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Abstract. The cell monitors and maintains the fidelity of
translation during the three stages of protein synthesis:
initiation, elongation and termination. Errors can arise by
multiple mechanisms, such as altered start site selection,
reading frame shifts, misincorporation or nonsense codon
suppression. All of these events produce incorrect protein
products. Translational accuracy is affected by both cis-
and trans-acting elements that insure the proper peptide is
synthesized by the protein synthetic machinery. Many
cellular components are involved in the accuracy of trans-
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lation, including RNAs (transfer RNAs, messenger
RNAs and ribosomal RNAs) and proteins (ribosomal
proteins and translation factors). The yeast Saccha-
romyces cerevisiae has proven an ideal system to study
translational fidelity by integrating genetic approaches
with biochemical analysis. This review focuses on the
ways studies in yeast have contributed to our understand-
ing of the roles translation factors and the ribosome play
in assuring the accuracy of protein synthesis. 
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The protein synthesis process in eukaryotic cells

The transformation of the genetic information from mes-
senger RNA (mRNA) to protein occurs in three steps: ini-
tiation, elongation and termination. In general, the over-
all process is conserved between eukaryotes and prokary-
otes, although the eukaryotic process described in this
review is more complex. During initiation, mRNA is re-
cruited to the ribosome by the action of a series of solu-
ble protein factors termed eukaryotic initiation factors or
eIFs (fig. 1A and reviewed in [1]). The end result is an
80S ribosome positioned with the Met-transfer RNA
(tRNA)i

Met in the P-site. The eukaryotic elongation factor
1 (eEF1) complex then directs delivery of each amino-
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acyl-tRNA (aa-tRNA) to the A-site of the ribosome in the
elongation phase of protein synthesis (fig. 1B and re-
viewed in [2]). Following peptide bond formation by the
ribosome, the translocase eEF2 repositions the new pep-
tidyl-tRNA in the P-site and helps assure the three-base
shift in reading frame. A protein unique to fungi, eEF3, is
essential in vivo and required for elongation to occur in
vitro [3–5]. eEF3 interacts with eEF1A and promotes re-
lease of the deacylated tRNA from the E-site [6–8]. The
termination event occurs when the A-site becomes occu-
pied by one of the three stop or nonsense codons (UAA,
UAG or UGA). This process is facilitated by the action of
eukaryotic release factors 1 and 3 (eRF1 and eRF3, fig.
1C and reviewed in [9]). The resulting synthesis of a pro-
tein is the end product of the careful regulation of gene
expression in the cell. Those components linked to fi-
delity and discussed in the review are shown in figure 1.



Importance of translational fidelity

Translational fidelity is critical to the production of full-
length, functional proteins. Thus, the translational appa-
ratus carefully monitors and helps maintain accuracy at
every point during protein synthesis. During initiation, fi-
delity can refer to the selection of the appropriate AUG or
the use of an AUG as opposed to another codon. During
elongation, an even wider range of events can occur. Af-
ter start site selection, the correct three-base reading
frame must be maintained. A shift in reading frame of one
or two bases in either the 5¢ or 3¢ direction will lead to an
encounter with a premature stop codon. This results in
termination to produce an incomplete polypeptide and
may trigger the nonsense-mediated mRNA decay (NMD)
pathway [10]. Estimates of the frequency of frameshift
errors are 3 ¥ 10–5 to –4 [11]. Many viruses utilize specific
programmed ribosomal frameshift (PRF) sites within the
mRNAs to produce significantly higher frequencies of
this event. This mechanism is important for the virus to
express the proper proportions of viral proteins. This is
exemplified in the yeast Saccharomyces cerevisiae by the
–1 signal in the L-A virus [12] and the +1 signal in the Ty
retrotransposons [13]. Work in yeast has identified the
cis-acting sequences of the viral mRNA, cellular proteins
and drugs such as anisomycin, preussin and sparsomycin
that affect the PRF process [14–18]. A change in
frameshifting efficiencies affects viral maintenance and
propagation and thus represents a possible therapeutic
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target (reviewed in [19]). Insertion of each aa-tRNA is
also monitored to assure that the correct amino acid is in-
corporated into the protein. Misincorporation of the
wrong amino acid can happen by mischarging a tRNA.
Errors can also occur if the ribosome fails to reject an im-
proper codon-anticodon interaction, allowing the deposit
of an incorrect aa-tRNA in the A-site. Missense error fre-
quencies in yeast are also low, estimated from experi-
mental data to be 10–5 [20]. An innaccurate termina-
tion process can result in nonsense suppression, or
readthrough of a stop codon. This allows incorporation of
an amino acid and extension of the polypeptide chain.
Analysis of the steps of protein synthesis has led to the
development of a series of elegant approaches to charac-
terize translational fidelity in eukaryotes using S. cere-
visiae.

Mechanisms and assays of altered translational
fidelity

There are multiple methods to analyze the effects of site-
directed or null mutations of specific genes, to screen for
new mutations in novel genes or to define cis-acting ele-
ments in the mRNA that alter fidelity. Some take advan-
tage of the ability to select for reduced fidelity by the
ability to ‘mistranslate’ a mutant allele of a metabolic
gene in yeast. Others introduce mutations in the lacZ
gene, such that any factor that reduces fidelity will result
in production of a blue color in cells grown on 5-bromo-
4-chloro-3-indoyl-b-D-galactose (X-gal) for screening.
This second approach can also be utilized to quantitate
effects on fidelity [21]. The yeast viral systems L-A and
Ty1 provide a functional window on the consequences of
altered fidelity on a biological process in the cell. One
important point in all fidelity assays in vivo is that muta-
tions that introduce nonsense codons or shift the reading
frame result in a premature stop codon. Screens for fac-
tors that affect fidelity can also lead to mutations that in-
crease or alter the mRNA. Mutations that alter transcrip-
tion of the reporter mRNA or inactivate the nonsense-me-
diated mRNA decay pathway have been identified in this
manner [22, 23]. The following sections describe the ap-
proaches to analyze fidelity utilized in the studies high-
lighted in this review.

Analysis of start site selection
The application of yeast to the analysis of genes whose
products affect start codon identification has proven an
effective method to identify the genes encoding initiation
factors. The reader is referred to an excellent and detailed
review by Donahue [24]. A classic analysis was per-
formed by the Donahue laboratory utilizing a dual re-
porter system demonstrating the use of both selection and

Figure 1. The process of protein synthesis monitors fidelity during
all three stages of translation. (A) During initiation soluble transla-
tion initiation factors (eIFs) bind the mRNA, deliver the initiator
Met-tRNAi

Met to the first AUG codon and assemble to form a com-
plete 80S ribosome from the 40S and 60S subunits. (B) Elongation
is the repeated delivery of each subsequent aa-tRNA to the ribo-
some, peptide bond formation, movement of the mRNA and the
growing peptidyl-tRNA in a process using both soluble elongation
factors (eEFs) and the activity of the ribosome. (C) When a stop or
nonsense codon is encountered, soluble release factors (eRFs) fa-
cilitate hydrolysis of the peptide from the tRNA and release. Shown
are those translational components linked to fidelity in yeast.



screening in vivo [25]. A strain was used where both the
HIS4 gene and a HIS4-lacZ fusion were engineered to re-
move or alter the authentic AUG codon. These cells die on
complete media lacking histidine (C-His, fig. 2). Follow-
ing mutagenesis of the strain, selection on C-His identi-
fied mutations that allow an alternative start site selection
mechanism. Screening for those colonies that were also
blue on X-gal confirmed the effect was due to altered ini-
tiation. When cloned and analyzed, these sui (suppressors
of initiator codon) mutations were identified in genes en-
coding several translation initiation factors (see below).

Identification of alterations in maintenance of frame
and the effectiveness of cis-acting viral mRNA
elements in yeast
Maintenance of the proper reading frame is essential for
production of the correct protein. In yeast, both nondi-
rected (simple insertion or deletions in a reporter system)
and programmed (viral-like) signals for frameshifting are
used for in vivo analysis. Screening for factors involved
in maintenance of reading frame can be accomplished by
suppression of a +1 insertion in an auxotrophic marker. A
specific example is the his4-713 +1 insertion allele,
which when present in a cell results in death on C-His
medium (fig. 3A). Mutations that suppress the +1 muta-
tion allow growth on this medium. The effect on
frameshifting in either the +1 or –1 direction can be quan-
tified by the use of a lacZ reporter-based system (fig.
3B). Suppression of the frameshift results in blue
colonies on media containing X-gal or increased b-galac-
tosidase activity.
Yeast is very amendable to the study of programmed ri-
bosomal frameshifting (PRF) events that many viruses
exploit, such as the –1 PRF in the L-A killer virus [12]
and the +1 PRF utilized by the Ty retrotransposons [13].
Work in yeast has identified the cis-acting sequences of
the viral mRNA required for the high levels of frameshift-
ing seen at these sites, typically 2% for the L-A signal
[12] and 40% for the Ty1 signal [13]. Briefly, the L-A sig-

nal is characterized by the presence of a slippery site (fig.
4A), and an RNA pseudoknot. The Ty1 element has a rare
codon for the Arg-tRNAArg (fig. 4B) as well as sequences
flanking this site that promote frameshifting [13]. Muta-
tions that affect these processes can be characterized by
the insertion of either signal into a lacZ reporter (fig. 3B).
The maintenance of frame (mof) yeast mutants, encoding
translation and mRNA decay pathway components, were
identified by a screen for mutations with altered expres-
sion of lacZ with the L-A signal [26].
The yeast viruses themselves can be assayed in vivo. The
L-A virus has a satellite virus M1 which produces a toxin.
In order for M1 to propagate, the efficiency of frameshift-
ing on the L-A –1 signal must remain ~2% [12]. When
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Figure 2. Assays for alterations in start site selection. Replacement
of the authentic AUG codon with a near-cognate codon allows for
selection of mutations that result in reduced fidelity of start site se-
lection. Mutations are monitored for growth on medium lacking
histidine for a his4-306 UUG mutation [149] or expression of the re-
porter gene lacZ (his4UUG-lacZ, [49]) by blue color on X-gal plates.

Figure 3. Assays for alterations in nonprogrammed (insertion) and
PRF (viral-like +1 and –1) reading frame shifts. (A) A +1 insertion
in a gene required for synthesis of an amino acid, for example his-
tidine with the his4-713 allele, results in death on cells lacking his-
tidine. The reduced fidelity caused by the eEF1A E 286A mutation
allows suppression of the frameshift and growth on C-His. (B) A
simple insertion or deletion in the lacZ gene results in a blue color
on X-gal when frameshifting is increased. Insertion of the entire
PRF signal from L-A or Ty1 results in an increase in blue color with
increased frameshifting or a lighter/white color with reduced
frameshifting. (C) Altered frameshifting at the L-A PRF signal re-
sults in reduced ability to maintain the yeast M1 satellite virus and
produce the killer toxin. Wild-type L-A M1 cells create a zone of
killing on a lawn of sensitive yeast plated on 4.7-MB medium. Al-
tered PRF by eEF1A E122K results in less maintenance of M1 and
a reduced halo size. (D) Altered frameshifting on the yeast Ty1 sig-
nal reduces the frequency of retrotransposition. Induction of the ex-
pression of a Ty1 element marked with a reporter gene (such as
neo R) allows quantification of the extent of retrotransposition. A
wild-type cell produces geneticin-resistant colonies, and mutations
that alter the frequency of frameshifting reduce the frequency of
transposition (% geneticin-resistant colonies).



cells infected with the virus are plated on a lawn of sensi-
tive cells [27], maintenance of the killer virus is seen by
the zone of killing around the colony (fig. 3C). For Ty1,
the retrotransposition frequency is affected by alterations
in the frequency of the +1 frameshift. A set of reporter
plasmids have been produced that can monitor the fre-
quency of retrotransposition [28, 29]. For example, a
URA3-based plasmid contains a reporter gene (neoR)
within the Ty1 element and under a galactose-inducible
promoter. The neoR gene is transcribed and translated to
produce active protein only after a round of transposition.
Following transformation of the plasmid and induction of
Ty1 expression for several days, and loss of the plasmid
monitored by growth on 5-fluoroorotic acid [30]. The fre-
quency of colonies that now grow on media with ge-
neticin/G418 quantifies the retrotransposition frequency
(fig. 3D). The various assays developed to study and dis-
sect ribosomal frameshifting in yeast has allowed a mech-
anistic analysis of the translation process and in particu-
lar the role of elongation factors as described below [31].

Misincorporation
Misincorporation of the wrong amino acid into the
polypeptide chain can occur if the tRNA is aminoacylated
with the wrong amino acid or if an improper codon-anti-
codon match allows an incorrect aa-tRNA to enter the A-
site. There is no in vivo selection for mutations that cause
misincorporation, so the study of fidelity in the area of
missense mutations does have its limitations. Many mu-
tants that affect nonsense suppression or frameshifting ef-

ficiencies are subsequently shown to affect missense
rates in vitro [32, 33]. An assay was developed where
affinity-tagged type III chloramphenicol acetyl trans-
ferase (CAT) was altered at His196(CAC) to Tyr(UAC)
[20]. The protein is catalytically inactive unless His is
misincorporated. This construct can be expressed in wild
type and cells bearing mutations likely to affect fidelity.
Purification and analysis of CAT activity provides an es-
timate of altered misincorporation. Alternatively, one can
analyze this process in vitro by utilizing a cell-free sys-
tem and measuring the amount of the misincorporation of
the near-cognate Leu-tRNALeu relative to the cognate
Phe-tRNAPhe using a poly (U)-dependent translation as-
say [34]. Both of these assays can take a substantial
amount of time as compared with the in vivo assays; thus
missense errors have not been studied as extensively as
nonsense or frameshifting.

Nonsense suppression
Nonsense suppression results when a near-cognate aa-
tRNA or a mutant suppressor aa-tRNA delivered by
eEF1A competes with the release factors at a stop codon
(reviewed in [10, 35]). For the analysis of nonsense sup-
pression, a plasmid containing a lacZ reporter gene with
an inserted nonsense codon (fig. 5A) or an auxotrophic
allele caused by a premature stop codon (fig. 5B, C) is
used. There are many useful nonsense alleles for all three
stop codons, and common alleles are shown in table 1.
One commonly used allele is lys2-801 (UAG), which dis-
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Figure 4. Different cis-acting signals in the yeast L-A virus and
Ty1 retrotransposon direct PRF. (A) In the L-A virus, a pseudoknot
3¢ of the ‘slippery sequence’ causes the ribosome to pause with both
the A and P sites occupied by tRNAs. A slip in the –1 direction re-
tains 2 of 3 for each tRNA. (B) In the Ty1 retrotransposon, an AGG
codon recognized by the rare Arg-tRNAArg(CCU) causes a pause
such that the peptidyl-tRNA (Leu) can allow the mRNA to slip one
base in the +1 direction. This places a GGC codon, decoded by an
abundant Gly-tRNAGly, in the A-site and allows translation to con-
tinue. 

Figure 5. Assays for nonsense suppression. (A) Stop codon read-
through is quantitated with a reporter lacZ construct containing an
in-frame stop codon or by increased blue color on X-gal plates. In-
sertion of a stop codon in the reading frame of the LYS2 gene (lys2-
801 UAG) allows for selection of mutations that alter fidelity. (B) The
presence of low concentrations of paromomycin (pm) increases
misreading, such that mutations with more efficient reading of a
stop codon (eEF1Ba S121L) show less growth. (C) Without paro-
momycin wild-type cells die on media lacking lysine, however, mu-
tations that increase stop codon readthrough (eEF1A E 286K) show
increased growth. 



rupts the lysine biosynthesis pathway. It is of note that the
drug paromomycin increases the frequency of translation
errors, and can be used to increase the level of suppres-
sion [36, 37]. Thus, with paromomycin present wild-type
cells read through the stop codon more efficiently, and a
mutation that increases fidelity shows reduced growth
(fig. 5B). Without the drug, wild-type cells cannot grow
on C-Lys unless suppression of the stop codon occurs
(fig. 5C). Thus, mutants that increase nonsense suppres-
sion can be selected on this medium. The can1-100
(UAA) mutation produces resistance to the compound
canavanine on C-Arg. This allows an opposite approach,
such that suppression results in sensitivity to this drug.
The level of nonsense suppression in a wild-type strain
can be very low, usually <0.1%. The baseline level can be
increased in a strain bearing a suppressor tRNA for a spe-
cific stop codon (i.e. the UAA suppressor SUQ5).
Taken together, these assays have provided the basis for an
approach to the processes involved in assuring fidelity.
These approaches have led to the identification and analy-
sis of components of the translational apparatus. There
likely remain other cellular components, such as the actin
cytoskeleton, whose roles may be identified by these ap-
proaches. The following sections discuss the RNAs and
proteins linked to translational accuracy in yeast.

Role of tRNA in fidelity

The critical role of aa-tRNA in correctly interpreting the
genetic code means there are many ways tRNA can affect
the accuracy of this process. Elegant mechanisms have
been identified in other systems to account for proof-
reading by the synthetases [38]. The effects of altered
aminoacylation are outside the scope of this review. The
tRNAs themselves are also important components of the
coding process. There is a long history of the isolation of
mutant tRNAs as suppressors of all types of cis-elements
in the RNA (for review see [39]). Additionally, the use of
a start site AUG to AGG mutation in the HIS4 gene, cou-
pled with a system to express sufficient amounts of an
aminoacylated UCC-tRNAi

Met mutant in yeast, allowed
the dissection of the role of the codon-anticodon interac-
tion in start site selection [40]. Mutant tRNAs have also
been used to dissect the contributions of base pairing in
the maintenance of reading frame [41, 42].

Initiation and start site selection: fidelity of AUG
codon recognition

The ternary complex of eIF2•GTP•Met-tRNAi
Met recog-

nizes the first AUG codon of the mRNA coding se-
quence, which marks the start of translation. Elements of
the Met-tRNAi

Met recognized by eIF2 that assure discrim-
ination from the 20 elongator tRNAs have been identified
in yeast [43, 44] and other systems. The ribosome scans
down from the m7G cap in the 5¢ to 3¢ direction on the
mRNA (reviewed in [45]). Predominantly, translation ini-
tiation occurs by proper placement of the Met-tRNAi

Met by
eIF2 on the first AUG start codon. The selection of the
five sui mutations by the method described earlier identi-
fied the critical role of the three eIF2 subunits a (SUI2)
[46], b (SUI3) [25] and g (SUI4/GCD11) [47] in start site
selection. In addition, the two other sui mutations show
interesting links to this process. The SUI5 mutation en-
codes a form of eIF5 [48]. This has led to biochemical
analysis of the interplay between eIF2 and eIF5 in the ini-
tiation process. The eIF5 protein stimulates the GTPase
activity of the eIF2g subunit, and links GTP-dependent
events with fidelity, as will be seen below for another 
G protein eEF1A. The sui1 mutation is a form of eIF1 that
affects start site selection [49]. Another allele of this
gene, however, also affects the efficiency of suppression
of an L-A –1 PRF and mRNA decay [50, 51]. eIF1 is
known to stimulate formation of the initiation complex
on the 40S subunit [52, 53] and modulate GTPase activ-
ity by eIF5 [24], although its exact function remains to be
determined. It is of interest that these factors are part of a
large multifactor complex including eIF1, eIF2, eIF3,
eIF5 and Met-tRNAi

Met [54]. Other communications
within the complex that affect fidelity, especially those
involving the many subunits of eIF3, may yet become ap-
parent.

Role of elongation factors in translational fidelity

After initiation, three nucleotide-binding proteins that hy-
drolyze GTP (eEF1 and eEF2) or ATP (eEF3) play criti-
cal roles in efficient and accurate protein synthesis. The
hydrolysis of nucleotides is stimulated on all three eEFs
by their interaction with the ribosome. The elongation
factors affect maintenance of proper reading frame, cor-
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Table 1. Common auxotrophic alleles used for analysis of fidelity.

UAA UAG UGA AUG (start) +1 insertion

ade2-101, ade2-1 can1-132, lys2-801 his4-260, his4-166 his4-305 GUG met2-1
lys1-1, lys2-1 tyr7-1, trp1-1 leu2-2, lys2-101 his4-306 UUG his4-713
leu2-1, can1-100 trp1-7, met8-1 ade1-14
his7-1 lys2-864



rect amino acid placement and accurate stop codon
recognition.

eEF1A influences multiple types of translational
fidelity
All aa-tRNAs, except the initiator Met-tRNAi

Met, are de-
livered to the ribosome by the G protein eEF1A. The ki-
netics of aa-tRNA delivery to the A-site have been exten-
sively studied in prokaryotes for the elongation factor Tu
(EF-Tu, reviewed in [55]). It is hypothesized that there is
a ‘kinetic proofreading’ step for the proper placement of
the cognate aa-tRNA into the A-site by EF-Tu/eEF1A
[56, 57]. This involves eEF1A delivering the aa-tRNA to
the A-site in a GTP-dependent manner. Sensing a proper
codon-anticodon interaction, GTP hydrolysis occurs, aa-
tRNA is released from eEF1A and aa-tRNA is accommo-
dated in the A-site. Yeast has proven an excellent system
to address fidelity in a eukaryotic organism. The X-ray
crystal structure of the yeast eEF1A protein in complex
with the guanine nucleotide exchange factor eEF1Ba
[58] has allowed testing of the models for the roles of nu-
cleotide and aa-tRNA in providing signals that assure ac-
curate protein synthesis (fig. 6).
The central role of eEF1A in the delivery of aa-tRNA
makes it an important component of the accuracy mainte-
nance system of the cell. Yeast eEF1A is encoded by two
genes, TEF1 and TEF2, which have identical coding re-
gions. The use of the met2-1 +1 insertion allele led to the
isolation of nine mutant alleles in the TEF2 gene that
function as dominant frameshift suppressors of growth on
C-Met [59]. Not all the mutant forms of eEF1A are func-
tional as the only form of the protein in vivo, however.
Further analysis of the effects of those mutant forms that
are functional as the only form of eEF1A has shown that
not all mutants that read through an insertion signal affect
a PRF signal (fig. 6B). The TEF2-4 allele, which alters
E122 to K results in a significant reduction in –1 PRF, with
lesser effects seen for TEF2-9 (E295K), TEF2-7 (T142I) and
TEF2-10 (E122Q) [60]. Altered +1 PRF efficiencies are
seen for strains bearing the TEF2-2 (E317K) and TEF2-3
(E40K) alleles. The dominant +1 PRF phenotypes of these
mutants on the yeast Ty1 element are different between al-
leles and in comparison to the recessive effects [61]. Thus,
unique alleles that affect +1 versus –1 PRF indicate spe-
cific functions of eEF1A required for the two very differ-
ent cis-acting signals used in these two viral systems.
The key role of GTP hydrolysis in signaling a correct
codon-anti-codon interaction predicts mutations that af-
fect nucleotide binding and hydrolysis will also affect fi-
delity.  Substitution of N153T in the NKXD GTP-binding
consensus element increases Leu misincorporation mea-
sured in vitro in the poly (U) assay by 2.3-fold, while
N153T/D156E and D156N show 1.5–1.9-fold effects [32]. In
vitro, the N153T mutant shows a 4.6-fold increase in intrin-

sic GTPase activity. Since decoding and termination occur
at the A-site, mutations that affect one process could also
affect the other [62]. In vivo, all three mutants show in-
creased omnipotent nonsense suppression (readthrough at
all three stop codons) by as much as 4-fold [33]. It remains
to be determined whether nonsense suppression is com-
pletely due to misreading versus a direct effect on the ter-
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Figure 6. (A) The X-ray crystal structure of S. cerevisiae eEF1A
(gold) complexed with the catalytic fragment of the exchange fac-
tor eEF1Ba (silver) [58]. Mutations in S. cerevisiae eEF1A (B) and
the catalytic fragment of eEF1Ba (C) that affect the fidelity of pro-
tein synthesis. Red spheres indicate mutations that result in domi-
nant suppression of a +1 insertion [59], blue dominant suppression
of a +1 insertion and a recessive –1 PRF defect [59, 60], black dom-
inant suppression of a +1 insertion and a recessive +1 PRF defect
[59, 60], green increased nonsense suppression and misincorpora-
tion in vitro [33], purple reduced nonsense suppression [64].



mination process. This is of particular importance since
both misreading and nonsense suppression are affected in
the NKXD mutations. Studies have also indicated that a
reduction in the gene dosage of eEF1A from the normal
complement of two genes to one results in enhanced fi-
delity at a nonsense mutation [62].
The co-crystal structure of yeast eEF1A and the catalytic
fragment of eEF1Ba led to a model for the role of domain
II of eEF1A in aa-tRNA binding [58]. The E291K (TEF2-
16) and E286K (TEF2-1) mutations confer dominant +1
frameshift suppression, and map to a site predicted within
the aa-tRNA binding pocket. An E291A, but not an E286A
mutant can suppress a +1 insertion, although less effec-
tively than the E286K mutation [63]. The charge reversal
substitution is likely to be important for the dramatic fi-
delity phenotype, and may reflect an electrostatic effect
with RNA. Identification of mutations in rRNA or ribo-
somal proteins that suppress these effects may help eluci-
date the connection between ribosomal components and
the ability of eEF1A to aid in maintaining translational
accuracy.

The guanine nucleotide exchange factor eEF1Baa
affects translation fidelity
The role of eEF1Ba in the cell is to regulate the activity
of eEF1A by catalyzing the release of GDP in exchange
for GTP. Based on the co-crystal structure of yeast eEF1A
and the catalytic fragment of eEF1Ba [58], it is clear that
mutations in eEF1Ba behave differently depending upon
whether they interact with domain I (GTP binding) or do-
main II (aa-tRNA binding, fig. 6A). The K120 end of
eEF1Ba is positioned in domain I of eEF1A and helps
define a region important for exchange. An analysis of 21
different conditional alleles in residues K120S121I122 of
eEF1Ba [64] demonstrated antisuppression of all three
stop codons (fig. 6C). Analysis of the F163 residue of
eEF1Ba, proposed to overlie the position of the amino-
acyl moiety of the aa-tRNA in domain II and on the op-
posite face, gives quite different results. While a strain
expressing the F163A mutant shows reduced growth, re-
duced total translation rates and sensitivity to translation
elongation inhibitors, no effect is seen on nonsense sup-
pression [58]. The lack of correlation between reduced
total translation and altered fidelity in eEF1Ba mutants
indicates nonsense suppression is not a result of slowed
elongation. Further analysis is needed to determine
whether eEF1Ba affects fidelity through eEF1A or via
another mechanism.

Altered eEF1Bgg levels and fidelity,
through or around eEF1Baa
In all eukaryotic organisms studied to date, eEF1Ba is as-
sociated with the eEF1Bg subunit. The Artemia salina

eEF1Bg protein stimulates eEF1Ba’s activity in vitro
[65]. In yeast, the genes encoding eEF1Bg, TEF3 and
TEF4, are not essential [66]. Similar to eEF1A, eEF1Bg
levels can affect the accuracy of the translation process.
Overexpression of the TEF4 gene from a GAL promoter
results in reduced readthrough of a stop codon [67]. This
phenotype is similar to the effect of eEF1Ba mutations
on the catalytic face of the protein. Deletion of both
eEF1Bg genes results in an approximately twofold in-
crease in nonsense suppression [O. Olarewaju et al., un-
published]. Thus, while eEF1Bg is not essential in vivo, it
may help modulate the activity of eEF1Ba and as a result
affect nonsense suppression. 

eEF2 and the maintenance of reading frame
The translocation of the peptidyl-tRNA from the P/A hy-
brid site to the P-site by eEF2 can produce fidelity er-
rors. The kinetics and molecular mechanics of transloca-
tion of the peptidyl-tRNA by the homologous prokary-
otic factor EF-G have been studied by the Rodnina and
Wintermeyer labs (reviewed in [68]). eEF2 catalyzes the
GTP-dependent translocation of the peptidyl-tRNA, and
the mRNA proceeds by the next three bases to expose the
next codon in the A-site (reviewed in [2, 69, 70]). Unlike
EF-G, eEF2 undergoes a posttranslational diphthamide
modification at residue His699 by a multistep conver-
sion. This modification is the site of diphtheria-toxin-
mediated ADP ribosylation which inactivates eEF2, but
no biological function has been assigned to the diph-
thamide modification [71]. The recent X-ray structure of
eEF2 and cryo electron microscopy (EM) data for the
yeast ribosome indicate this residue is located near the
mRNA [72, 73]. Also, eEF2 undergoes a reversible
phosphorylation at residue Thr57 located prior to one of
the GTP binding motifs [74–77]. The key location of
these residues in eEF2 suggests they may play a role in
maintaining fidelity.
A connection between eEF2 and translational fidelity
comes from recent work connecting peptidyltransferase
inhibitors to altered frameshifting levels [14,19]. Some of
the compounds which affect the process of PRF are ani-
somycin, preussin and sparsomycin for a –1 signal and
sordarin for a +1 signal [14–18]. Sordarin inhibits the
translocation step by binding to eEF2 directly, although
high-affinity binding requires 80S ribosomes [78]. Cryo-
EM studies with a sordarin derivative indicate that it pre-
vents release of eEF2 from the 80S posttranslocation ri-
bosome [73]. Biochemical analysis demonstrated that
sordarin blocks the translocation step preceding GTP hy-
drolysis [79]. A study of sordarin-resistant eEF2 mutants
indicates three classes with altered Ty1 retrotransposition
frequencies [18, 78, 80]. First, eEF2 mutants with the
smallest effects on Ty1 retrotransposition were generally
most sensitive to sordarin (R180G, V187F, Y521N and I529T).
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The second class encompassed eEF2 mutants that were
highly resistant to sordarin, but completely defective in
Ty1 retrotransposition (P559R, V774F and G790D). The third
class showed strong Ty1 retrotransposition and sordarin
resistance, including Q490E, S523F, S523P, P559L and P727S.
One eEF2 mutant, A562P, did not follow this trend, as it
was highly resistant to sordarin but had no significant ef-
fect on Ty1 retrotransposition. The recently derived crys-
tal structure of eEF2 bound to sordarin shows the drug
binds in a pocket well defined by these mutations and will
help further dissect the mechanism of how these residues
are involved in reading frame maintenance and transloca-
tion [72]. 
Analysis of the effect of the L-A –1 PRF inhibitor
preussin indicated clusters of eEF2 mutants resistant to
this drug [15]. A correlation was observed between the
resistance of eEF2 mutants to preussin and sordarin, con-
sistent with increased intrinsic GTP-hydrolysis rates.
This suggests that preussin, like sordarin, may allow
eEF2 to bind the ribosome but impair its GTP-hydrolyz-
ing function. In the ‘integrated model’ of PRF, it is ob-
served that –1 PRF is not affected by any of the mutants
or drugs assayed that are involved in the translocation
step [31]. After peptidyltransfer has occurred, the ribo-
some cannot undergo a –1 ribosomal frameshift. This
analysis demonstrates the strength of integrated bio-
chemical studies with in vivo analyses of multiple types
of fidelity defects.

eEF3, a fungal specific factor
The unique and essential eEF3 protein utilizes ATP, as op-
posed to the other elongation factors eEF1 and eEF2,
which possess ribosome-dependent GTPase activities.
Evidence indicates there may be a putative eEF3-like pro-
tein in prokaryotes [81]. There is no homolog in higher
eukaryotes, although metazoan ribosomes have an intrin-
sic ATPase activity [82–84] and eEF3 is required with
yeast but not metazoan ribosomes [85]. This has led to
models that eEF3, or its proposed function in E-site re-
lease of deacylated-tRNA and allosteric interactions to A-
site function, were later incorporated into the ribosome
[86]. In vitro, eEF3 stimulates the delivery of cognate aa-
tRNA by eEF1A in preference to non-cognate aa-tRNA
[87], thus suggesting a link to translational fidelity in
vivo. A temperature-sensitive (Ts–) ATPase defective
mutant eEF3 (F650S) displays increased sensitivity to
aminoglycosides [6]. However, no effect was observed
for –1 or +1 ribosomal frameshifting or nonsense sup-
pression in vivo. Typically, aminoglycosidic drug sensi-
tivities correlate with altered translational fidelity; how-
ever, it is possible that the effect of this one allele may be
specific to misincorporation. In vivo selection of more
eEF3 mutants that show fidelity defects may help answer
this question.

eRF1, eRF3 and the [PSI+] prion, an alternate form
of eRF3, affect the fidelity of termination
The readthrough of stop codons is affected by the ribo-
some, suppressor tRNAs and soluble elongation factors.
However, the two most prominent factors affecting this
process are eRF1 and eRF3, which recognize the stop
codons and are required for efficient translation termina-
tion (for review see [88]). These two essential yeast fac-
tors are highly conserved among eukaryotes [89] and are
encoded by the SUP45 and SUP35 genes, respectively
[90–93]. These gene products interact to form a func-
tional translation termination complex and mediate the
release of the nascent polypeptide chain [94–96]. Per-
turbing the functions of eRF1 or eRF3 has serious conse-
quences on stop codon recognition. Indeed, mutations in
the genes encoding eRF1 and eRF3 were identified as
strong omnipotent nonsense suppressors [97].
eRF1 recognizes all three stop codons in the A-site of the
ribosome and its peptidyl-tRNA hydrolysis activity re-
leases the newly formed protein [98,99]. This suggests a
direct interaction of eRF1 with the mRNA and the pep-
tidyl transferase center of the ribosome to transduce the
termination signal [100, 101]. As suggested by the crystal
structure of eRF1 [102], the domain 2 tripeptide GGQ is
critical for peptidyl-tRNA hydrolysis [101,103], and the
NIKS tetrapeptide of domain 1 is essential for function
and appears to mimic the anticodon loop of the aa-tRNA
[104,105].   Studies have shown that the efficiency of ter-
mination can be altered by the levels of eRF1 [106,107].
In a strain bearing a nonsense suppressor tRNA, the si-
multaneous overexpression of both the SUP45 and SUP35
genes produced an antisuppressor effect [94].  Deletion of
the C-terminal eRF1 residues required for the eRF3 inter-
action reduced the efficiency of complex formation and
nonsense suppression significantly, demonstrating the im-
portance of this association [108,109]. A novel yeast
screen was used to identify specific eRF1 mutants desig-
nated as ‘unipotent’ for the defective reading of one stop
codon, and not the other two, to define a potential stop
codon recognition site/domain of eRF1 [110]. This screen
utilized a strain of yeast that employed the use of three
auxotrophic markers (ade1-14UGA, lys2-864UAG and his7-
1UAA), each containing one of the three nonsense muta-
tions, and was verified by secondary screening and a lacZ
reporter system. Nine of the ten nonsense suppressor mu-
tations map to conserved residues within domain 1 of
eRF1 [110]. The mutants identified had a codon bias but
not complete unipotence. The I32F, M48I, V68I, V68A,
L123V and H129R suppressor mutations are located at three
pockets and define the molecular surface for eRF1 do-
main 1 into which a stop codon can be modeled. The
sup45-R2ts P86A mutation, also in domain I [111], has
been used for the analysis of interactions between ri-
bosonal RNA (rRNA) mutations and eRF mutations in
vivo (see below, table 2). The power of this genetic analy-
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sis in combination with the known eRF1 structure [102]
has further defined the necessary elements in reading the
individual stop codons and the high fidelity required for
discrimination in the termination process.
eRF3 is an eEF1A-like protein whose GTPase activity is
stimulated by eRF1 in a stop codon-dependent manner
[100,112–114]. The C-terminal eEF1A-like region of
eRF3 is necessary for viability, while the nonessential N-
terminal domain has been implicated in the formation of
the [PSI+] prion (discussed below), indicating that there
are two nonoverlapping regions of this protein [93]. In
yeast it is clear that that eRF3 has an essential function in
the termination process and is important for the fidelity
of stop codon recognition mediated through eRF1. The
sup35-R8 ts (R419G) mutation is located in the GTP bind-
ing domain and results in nonsense suppression, perhaps
linking hydrolysis with fidelity. Mutations in the genes
encoding both release factors have proven useful tools for
the genetic analysis in combination with ribosomal com-
ponent mutations. 
The [PSI+] genetic element is the prion form of eRF3 that
self-propagates in a non-Mendelian manner (reviewed in
[115]). The eRF3 protein forms aggregates that reduce
the efficiency of translation termination by lowering the
pool of soluble, active eRF3, resulting in omnipotent non-
sense suppression in [PSI+] strains [93,116]. It also ap-
pears that the [PSI+] element sequesters eRF1 into these
aggregates, which may be another mechanism for re-
duced translation termination [117]. [PSI+] can be in-
duced by the overexpression of eRF3 [118,119]. This ef-
fect can be neutralized by eRF1 overexpression, indicat-
ing that the relative levels of these two proteins are
important [106]. Overexpression of the C-terminal por-
tion of eRF3 generates an antisuppressor phenotype to
counteract the effects of its prion form in [PSI+] strains
[93]. The N-terminal domain of eRF3 is sufficient to in-
duce [PSI+] but not required in vivo for cell viability
[93,120]. Thus, prion formation is separate from the es-
sential role in termination.

Yeast ribosomal protein and rRNA components are
involved in fidelity

The ribosome is at the center of translational accuracy.
Both cis-acting factors such as rRNA and ribosomal pro-
teins and trans-acting factors that interact with the ribo-
some as described above can affect translational fidelity.
Unraveling the function of eukaryotic ribosomes by a ge-
netic approach has contributed to understanding the re-
gions of this machine that are involved in maintaining fi-
delity. Since rRNA has been highly conserved throughout
evolution, analyses performed in prokaryotes shed clues
on how to approach the study of the yeast ribosome (re-
viewed in [121]). Yeast is an excellent system due to the
ease with which one can delete or mutate genes encoding
ribosomal proteins. The capability to delete the wild-type
copy of the rRNA locus from the chromosome allows for
the analysis of mutant ribosomes in a homogeneous pop-
ulation [122,123].

rRNA plays a key role in fidelity
Based on the role of the 40S subunit in decoding, many
small subunit 18S rRNA mutations have been isolated or
studied to address fidelity. In helix 18 of the 18S rRNA,
the rdn2 (G517A) mutation causes resistance to paro-
momycin, suggesting a link to fidelity. It functions as an
antisuppressor mutation and further reduces both sup35-
R8 ts and [PSI+]-mediated suppression [122,124]. The
rdn2 mutation decreases Ty1 +1 PRF about 20-fold with-
out affecting Ty3 frameshifting [125]. The rdn12A
(C526A) mutation is also an antisuppressor that strongly
inhibits stop-codon readthrough mediated by [PSI+] or
sup45-R2 ts [124]. It is important to note that suppression
of stop-codon readthrough in [PSI+] strains is not due to
curing of the prion.
A series of mutations in helix 27 of the 18S rRNA also
function as antisuppressors. rdn4 (U912C) causes resis-
tance to paromomycin and inhibits nonsense readthrough
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Table 2. rRNA mutants linked to fidelity.

Allele Yeast Helix Non Sup35 PSI+ Sup45 FS Mis Ref.

rdn2 G517A 18S 18 anti supp supp ØTy1 [122, 124, 125]
rdn12A C526A 18S 18 anti supp supp [124]
rdn8 G886A 18S 27 anti supp Ts – Ø [124, 126]
rdn6 G888A 18S 27 anti supp Ø [111, 121, 124, 126]
rdn4 U912C 18S 27 anti supp supp ØTy1 Ø [122,124–126]
rdn1A C1054A 18S 34 supp ØTy3 [111,125]
rdn1G C1054G 18S 34 supp [111]
rdn1T C1054T 18S 34 anti supp supp supp ØTy1, ØTy3 [111, 121, 124–126]
rdn15 A1491G 18S 44 anti supp Ts – supp Ts – [124]
hyg1 U1495C 18S 44 supp supp Ts– [124]
rdn5 C3022U 25S S/R supp ØTy1, supp +1 [125, 127]
mof9 5S III IV,  supp ØL-A [130, 131]

loops,
BCDE



induced by sup45-R2 ts and sup35-R8 ts release factor mu-
tations or paromomycin exposure [122, 124]. rdn4 de-
creases Ty1 PRF sevenfold without affecting Ty3 PRF
[125]. The rdn6 (G888A) mutation strongly inhibits
sup45-R2 ts-mediated nonsense suppression but fails to
restore growth for the Ts– phenotype [111, 121, 124].
Thus, restoration of stop-codon recognition does not
completely allow restoration of the growth defect of an
eRF1 mutant. The rdn8 (G886A) mutant rescues the
sup45-R2 ts lethal mutation and decreases paromomycin-
mediated stop-codon readthrough [124, 126]. Corre-
sponding to enhanced fidelity at the A-site, rdn4, rdn6
and rdn8 all increase the accuracy of tRNA decoding, as
measured in vitro by Leu misincorporation in the poly
(U) assay [126]. 
Nucleotide 1054 in helix 34 of the18S rRNA has yielded
a series of interesting and surprisingly diverse fidelity
mutants. The rdn1A (C1054A) mutation causes dominant
nonsense suppression and is extremely sensitive to paro-
momycin [111]. This mutant decreases PRF from the
yeast Ty3 retrotransposon signal three-fold without af-
fecting Ty1 [125]. The rdn1G (C1054G) mutant also
causes dominant nonsense suppression [111]. Surpris-
ingly, the rdn1T (C1054T) mutation is an antisuppressor.
Unlike rdn1A, rdn1T decreases both Ty1 and Ty3 PRF
[125]. This mutant inhibits stop-codon readthrough in
[PSI+], sup45-R2ts and sup35-R8 ts strains as well as
UAA-specific suppression caused by a mutant tRNAGln

that decodes UAA (SLT3) [111, 121, 124, 126]. However,
it fails to restore the Ts– phenotype of sup45-R2 ts. Thus,
while this mutant reverses multiple types of nonsense
suppressor mutations, this is not sufficient to restore
growth defects by an eRF mutant, again supporting that
these phenotypes may not be linked.
Last, rdn15 (A1491G) in helix 44 of the 18S rRNA was
found as a suppressor of the Ts– growth defect of the
sup45-R2 ts mutation. This mutant only slightly reduces
sup45-R2 ts-mediated nonsense suppression; thus, as de-
scribed above, these two phenotypes are not always
linked. The rdn15 mutation partially compensates for in-
activation of eRF3 resulting from [PSI+], and unlike the
case for sup45-R2 ts, it suppresses both the Ts– and non-
sense suppression phenotypes of the sup35-R8 ts muta-
tion. The rdn15 mutation creates a C1409-G1491 base
pair analogous to that seen in the prokaryotic rRNA that
is important for high-affinity paromomycin binding.
While yeast cells are normally resistant to the killing ef-
fect of aminoglycosides yet still susceptible to the mis-
reading effect of these drugs [36, 37], rdn15 makes yeast
sensitive to paromomycin. This indicates that the natu-
rally high resistance to paromomycin is due to the miss-
ing C1409-G1491 base pair in yeast. These results have
led to the hypothesis that rdn15 decreases the transla-
tional pause at the stop codon by allowing eRF1 to rec-
ognize stop codons more effectively [124]. The hyg1

(U1495C) mutant is resistant to another aminoglycoside,
hygromycin [127]. hyg1 rescues a sup45-R2 ts mutation as
well as partially compensates for inactivation of eRF3 re-
sulting from [PSI+]. Consistent with this effect in [PSI+]
strains, this mutant enables [PSI+] strains to accumulate
larger Sup35p aggregates upon Sup35p overproduction,
suggesting lower toxicity in the presence of hyg1 [124].
hyg1 does not rescue all alterations of eRF3, such as the
sup35-R8 ts mutant, indicating allele specificity to the
suppression effects.
While many 18S rRNA mutations affect fidelity, the 25S
rRNA is also important for the accuracy of translation.
The rdn5 (C3022U) mutant is in the sarcin/ricin domain,
a universally conserved stem loop containing a GAGA
tetraloop. The rdn5 mutation changes the wild-type CG
closing pair of the tetraloop to a weaker UG pair. The
sarcin/ricin loop has also been shown to play an impor-
tant role in binding elongation factors [128, 129], provid-
ing a logical place to analyze the link between the eEFs
and the ribosome. The rdn5 mutant displays multiple fi-
delity defects: suppression of several stop codons and a
nonprogrammed +1 insertion, resistance to the aminogly-
cosides paromomycin, G418 and hygromycin, and a five-
fold decrease in Ty1 PRF [125,127]. Based on the link to
elongation factors, this mutation may cause reduced
affinity for the release factors, while at the same time en-
hancing the ability of noncognate tRNA to decode the A-
site codon.
Another large ribosomal subunit rRNA that has been
shown to affect the process of translational fidelity is the
5S rRNA, which sits at the crown of the 60S large sub-
unit. The 5S rRNA was initially linked to fidelity when
identified as the mof9 mutation [130]. More recently a
highly detailed mutagenesis of the 5S rRNA was under-
taken [131]. This analysis demonstrated 44 out of 239 5S
rRNA alleles tested suppressed the ade2-1UAA mutation
and 47 out of 223 suppressed the can1-100 UAA mutation.
Suppression occurred with a threefold greater frequency
for mutations in conserved nucleotides. Of 229 alleles ex-
amined for –1 PRF by the killer virus assay, over one-
third had discernible effects. Mapping the mutant 5S
RNA alleles with regard to nonsense suppression and –1
PRF revealed fidelity defects clustered in helicies III and
IV and loops B, C, D and E. It is proposed that one of the
major functions of 5S rRNA may be to enhance transla-
tional fidelity by acting as a physical transducer of infor-
mation between the different functional centers of the ri-
bosome. 

Ribosomal proteins are involved in the fidelity of
translation
In yeast, as in Escherichia coli, most ribosomal proteins
tested have been shown to be essential for the function of
the ribosome. Data show that even though rRNA mainly
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occupies the accuracy center of the ribosome, proteins
also play a role and have been conserved through out evo-
lution ([132], reviewed in [121]). Since decoding takes
place in the small subunit, many small ribosomal subunit
proteins (rps) are also involved in the process of quality
control during translation. The rpS3 mutant allele suf14-
1 (K108E) is resistant to paromomycin and suppresses a
series of +1 insertion and stop-codon mutations [133].
The rpS2 (formerly rpS4) sup44-1 allele is a paro-
momycin-sensitive omnipotent suppressor [134–136].
Isolated mutant 40S ribosomal subunits misread at an in-
creased frequency in the poly (U) assay, indicating that it
optimizes translational accuracy [137]. Mutations in rpS5
and rpS9 (formerly rpS13) are also known to affect the
efficiency of stop-codon recognition and are important
for maintaining the fidelity of termination (reviewed in
[35]). The rpS9A sup46-2 allele is a paromomycin-sensi-
tive omnipotent suppressor that also causes misreading at
an increased frequency in a poly (U) assay [134, 135,
138]. Interestingly, rpS28 can alter translational accuracy
in both directions. For example, rps28-5 (G8C) is a sup-
pressor mutation while rps28-12 (A113V) is an antisup-
pressor mutation [139], although neither affect Ty1 PRF
[125]. Various rpS28 mutations (K 62N, K62T, K62Q) were
shown to optimize translational accuracy in the in vitro
poly (U) misincorporation assay [137]. These rpS28 point
mutations reduce the sensitivity to paromomycin and
show an antisuppressor effect against omnipotent SUP44
(rpS2) and SUP46 (rpS9) suppressor alleles [132]. Inter-
estingly, rpS28 K 62R behaves oppositely by decreasing
translational accuracy and is a strong omnipotent sup-
pressor. The E. coli equivalents to rpS28, rpS2 and rpS9
(S12, S5 and S4) are essential for the control of transla-
tional accuracy, showing the conservation of these func-
tions. 
The large ribosomal subunit protein L3 (rpL3) is located
near the peptidyltransferase center of the ribosome. rpL3
was isolated as mak8-1 (maintenance of killer, W255C
P257T) by the inability of mutant strains to maintain the
M1 double-stranded RNA (dsRNA) virus. This mutant
promotes approximately three- to fourfold increases in –1
PRF efficiencies. Strains harboring the mak8-1 allele are
resistant to the effects of peptidyltransferase inhibitors on
–1 PRF [17]. Another rpL3 mutant tested, L3D, lacking
the N-terminal 100 amino acids exerts a dominant effect
on –1 PRF and killer virus maintenance [17].
Ribosomes prepared from strain deleted for RPL39 or
carrying the spb2-1 mutant form of this gene display a
fourfold increase in Leu misincorporation in the poly (U)
assay [140]. These rpL39 mutants have a substantial in-
crease in A-site binding, as is typical for error-prone mu-
tants. This fidelity effect may arise from a higher affinity
for noncognate tRNAs, which leads to translational er-
rors. These error-prone mutants, particularly the RPL39

null allele, are hypersensitive to paromomycin, which
again correlates with a fidelity defect.
A link between rRNA and ribosomal protein effects on fi-
delity are seen with rpL5 (formally rpL1 or YL3), a pro-
tein that binds 5S rRNA. HA epitope-tagged rpL5 alleles
rpl5-HA1 (K27E), rpl5-HA2 (T28A), rpl5-HA3 (V53G),
rpl5-HA4 (G91R), rpl5-HA5 (K289E) and rpl5-HA9 (lack-
ing the last 2 aa) promote increased frameshifting effi-
ciencies in both the –1 and +1 directions [141]. No corre-
lation was observed between the alteration in rpL5 and 5S
rRNA association and PRF. For example, rpl5-HA2 has
the greatest effect on –1 and +1 frameshifting but binds
5S RNA better than some of the other mutants. Biochem-
ically, these mutants have decreased affinities for the pep-
tidyl-tRNA in the ribosome. Analysis of sparsomycin re-
sistance, a P-site-specific peptidyltransferase inhibitor
that specifically increases the binding of peptidyl-tRNA
with ribosomes, correlated with the severity of the
frameshift defect in all of the mutants tested. In the long
term more studies of ribosomal proteins and the rRNA
with which they associate may link functions of the two
components of the ribosome in fidelity.

Other links to fidelity: the NMD pathway and the
actin cytoskeleton

While this review has focused on the translational com-
ponents that affect the fidelity of protein synthesis, other
cellular factors are linked to this process. The NMD path-
way, with its emphasis on identifying mRNAs with pre-
mature stop codons, has a logical link to the termination
process. An increasing body of work shows physical links
between components of the two processes as well as alle-
les of mutations in the NMD pathway that can separate
nonsense suppression effects from mRNA stability ef-
fects (reviewed in [10]). Additionally, translational com-
ponents, including the ribosome [142] and some of the
soluble protein synthesis factors including eEF2 [143,
144], eEF1Bg [145] and eEF1A [146, 147], interact with
cytoskeletal components. A set of 25 isogenic yeast actin
mutants were examined for links to translational fidelity
[148]. The act1-2 (A58T) and act1-122 (D80A D81A) mu-
tant strains showed a significant increase in nonsense
suppression. These mutants do not affect –1 PRF, indicat-
ing specificity for effects on the readthrough of stop
codons. In the presence of excess eEF1A, the act1-2 and
act1-122 showed increased and reduced sensitivity to
paromomycin, respectively. Overall, these results support
the biological significance of the interaction between
eEF1A and the actin cytoskeleton. Since nonsense sup-
pression can occur as a result of reduced fidelity by elon-
gation or termination factor mutants, the role of actin in
this process remains to be determined.
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Summary

Yeast has proven an excellent model system for studies of
both the mechanism and regulation of protein synthesis.
The genetic tools employed have highlighted the roles of
key players in translational fidelity such as eEF1A. With
the emerging molecular view of the ribosome, systems to
manipulate not only ribosomal protein genes but also the
rRNA itself are likely to shed light on the important ef-
fects of both ribosomal components on fidelity. This is
leading to further functional links between the soluble
protein synthesis factors and ribosome-associated func-
tions on fidelity.
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