery in synaptic vesicle exocytosis

Fusion of a transport vesicle with its target membrane is
a fundamental process essential to cellular organization
and function of all eukaryotic cells. Recent progress has
revealed that several protein families involved in fusion
are conserved from yeast to human, and are shared not
only by constitutive and regulated exocytosis but also by
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various intracellular membrane fusion events [5–7]. The
conserved protein families include soluble N-ethyl-
maleimide-sensitive factor attachment protein receptors
(SNAREs), ATPase N-ethylmaleimide-sensitive factor
(NSF), Munc18/Sec1, Rab GTPases, and protein compo-
nents of the exocyst complex. This conservation suggests
that virtually all membrane fusion processes, including
synaptic vesicle exocytosis, use the same common mole-
cular machinery for fusion. 

SNAREs, the core of the membrane fusion 
machinery

The central players in all membrane fusion events seem to
be SNAREs, a superfamily of membrane-associated pro-
teins characterized by a ~60 amino-acid a-helical coiled-
coil domain called the SNARE motif [5, 6, 8, 9]. These
proteins were initially categorized as v-SNAREs and t-
SNAREs based on their localization on vesicle or target
membrane [5], and later reclassified as R-SNAREs and
Q-SNAREs according to the conserved arginine or gluta-
mine residue in the center of their SNARE motifs [10].
The human genome contains 36 SNAREs, of which 21
have yeast orthologues [6, 11]. These SNAREs are local-
ized to distinct membrane compartments of the secretory
and endocytic trafficking pathways, and contribute to the
specificity of intracellular membrane fusion processes [6,
9, 12, 13].
Synaptic vesicle exocytosis requires three neuronal
SNAREs: vesicle-associated membrane protein (VAMP2),
also called synaptobrevin), syntaxin 1, and the 25-kDa
synaptosomal-associated protein (SNAP-25). VAMP2 is
an R-SNARE originally identified as an integral mem-

brane protein of synaptic vesicles [14, 15]. Syntaxin 1 
is a neuronal plasma membrane Q-SNARE first de-
scribed as an antigen for a monoclonal antibody called
HPC-1 [16, 17], and subsequently identified as a binding
partner for synaptotagmin and the N-type calcium chan-
nel [18, 19]. SNAP-25 is another Q-SNARE initially
identified as a brain-specific protein localized to neu-
ronal plasma membrane via palmitoyl groups covalently
attached to the cysteine residues [20]. VAMP2 and syn-
taxin 1 each contain a single SNARE motif adjacent to
the carboxyl-terminal transmembrane domain, whereas
SNAP-25 contains two SNARE motifs connected by a
linker region bearing the palmitoylated cysteine residues
[8]. The four SNARE motifs from these three proteins 
assemble into a parallel four-stranded helical bundle 
to form an extremely stable ternary complex called 
the SNARE complex [21, 22]. Interference with the in-
tegrity of such a superhelical structure by various muta-
tions in neuronal SNAREs inhibits synaptic vesicle exo-
cytosis [23–27]. Moreover, specific cleavage of neuronal
SNAREs by clostridial neurotoxins prevents the assem-
bly of a stable SNARE complex and blocks neurotrans-
mitter release without affecting the docking of synaptic
vesicles [28–30]. Targeted gene disruption of neuronal
SNAREs in Drosophila, Caenorhabditis elegans, and
mice abolishes action potential-evoked neurotransmitter
release, further demonstrating an essential role for these
proteins in Ca2+-stimulated synaptic vesicle exocytosis
[31–36].
Despite overwhelming evidence indicating the critical
importance of neuronal SNAREs and the SNARE com-
plex in synaptic vesicle exocytosis, their precise role in
the fusion process remains controversial [9, 37, 38]. For-
mation of the SNARE complex in a trans configuration

Figure 1. Protein components of the synaptic exocytotic machinery. The synaptic vesicle cycle at the nerve terminal involves vesicle dock-
ing, priming, fusion, endocytosis, and recycling (see text for details). Indicated are proteins that have been implicated in the docking, prim-
ing, and fusion steps. Conserved protein components of the general fusion machinery are shown in green, whereas unique components of
synaptic vesicle exocytosis are shown in red.



assembly is not essential for the fusion reaction, but
seems to promote the Ca2+ sensitivity of fusion [49–51].
A Ca2+-sensing role of the SNARE complex is also sup-
ported by recent experiments in chromaffin cells [52]. In
yeast vacuole fusion, trans-SNARE complex formation
appears to occur at a step upstream of the fusion reaction
[53]. The vacuole fusion involves several proteins down-
stream of SNARE complex formation, namely, calmod-
ulin [54], protein phosphatase 1 [55], and the V0 sector of
the vacuolar H+-ATPase [56]. Two V0 sectors from the
opposing membranes have been proposed to form a pro-
teinaceous fusion pore to mediate membrane fusion 
(fig. 2B). This pore model of fusion [37, 56] seems 
consistent with the earlier reports suggesting that the V0
sector (also called the mediatophore) from Torpedo
electric organ may mediate the release of the neurotrans-
mitter acetylcholine [57, 58]. SNAREs have been found
to associate with the V0 sector in the yeast vacuole [56]
and in mammalian synaptosomes [59], raising the possi-
bility that SNAREs might regulate the formation of a
trans-V0 complex or opening of the V0 pore. However,
unlike SNAREs whose mutations result in lethality be-
cause of impaired intracellular fusion processes, V0 
mutants are able to survive on acidic media [56], arguing
against an essential role for V0 in membrane fusion. 
Furthermore, the V0 pore model is inconsistent with the
recent observation that the V0 subunits are not enriched
at the fusion sites, i.e., the vertices of docked vacuoles
[60].
Neuronal SNAREs interact with a number of other pro-
teins [61], including Munc18/nSec1 [62], Munc13 [63],
synaptotagmin [18, 64], complexin [65], tomosyn [66],
Staring [67], SNIP [68], and Spring [69]. Munc18,
Munc13, synaptotagmin, and complexin are perhaps the
best-characterized SNARE-interacting proteins, and will
be discussed later in this review. The roles of other
SNARE-interacting proteins remain largely unknown, al-
though some seem to regulate the assembly of SNARE
complexes. A novel SNARE-interacting protein, Staring,
has been shown to regulate the degradation of syntaxin 1
by acting as an E3 ubiquitin-protein ligase [67]. It will be
important to find out whether SNAREs or other factors
downstream of SNARE complex formation execute the
fusion reaction, and how these essential components of
the fusion machinery act in conjunction with other pro-
teins to achieve the temporal and spatial specificity of
neurotransmitter release. 

NSF, a chaperone-like ATPase for disassembly 
of cis-SNARE complexes

NSF is a hexameric protein that belongs to the AAA 
(ATPases associated with various cellular activities) su-
perfamily of chaperone-like ATPases [70–73]. NSF and
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has been proposed to occur in a zipper-like fashion to
bring synaptic vesicle and plasma membrane into juxta-
position, which may provide a driving force for mem-
brane fusion (fig. 2A). Consistent with this ‘zipper’
model of fusion [39, 40], the assembly of the SNARE
complex has been shown to serve as the minimal ma-
chinery for membrane fusion in reconstituted liposomes
[41, 42]. In addition, a micromolar concentration of Ca2+

can trigger SNARE complex formation and concomitant
fusion between purified synaptic vesicles and reconsti-
tuted Q-SNARE-containing liposomes [43]. Complete
assembly of the SNARE complex also seems to correlate
temporally with Ca2+-stimulated fusion in permeabilized
PC12 cells [44, 45], although the rate of exocytosis mea-
sured in this system is too slow to resolve the priming
from the fusion reaction. Real-time measurement of exo-
cytosis in adrenal chromaffin cells suggests that SNARE
complexes exist in a dynamic equilibrium between a
loose and a tight state, and the assembly of fully zippered
SNARE complexes from these states is required for fast
Ca2+-triggered exocytosis [46, 47].
While the above results support a fusogenic role for
SNARE complex assembly, other studies suggest that the
SNARE complex might not participate in fusion per se,
but acts, rather, at a step preceding the actual membrane
fusion reaction. Recent evidence from experiments in
synaptosomes and chromaffin cells indicates that the
SNARE complex might be fully assembled at the priming
step to regulate the formation of readily releasable vesi-
cles [25, 48]. In addition, studies of cortical vesicle exo-
cytosis in sea urchin eggs reveal that the SNARE complex

Figure 2. Two current models of membrane fusion. (A) SNARE-
mediated fusion. Formation of trans-SNARE complexes between
R-SNARE (VAMP) and Q-SNAREs (syntaxin 1 and SNAP-25)
may occur by zippering towards the membrane-anchoring regions
to pull the opposing membranes into close contact, which may drive
membrane fusion [39, 40]. (B) V0 pore-mediated fusion. Trans-
SNARE complex formation brings the two membranes together, al-
lowing the assembly of V0 sectors of the vacuolar H+-ATPase from
the opposing membranes into trans-V0 complexes. The trans-V0
complexes in vacuole fusion also contain calmodulin and the Q-
SNARE Vam3p (not shown) but not the R-SNARE Nyv1p. The two
opposed V0 sectors may form a gap junction-like channel with a
central pore, and radial opening of this proteinaceous pore could
initiate fusion [56].
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its yeast homologue Sec18p were independently identi-
fied as cytosolic proteins required for constitutive vesic-
ular trafficking by mammalian cell-free transport assays
[74, 75] and by yeast genetic studies [76]. Subsequently,
NSF has been shown to function also in synaptic vesicle
exocytosis [21, 23, 77–79]. NSF binds to the SNARE
complex via SNAPs to form a larger 20S complex [80].
Hydrolysis of ATP by NSF then dissociates the 20S com-
plex into individual components [21, 77]. Although NSF-
mediated disassembly of the SNARE complex was ini-
tially thought to cause membrane fusion [5, 21, 77], this
turns out not to be the case [6, 73]. NSF appears to disso-
ciate only the cis-SNARE complex assembled on the
same membrane, but not the trans-SNARE complex
formed between opposing membranes in reconstitution
experiments [81]. However, the yeast NSF homologue
Sec18p, when present in excess, has been reported to dis-
semble the trans-SNARE complex formed between vac-
uolar membranes [53].
Based on biochemical studies, a likely function for NSF
is to act at a post-fusion, pre-endocytosis step to disas-
semble cis-SNARE complexes accumulated in the
plasma membrane as a result of vesicle fusion (fig. 3).
Furthermore, NSF may also participate in the disassem-
bly of cis-SNARE complexes recycled onto clathrin-
coated vesicles [82] and synaptic vesicles [83]. Consis-
tent with this model, temperature-sensitive mutations in
Drosophila NSF result in excess accumulation of cis-
SNARE complexes, leading to activity-dependent inhibi-
tion of synaptic vesicle exocytosis [23, 79, 84, 85]. Inter-
estingly, the number of docked vesicles is significantly

increased in Drosophila NSF mutants [79, 84], suggest-
ing that in addition to a post-fusion role, NSF may medi-
ate a post-docking, pre-fusion priming step to regulate the
supply of readily releasable vesicles. A post-docking,
priming role for NSF and its cofactor a-SNAP is also
supported by evidence from studies in PC12 and chro-
maffin cells [86–89] and in squid giant synapses [78,
90]. The chaperone-like activity of NSF may be required
for conferring and/or maintaining the fusion competence
of SNAREs to allow the formation of trans-SNARE com-
plexes.

Munc18/nSec1, a syntaxin 1-binding protein
essential for fusion

In addition to SNAREs, another obligatory component of
the general fusion machinery is Sec1/UNC-18, a con-
served family of hydrophilic proteins with no recogniz-
able domains or motifs [91, 92]. Sec1 and UNC-18 pro-
tein were originally identified by genetic screens in yeast
[76, 93] and C. elegans [94, 95], respectively. In yeast,
there are four Sec1-related proteins, each of which is re-
quired for specific intracellular membrane fusion steps
[6, 11, 96]. The human genome contains seven Sec1/
UNC-18 homologues [11], three of which, Munc18 (also
named Munc18a, Munc18-1, nSec1, rbSec1), Munc18b
(also called Munc18-2), and Munc18c (also called
Munc18-3), are involved in exocytosis [62, 97–100].
Munc18 is highly enriched in neurons and has been
shown to be absolutely required for synaptic vesicle exo-

Figure 3. Current view of the role of NSF and its cofactor a-SNAP in synaptic vesicle trafficking. NSF/a-SNAP act after fusion to dis-
semble cis-SNARE complexes on the plasma membrane prior to endocytosis to recycle SNAREs for another round of fusion [85]. Some
cis-SNARE complexes are recycled onto clathrin-coated vesicles [82] and synaptic vesicles [83], and these vesicular cis-SNARE com-
plexes are subjected to NSF-mediated disassembly prior to docking. NSF/a-SNAP could also act after docking to dissociate any remain-
ing cis-SNARE complexes in order to re-activate them for the formation of fusion-competent trans-SNARE complexes that are resistant to
NSF-mediated disassembly [81].



not seem to fit with the essential role of Munc18 in exo-
cytosis as revealed by loss-of-function studies [101–
103]. To accommodate a positive role of Munc18, later
models proposed that Munc18 may have a chaperone-like
function to regulate the transition of syntaxin 1 from the
closed to open conformation, thus facilitating SNARE
complex formation in conjunction with other regulatory
proteins such as a Rab and/or Rab effector [109], to-
mosyn [66], or Munc13 [112] (see below).
Surprisingly, although Munc18 and its homologues play
a conserved, essential role in various fusion reactions
throughout evolution, these proteins do not share a com-
mon mode of interaction with corresponding syntaxins
(fig. 4). In yeast, Sec1p does not bind directly to Sso1p, a
plasma membrane syntaxin that adopts a closed confor-
mation [113]. Instead, Sec1p binds to assembled SNARE
complexes (fig. 4B) and seems to act downstream of
trans-SNARE complex formation in promoting exocyto-
sis [114, 115]. By comparison, the Sec1 homologue
Sly1p binds to the yeast endoplasmic reticulum and Golgi
syntaxins (Ufe1p and Sed5p) via a short, conserved N-
terminal peptide motif (fig. 4C), which is fully compati-
ble with SNARE complex formation [116]. Indeed,
Sly1p-associated Sed5p allows efficient formation of
SNARE complexes and contributes to the specificity of
SNARE complex assembly [117]. A similar, N-terminal
peptide motif-dependent binding was also observed be-
tween the Sec1 homologue Vps45p and the yeast trans-
Golgi network/endosomal syntaxin Tlg2p [118]. In con-
trast, the Sec1 homologue Vps45p and Vps33p do not in-
teract directly with the yeast prevacuolar and vacuolar
syntaxins (Pep12p and Vam3p) but, rather, appear to
function as part of novel multi-protein complexes to reg-
ulate SNARE complex formation in these compartments
[60, 119–121]. The diverse interaction patterns of the
Munc18/Sec1-related proteins could mean that these pro-
teins operate in membrane fusion via a yet undiscovered
common mechanism that is not related to their ability 
to bind syntaxins. Alternatively, they might function
through distinct mechanisms to impose temporal or spa-
tial specificity on different types of membrane fusion
events. For example, the unique mode of interaction be-
tween Munc18 and syntaxin 1 may provide a means to en-
sure that synaptic vesicles do not fuse immediately after
docking and yet can be induced to fuse rapidly upon acti-
vation. Munc18 also interacts with two novel proteins
called mint [122] and Doc2 [123], but the functional sig-
nificance of these interactions is currently unknown.

Rab3, a small GTPase that regulates
vesicular trafficking

Rab proteins are members of the Ras superfamily of
monomeric small GTPases that function in vesicular traf-
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cytosis by gene ablation studies in mice [101]. The essen-
tial role of UNC-18 in neurotransmitter release is also
supported by genetic evidence from C. elegans and
Drosophila [100, 102–104].
While Munc18 is clearly indispensable for synaptic vesi-
cle exocytosis, the exact function of Munc18 in the fusion
process remains unclear. Elimination of Munc18 expres-
sion in mice completely abolishes neurotransmitter re-
lease without affecting synaptic vesicle docking, suggest-
ing that Munc18 functions at a post-docking step [101]. A
post-docking role of Munc18 also receives support from
microinjection experiments in squid giant synapse [105]
and mutation studies in Drosophila [104]. Consistent
with a post-docking role, a recent study in adrenal chro-
maffin cells suggests that Munc18 acts at a late stage in
the fusion process, participating in the regulation of the
fusion pore dynamics [106]. On the other hand, analysis
of Munc18 null mutant chromaffin cells argues against
such a late role of Munc18 in fusion, and suggests that
Munc18 may participate in the docking of large dense-
core vesicles to the plasma membrane [107].
The molecular mechanism by which Munc18 and its ho-
mologues mediate membrane fusion is not understood at
present. In mammalian brain, Munc18 was independently
discovered as a protein that binds strongly to neuronal Q-
SNARE syntaxin 1 [62, 97, 98]. Biochemical and struc-
tural studies reveal that Munc18 interacts selectively with
syntaxin 1 in the closed conformation (fig. 4A), a default
configuration of syntaxin 1 that prevents its interaction
with SNAP-25 and VAMP2 to form the SNARE complex
[108–110]. Munc18 was initially thought to act as a neg-
ative regulator of membrane fusion by inhibiting SNARE
complex assembly [103, 111]. However, this model does

Figure 4. Synaptic vesicle exocytosis involves a unique mode of
interaction between Munc18/nSec1 and syntaxin 1. (A) Munc18
binds specifically to the closed conformation of syntaxin 1, which
prevents the formation of SNARE complexes [108–110]. (B) Yeast
Sec1p binds to assembled SNARE complexes but not to free 
Sso1p, a plasma membrane syntaxin [114]. (C) The yeast Sec1 ho-
mologue Sly1p binds to an N-terminal peptide motif of Golgi syn-
taxin Sed5p [116], which allows efficient formation of SNARE
complexes [117].



ficking steps throughout the secretory and endocytic
pathways [124–126]. A role for Rab proteins (Sec4p and
Ypt1p) in vesicular trafficking was first discovered in
yeast by genetic screens [127, 128]. Subsequently, 11 Rab
proteins have been identified in yeast and shown to asso-
ciate with specific membrane compartments and regulate
discrete intracellular trafficking events [129]. In humans,
there are at least 60 Rab proteins, of which Rab3 has been
implicated in regulated exocytosis of neurotransmitters
and hormones [11, 125, 130]. Rab 3 has four isoforms,
Rab3A, B, C, and D, which are differentially expressed in
neuronal and endocrine tissues [6, 131, 132]. Rab3A is
the most abundantly expressed isoform in brain where it
is present in virtually all synapses, while Rab3B and
Rab3C are only present in a subset of synapses [6, 133].
Like other Rab proteins, Rab3 interacts with membranes
via C-terminal geranylgeranyl moieties, and cycles be-
tween a synaptic vesicle-associated, GTP-bound form
and a cytosolic GDP-bound form [134, 135].
Recent progress in our understanding of Rab function re-
veals that a single Rab protein (e.g., Rab5) is capable of
regulating multiple stages of vesicular trafficking, in-
cluding vesicle budding, motility, docking, and fusion
[125, 135]. Consistent with this common theme of di-
verse action, Rab3A has been implicated in the regulation
of several stages of synaptic vesicle trafficking. First,
Rab3A appears to be involved in regulating synaptic vesi-
cle targeting to and docking at the active zone. Loss-of-
function mutations in the only C. elegans rab3 gene lead
to a significant depletion of synaptic vesicles at pre-
synaptic terminals and a concomitant elevation of vesi-
cles along the axons [136]. In mice, although Rab3A
deletion does not appear to affect synaptic vesicle distri-
bution at the resting state, it abolishes the activity-depen-
dent recruitment of synaptic vesicles to the active zone
and impairs the replenishment of docked vesicles after
exhaustive stimulation [131, 137]. Second, Rab3A seems
to also act at a post-docking step to regulate synaptic vesi-
cle fusion. In Rab3A null mutant mice, electrophysiolog-
ical studies reveal that while the size of the readily re-
leasable pool of vesicles is unaltered, Ca2+-triggered
synaptic vesicle exocytosis and paired pulse facilitation is
increased [138], and mossy fiber long-term potentiation
(LTP) is abolished [139]. Support for a role of Rab3A at
a late step during Ca2+-triggered exocytosis is also pro-
vided by studies in Aplysia neurons injected with a GT-
Pase-deficient form of Rab3 [140]. Third, Rab3A might
coordinately regulate the coupling between synaptic vesi-
cle exocytosis and endocytosis through its putative effec-
tor Rabphilin [141, 142].
The diverse actions of Rab proteins are mediated via their
multiple effectors, which usually interact with the GTP-
bound form of Rabs [125, 135]. Rab3A has at least five
potential effectors, called Rabphilin, RIM, Noc2, PRA1,
and calmodulin. Rabphilin is a synaptic vesicle-associ-

ated, Rab3A-binding protein that has been suggested to
function in both synaptic vesicle exocytosis and endocy-
tosis [132, 134, 141–143]. However, targeted gene dis-
ruption of Rabphilin in mice and C. elegans did not lead
to any of the phenotypes observed in Rab3A mutants, ar-
guing against a role for Rabphilin as a downstream effec-
tor of Rab3A in synaptic vesicle trafficking [144, 145].
RIM is a Rab3-interacting molecule that specifically lo-
calized to the active zone [146]; its role in synaptic vesi-
cle exocytosis will be discussed later in this review. Noc2
shares a homologous Rab3-binding domain with
Rabphilin and RIM, and is expressed at very low levels in
brain but highly enriched in endocrine tissues [147].
Thus, Noc2 probably does not play a significant role in
synaptic vesicle exocytosis, but may mediate the effect of
Rab3A in regulated exocytosis in endocrine cells [148].
PRA1 (prenylated Rab acceptor 1) is an evolutionarily
conserved, ubiquitously expressed protein that binds to
prenylated Rab3A and to several other prenylated small
GTPases [149, 150]. PRA1 is localized to the Golgi com-
plex and post-Golgi vesicles, and may participate in vesi-
cle formation at the Golgi complex and help to recruit R-
SNARE VAMP2 into the budding vesicles [149, 151]. In
neurons, PRA1 has been shown to associate with synap-
tic vesicles and interact with Piccolo, an active-zone cy-
tomatrix protein [1, 152], suggesting that PRA1 may me-
diate the effect of Rab3A in synaptic vesicle targeting to
or docking at the active zone. Calmodulin is able to bind
Rab3A and causes it to dissociate from the synaptic vesi-
cle membrane in a Ca2+-dependent manner [153]. Muta-
tion studies in transfected PC12 cells suggest that the in-
teraction of Rab3A with Ca2+/calmodulin, but not with
Rabphilin and RIM, may be involved in mediating the ef-
fect of Rab3A on Ca2+-triggered exocytosis [154]. Fur-
ther research is needed to determine whether these
Rab3A-interacting proteins are physiologically important
Rab3A effectors and how they are coordinated to mediate
the diverse actions of Rab3A in synaptic vesicle traffick-
ing and neurotransmitter release.

Exocyst, a multi-protein tethering complex
in vesicle docking

Specific docking of a transport vesicle to its target mem-
brane plays a crucial role in the membrane fusion process.
The initial docking step (also known as tethering) in vari-
ous fusion events is mediated by unique tethering factors
that are often large multi-protein complexes [155, 156]. At
the plasma membrane, vesicle docking involves a large
tethering complex called the exocyst, which comprises
eight proteins: Sec3p, Sec5p, Sec6p, Sec8p, Sec10p,
Sec15p, Exo70p, and Exo84p (fig. 5). The exocyst was
originally identified in yeast, where it is concentrated at
the exocytotic fusion sites and plays an essential role in se-
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cretion [76, 157–160]. Yeast genetic studies suggest that
the exocytst acts upstream of the SNARE complex assem-
bly [115], but downstream of Sec4p, a Rab GTPase that is
associated with secretory vesicles and required for exocy-
tosis [127, 160, 161]. The yeast exocyst component
Sec15p binds directly to the GTP-bound form of Sec4p,
and this binding, together with the protein-protein interac-
tions within the exocyst complex, has been proposed to
mediate the initial docking of secretory vesicles to the ex-
ocytotic fusion sites [160]. In addition to Sec4p, members
of the Rho family of small GTPases, namely, Rho1, Rho3,
and Cdc42, have been shown to interact with the yeast ex-
ocyst components Sec3p and Exo70p [162–164]. These
interactions may be involved in the coordination of exo-
cytosis with polarized yeast cell growth.
The mammalian exocyst complex (also referred to as the
sec6/8 complex) is ubiquitously present in all cells, and
regulates vesicle targeting to the plasma membrane for
exocytosis and polarized membrane insertion [165–170].
In developing neurons, the exocyst complex was found at
high levels in regions of active neurite outgrowth and
synaptogenesis prior to the appearance of synaptic vesi-
cle clusters, and the exocyst levels appear to be greatly re-
duced in mature synapses [171]. Based on this expression
pattern, the exocyst has been hypothesized to function
primarily during neurite outgrowth and synaptogenesis,
perhaps in specifying the exocytotic fusion sites and/or in
targeting vesicles to these sites [167, 171]. Furthermore,
a recent study suggests that the exocyst may promote neu-
rite outgrowth by orienting microtubules toward specific
domains on the plasma membrane [172].
In addition to a developmental role, the exocyst also
seems to function in mature nerve terminals, as several

groups have reported the presence of the exocyst at eas-
ily measurable levels in synaptosomes from adult ani-
mals [165, 173, 174]. The exocyst has been found to in-
teract with the neuronal Q-SNARE syntaxin 1, suggest-
ing possible involvement of the exocyst in synaptic
vesicle exocytosis [165, 167, 171]. Interestingly, al-
though there is so far no evidence connecting the mam-
malian exocyst to Rab or Rho proteins, the mammalian
exocyst binds via Sec5p to the GTP-bound form of Ral,
a small GTPase that is absent in yeast [174–176]. Ral
has two isoforms, RalA and RalB, of which RalA is en-
riched in brain and associated with synaptic vesicles
[177–179]. The exocyst is likely to be a downstream ef-
fector of RalA, since loss of Ral function inhibits the as-
sembly of the exocyst complex [176] in a manner that is
similar to the effect on yeast exocyst assembly of inacti-
vating Sec4p [160]. Perturbations of RalA function or of
the Ral-exocyst interaction inhibit vesicular transport of
proteins to the basolateral surface in epithelial cells and
block Ca2+-dependent exocytosis from the neuroen-
docrine PC12 cells [176]. Furthermore, neuron-specific
expression of a dominant-negative form of RalA in
transgenic mice significantly inhibits the refilling of the
readily releasable pool of synaptic vesicles [173]. To-
gether, these findings suggest that the interaction be-
tween the mammalian exocyst and Ral might mediate or
regulate the recruitment of synaptic vesicles to the exo-
cytotic fusion sites [173, 174]. Although the exocyst
seems to play a conserved role in vesicle tethering, sub-
sequent docking reactions of synaptic vesicles at the ac-
tive zone are likely to involve other proteins, such as the
large, active-zone cytomatrix proteins bassoon [180],
piccolo [152], and RIM (see below).

Figure 5. The exocyst is a conserved tethering factor in vesicle docking to the exocytotic fusion sites. The exocyst complex comprises eight
proteins: Sec3p, Sec5p, Sec6p, Sec8p, Sec10p, Sec15p, Exo70p, and Exo84p. The organization of these proteins in the complex is depicted
based on reported protein-protein interactions for yeast [160, 277] and mammalian [169] exocyst components. In yeast, Sec3p is the plasma
membrane-proximal component that marks the exocytotic sites [158], whereas in mammalian cells, Exo70p seems to be the plasma mem-
brane-proximal component [169]. The interactions between the exocyst and GTPases are indicated by arrows and discussed in the text. The
interaction between the exocyst and vesicle-associated GTPases (Sec4p and RalA) may mediate initial docking of vesicles to the exocy-
totic fusion sites on the plasma membrane.
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Unique regulatory components
in synaptic vesicle exocytosis

Compared with other forms of membrane fusion, synap-
tic vesicle exocytosis is much more tightly regulated both
in time and space. Temporally, Ca2+-triggered secretion of
neurotransmitters occurs in less than a millisecond after
the arrival of action potential [181]. Spatially, synaptic
vesicle exocytosis takes place only at the active zone, and
nowhere else along the axonal membrane. Moreover, the
efficacy of neurotransmitter release can be modulated
over a wide range as a result of synaptic activity and ex-
perience, which is believed to be an important mecha-
nism underlying learning and memory [182]. These spe-
cial features of synaptic vesicle exocytosis require partic-
ipation of unique regulatory components to provide
additional levels of control over the general fusion ma-
chinery. Evidence accumulated over the last several years
indicates that synaptic vesicle exocytosis utilizes several
regulatory components, including synaptotagmin, com-
plexin, Munc13, and RIM, which do not have homo-
logues in yeast.

Synaptotagmin, a likely Ca2+ sensor
for triggering synaptic vesicle fusion

Unlike constitutive exocytosis where vesicle fusion oc-
curs without an external stimulus, neurotransmitter-filled
synaptic vesicles accumulate at the pre-synaptic terminal
and undergo rapid exocytotic fusion only when triggered
by Ca2+ influx. The best-characterized candidate Ca2+

sensor in triggering neurotransmitter release is synapto-
tagmin (also called synaptotagmin 1), an integral mem-
brane protein of synaptic vesicles with two Ca2+-binding
C2 domains [183–185]. Synaptotagmin was initially de-
scribed as p65, a 65-kDa synaptic vesicle protein identi-
fied in a monoclonal antibody screen [186], and renamed
after its cloning in 1990 [187]. To date, 13 different
synaptotagmin isoforms have been reported in humans
[184], and a recent database search suggests the existence
of an additional 6 potential isoforms [188]. Compelling
evidence from genetic studies in mice, Drosophila, and
C. elegans as well as microinjection studies in squid giant
synapses indicates that synaptotagmin plays an essential
role in fast Ca2+-triggered synaptic vesicle exocytosis,
most likely by acting as a major Ca2+ sensor [189–198].
X-ray crystallography and nuclear magnetic resonance
(NMR) studies reveal that both C2 domains (called C2A
and C2B) of synaptotagmin share a similar structure of an
eight-stranded b sandwich [199–202]. The C2A domain
of synaptotagmin has been shown to bind three Ca2+ ions
[201], whereas the C2B domain binds two Ca2+ ions
[202]. Synaptotagmin binds via both C2 domains to
phospholipids in a Ca2+-dependent manner with half-

maximal binding Ca2+ concentrations in the range of
5–20 mM [197, 202–204], which correspond very well
with physiological Ca2+ levels for triggering neurotrans-
mitter release at some synapses [205–207]. Furthermore,
Ca2+ binding seems to cause the penetration of synapto-
tagmin C2 domains into lipid membranes with a fast on-
rate [204, 208] compatible with rapid Ca2+-triggered exo-
cytosis [209, 210]. These binding properties suggest that
synaptotagmin may function as a Ca2+-sensitive, phos-
pholipid-binding machine to promote synaptic vesicle fu-
sion by pulling two membranes together or by helping to
release tension in the metastable primed state (fig. 6E)
[202, 208]. Supporting this model, a point mutation
(R233Q) in the synaptotagmin C2A domain that de-
creases its ability to bind phospholipids in response to
Ca2+ causes a parallel decrease in the release probability
and Ca2+ sensitivity of synaptic vesicle exocytosis in
synaptotagmin knockin mice [197]. However, mutations
that disrupt the Ca2+-binding sites in the synaptotagmin
C2A domain did not affect Ca2+-triggered neurotransmit-
ter release in Drosophila [211]. The apparent lack of phe-
notype could be due to the redundancy of C2A and C2B
domains in their Ca2+-dependent phospholipid-binding
activities [202, 212]. Indeed, mutations in the Ca2+-bind-
ing sites of the Drosophila synaptotagmin C2B domain
caused a dramatic (>95%) inhibition of Ca2+-evoked neu-
rotransmitter release and a large decrease in Ca2+ sensi-
tivity of synaptic vesicle exocytosis [198].
In addition to phospholipids, synaptotagmin exhibits
Ca2+-dependent interactions with a variety of other mole-
cules, including other synaptotagmins [213, 214], syn-
taxin 1 [18, 203], SNAP-25 [64, 215], SNARE complex
[64, 196, 204], Ca2+ channels [216], SV2 [217], calmod-
ulin [218], RIM [219, 220] (see below), and phospho-
inositides [221]. Moreover, synaptotagmin also binds in a
Ca2+-independent manner to endocytosis-related proteins
such as AP2 [222] and Stoned [223–225], and inositol
phosphates [226]. Most of these interactions are mediated
via the C2B domain of synaptotagmin. However, given
the recent report that the recombinant synaptotagmin
C2B domain contains tightly bound bacterial contami-
nants that seem to alter binding properties of the C2B
[227], some of these interactions need to be interpreted
with caution [184]. The functional significance of most
of these interactions remains to be established. The inter-
action of synaptotagmin with SNAREs has received most
attention because it provides an attractive mechanism for
conferring Ca2+ regulation to the SNARE fusion machin-
ery [183, 185, 215]. However, in a reconstituted liposome
fusion system, synaptotagmin could not confer Ca2+ sen-
sitivity to the SNARE-mediated fusion reaction [228]. A
major challenge remains in proving unequivocally that
synaptotagmin is indeed a Ca2+ sensor and in elucidating
its precise mechanism of action in neurotransmitter re-
lease.
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Complexin, a SNARE complex-binding protein
required for Ca2+-triggered exocytosis

Complexin I and II (also called synaphin I and II) are two
closely related ~15-kDa cytosolic proteins originally
identified based on their brain-specific expression [229,
230] and ability to bind neuronal SNARE complexes
[65]. Complexin I and II are widely expressed in brain
where they are enriched in synapses [230–232]. Single-
knockout mice lacking either complexin I or II exhibit
only a mild phenotype, likely due to the functional re-
dundancy of these two isoforms [233, 234]. Double-
knockout mice lacking both complexins are perinatally
lethal with a marked deficit in fast Ca2+-triggered neuro-
transmitter release, suggesting that complexins positively
regulate a late step of synaptic vesicle exocytosis [234].
Consistent with a late-acting positive role, perturbing the
interaction between complexin and the SNARE complex
by peptide injection into squid giant pre-synaptic termi-
nals leads to a drastic reduction in neurotransmitter re-
lease at a post-docking step [235]. On the other hand, a
late-acting inhibitory role has been suggested by mi-
croinjection studies in Aplysia neurons [231] and overex-
pression studies in PC12 [236] and adrenal chromaffin
cells [237].

While complexins are clearly involved in synaptic vesi-
cle exocytosis, their mechanism of action remains un-
clear. At least four models have been proposed to explain
the potential role of complexins in synaptic vesicle exo-
cytosis. First, complexins may act at a post-priming,
Ca2+-triggering step by either serving as a Ca2+ sensor, or
working in conjunction with a Ca2+ sensor such as synap-
totagmin, to increase the efficiency of the fusion reaction
[234]. Supporting this model, analysis of complexin
double-knockout mice reveals a post-priming defect in
fast, synchronous Ca2+-triggered release, which can be
rescued completely by increasing the Ca2+ concentration
[234]. Moreover, complexin and synaptotagmin are able
to bind simultaneously to the assembled SNARE com-
plex [65]. Second, complexins may promote oligomer-
ization of trans-SNARE complexes for efficient, Ca2+-
regulated vesicle fusion [235]. Consistent with this pos-
sibility, studies in permeabilized PC12 cells suggest that
fusion of a single vesicle is mediated by cooperation of
three SNARE complexes [238], and complexin peptides
that prevent SNARE complexes from oligomerizing
block neurotransmitter release when injected into squid
giant synapses [235]. Third, complexins may stabilize a
metastable primed state with a fully assembled SNARE
complex to ensure fast neurotransmitter release upon

Figure 6. Molecular model of synaptic vesicle exocytosis. (A) Synaptic vesicle is docked to the active zone by an unknown mechanism
(light blue bar) that may involve the exocyst and/or other proteins, such as piccolo and bassoon. The interaction between RIM and GTP-
bound Rab3A may also contribute to the docking reaction. At this stage, Munc18 is associated with the closed conformation of syntaxin 1.
(B) GTP hydrolysis causes the dissociation of Rab3A from RIM and the synaptic vesicle. RIM then binds Munc13 and activates the prim-
ing activity of Munc13 to displace Munc18 from syntaxin 1 and facilitate the conformational switch of syntaxin 1 into the open state. 
(C) Syntaxin 1 assembles with VAMP2 and SNAP-25 into the trans-SNARE complex, which pulls synaptic vesicle and plasma membrane
into close contact. (D) Complexin binds to the fully assembled SNARE complex and stabilizes this metastable, fully primed state. (E) Ca2+

influx triggers the binding of synaptotagmin to the SNARE complex and penetration of synaptotagmin into the plasma membrane, leading
to membrane fusion via a not yet understood mechanism. (F) After fusion, the cis-SNARE complex is dissociated by NSF/a-SNAP, and
the SNAREs are recycled for another round of exocytosis.



Ca2+ influx (fig. 6D) [239]. Evidence supporting this
model has been provided by biochemical and biophysi-
cal studies showing that complexin binds in anti-parallel
fashion to the groove between synaptobrevin and syn-
taxin within the four-helix bundle of the SNARE com-
plex [239–242]. The interaction between complexin and
the SNARE complex has a fast on-rate [242], and seems
to stabilize the interface between synaptobrevin and syn-
taxin helices in the SNARE complex, which might help
to overcome the repulsive forces between the opposed
membranes [239]. Fourth, complexins may function dur-
ing or following membrane fusion to control the closure
of the fusion pore, allowing the kiss-and-run recycling of
exocytosed vesicles into the readily releasable pool
[237]. This model is based on the observation that over-
expression of wild-type complexin II, but not its synap-
tobrevin-binding site-specific mutant (R59H), leads to
premature termination of exocytotic events without af-
fecting the rate of fusion pore opening and expansion in
adrenal chromaffin cells [237]. Further studies are re-
quired to distinguish these models and clarify the mech-
anism of action of complexins in synaptic vesicle exocy-
tosis.

Munc13, a diacylglycerol-binding protein
essential for synaptic vesicle priming

A crucial step in synaptic vesicle exocytosis is priming,
which confers fusion competence to docked vesicles, en-
abling them to undergo rapid exocytosis upon Ca2+ influx
[2]. Recent evidence indicates that synaptic vesicle prim-
ing requires the Munc13/UNC-13 family of proteins
[243–245]. UNC-13 was originally identified in C. ele-
gans genetic screens for uncoordinated mutants [94].
Munc13 proteins are mammalian UNC-13 homologues,
which are encoded by three distinct genes: Munc13-1,
Munc13-2, and Munc13-3 [244, 246]. These Munc13 iso-
forms are differentially expressed in brain, where they are
specifically localized to the active zone [244, 246–248].
Knockout studies in mice reveal that Munc13-1 is essen-
tial for synaptic vesicle priming at 90% of glutamatergic
synapses, whereas Munc13-2 is the priming factor for the
remaining glutamatergic synapses [249, 250]. At GABA
ergic synapses, Munc13-1 and Munc13-2 are coex-
pressed and play a redundant role in vesicle priming
[250]. The cerebellum-specific Munc13-3 isoform seems
to be involved in vesicle priming at parallel fiber-Purk-
inje cell synapses [251]. Support for a critical role of
UNC-13 in vesicle priming is also provided by loss-of-
function mutation studies in Drosophila and C. elegans
and by overexpression studies in chromaffin cells
[252–254].
Munc13/UNC-13 proteins contain a C1 domain that
binds endogenous second-messenger diacylglycerol and

its analogue phorbol ester, and serve as high-affinity dia-
cylglycerol/phorbol ester receptors in brain [255, 256].
Genetic studies in mice and C. elegans indicate that
Munc13/UNC-13 proteins mediate the modulation of
neurotransmitter release by phorbol ester and by G pro-
tein-coupled diacylglycerol second-messenger pathways
[257–260]. Studies of Munc13-1 knockin mice express-
ing a diacylglycerol/phorbol ester-binding site-specific
mutation (H567K) indicate that diacylglycerol/phorbol
ester binding activates the priming activity of Munc13,
leading to enhanced refilling of the readily releasable
vesicle pool and increased release probability [260].
Electrophysiological analysis of Munc13-1 and Munc13-
2 single- and double-knockout mice suggests that activ-
ity-dependent diacylglycerol-mediated Munc13 activa-
tion underlies a pre-synaptic form of short-term plasticity
termed augmentation [261].
Munc13-1 interacts with the N-terminal coiled-coil do-
main of syntaxin 1 and this interaction appears to be com-
patible with SNARE complex assembly [63], suggesting
that Munc13-1 binds to the open conformation of syn-
taxin 1. In C. elegans, UNC-13 is able to transiently in-
teract with UNC-18 bound to the closed conformation of
syntaxin and displace UNC-18 from syntaxin [112].
These results suggest that Munc13/UNC-13 may prime
synaptic vesicles for fusion by promoting a conforma-
tional switch of syntaxin 1 from the closed to open state,
thereby facilitating SNARE complex formation (fig. 6B).
Consistent with this model, overexpression of a constitu-
tively open form of syntaxin has been shown to rescue the
unc-13 loss-of-function mutant phenotype, demonstrat-
ing that the open form of syntaxin is able to bypass the re-
quirement for UNC-13 in synaptic vesicle priming [262].
However, the rescue by the open form of syntaxin is inef-
ficient, because the rescued animals exhibit significantly
reduced Ca2+-triggered synaptic vesicle exocytosis com-
pared to wild-type controls. Incomplete rescue by the
open form of syntaxin suggests that UNC-13/Munc13
may play additional role(s) in synaptic vesicle exocytosis
beside promoting the conformational switch of syntaxin
1 to the open state. Munc13 interacts with at least five
other proteins, namely RIM [263] (see below), calmod-
ulin [264], Doc2 [265, 266], an ARF6 exchange factor
msec7-1 [267], and a brain-specific spectrin isoform 
b-spIIIS1 [268]. Whether and how these interactions re-
gulate synaptic vesicle exocytosis remains to be deter-
mined.

RIM, an active-zone scaffolding protein
for coordinating synaptic vesicle docking,
priming and fusion

RIM (also called RIM1) was originally identified in a
yeast two-hybrid screen as a 180-kDa, active zone-spe-
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cific protein that binds specifically to the GTP-bound
form of Rab3 [146]. Mammalian brain contains a second
RIM protein, RIM2, which is also expressed in endocrine
tissues [269, 270]. C. elegans contains only one RIM pro-
tein [271], which is encoded by unc-10, a gene first iden-
tified in the classic uncoordination mutant screen [94]. C.
elegans unc-10 mutants lacking RIM exhibit fivefold re-
duced levels of fusion-competent vesicles despite normal
levels of docked vesicles, and this deficit can be rescued
by overexpression of a constitutively open form of syn-
taxin, suggesting that Rim has a post-docking role in reg-
ulating synaptic vesicle priming [271]. Consistent with a
post-docking role, elimination of RIM1 expression in
mice significantly reduces neurotransmitter release prob-
ability without affecting synaptic vesicle docking [220].
In RIM1 knockout mice, short-term synaptic plasticity,
such as paired pulse facilitation, paired pulse depression,
and post-tetanic potentiation, is altered [220], and mossy
fiber long-term potentiation is abolished [272]. The phe-
notypes of RIM mutant mice and C. elegans are broader
and more severe than Rab3 mutants, suggesting that the
function of RIM goes beyond being just a Rab3 effector
[220, 271]. The RIM mutant phenotypes are much weaker
than Munc13-1 and UNC-13 mutants, suggesting that
RIM has a regulatory instead of an essential, executing
role in synaptic vesicle exocytosis.
RIM1 knockout mice exhibited a selective, 60% de-
crease in expression levels of Munc13-1, but not
Munc13-2 or other presynaptic proteins, suggesting that
RIM1 normally associates with Munc13-1 [220]. Indeed,
RIM1 has been shown to bind Munc13-1 but not
Munc13-2 [263, 273]. The RIM1-Munc13-1 interaction
seems to be important in regulating synaptic vesicle
priming, as disruption of this interaction by overexpress-
ing a RIM1-binding fragment of Munc13-1 resulted in a
drastic reduction in the size of the readily releasable
vesicle pool [263]. Interestingly, Munc13-1 and Rab3A
bind to the same site in RIM1, and the binding of
Munc13-1 and Rab3A to RIM1 is mutually exclusive
[263]. This raises the possibility that RIM may coordi-
nate synaptic vesicle docking and priming by sensing the
arrival of Rab3A-containing vesicles through its interac-
tion with Rab3A-GTP and then, after GTP hydrolysis, to
activate the priming reaction via its interaction with
Munc13-1 (fig. 6A, B). 
In addition to Rab3 and Munc13-1, RIM1 also interacts
with SNAP-25 [219], synaptotagmin [219, 220], Ca2+

channels [219], RIM-BPs [270, 274], cAMP-GEFII
[269], and liprins [220]. As discussed earlier, SNAP-25 is
an essential component of the synaptic vesicle fusion ma-
chinery, and synaptotagmin is a putative Ca2+ sensor for
triggering synaptic vesicle exocytosis in response to Ca2+

influx. RIM-BPs (also called RBPs) are a family of RIM-
binding proteins that also interact with presynaptic Ca2+

channels [270, 274]. cAMP-GEFII (also called cAMP

sensor or Epac) is a cAMP-binding protein that is thought
to be a direct target of cAMP in regulating exocytosis
through its interaction with RIM [269]. Liprins are a fam-
ily of LAR receptor tyrosine phosphatase-interacting pro-
teins required for proper formation and function of the
presynaptic active zone [275, 276]. The RIM1-liprin in-
teraction may serve to anchor RIM1 at the active zone
and/or mediate the effect of the LAR/liprin pathway on
synaptic vesicle exocytosis. The interaction of RIM1 with
multiple, key components of the neurotransmitter release
machinery suggests that RIM1 may play a critical role in
organizing a multi-protein presynaptic scaffold to coordi-
nate vesicle docking, priming, and fusion reactions,
thereby ensuring the temporal and spatial specificity and
efficiency of synaptic vesicle exocytosis.

Concluding remarks

The realization that neurotransmitter release uses the
same general fusion machinery as other intracellular
membrane fusion events has catalyzed progress toward 
a mechanistic understanding of synaptic vesicle exocy-
tosis. Conserved components of the fusion machinery,
such as SNAREs, Munc18/nSec1, and Rab3, are criti-
cally involved in synaptic vesicle exocytosis. However, 
a major challenge remains in defining the exact action 
of these proteins and resolving the molecular mechanism
underlying the fusion reaction. In addition, it remains 
to be determined whether the exocyst complex plays a
role in synaptic vesicle docking, and what other 
proteins participate in mediating specific docking of
synaptic vesicles to the active zone. Recent progress has
revealed that synaptic vesicle exocytosis requires several
unique components, including synaptotagmin, Munc13,
RIM, and complexin. Future studies are needed to deter-
mine the precise role of these proteins and elucidate 
the biochemical basis of synaptic vesicle priming and
Ca2+-triggering reactions. Each of the above-mentioned
exocytotic components also interacts with several other
proteins, and determining the physiological relevance 
of these protein-protein interactions will be important.
Furthermore, it will be crucial to understand how these
exocytotic components are spatially organized and tem-
porally coordinated to achieve the extraordinary speed,
precision, and plasticity of neurotransmission. Synaptic
vesicle exocytosis has fascinated neuroscientists and 
cell biologists for over half a century and will continue to
be an exciting area of active research for the years to
come.
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