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Abstract. The major route of protein translocation in
bacteria is the so-called general secretion pathway (Sec-
pathway). This route has been extensively studied in 
Escherichia coli and other bacteria. The movement of
preproteins across the cytoplasmic membrane is medi-
ated by a multimeric membrane protein complex called
translocase. The core of the translocase consists of a pro-
teinaceous channel formed by an oligomeric assembly of
the heterotrimeric membrane protein complex SecYEG
and the peripheral adenosine triphosphatase (ATPase)
SecA as molecular motor. Many secretory proteins utilize
the molecular chaperone SecB for targeting and stabiliza-
tion of the unfolded state prior to translocation, while
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most nascent inner membrane proteins are targeted to the
translocase by the signal recognition particle and its
membrane receptor. Translocation is driven by ATP hy-
drolysis and the proton motive force. In the last decade,
genetic and biochemical studies have provided detailed
insights into the mechanism of preprotein translocation.
Recent crystallographic studies on SecA, SecB and the
SecYEG complex now provide knowledge about the
structural features of the translocation process. Here, we
will discuss the mechanistic and structural basis of the
translocation of proteins across and the integration of
membrane proteins into the cytoplasmic membrane.
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Introduction

The cytoplasm of a cell is separated from the external en-
vironment by a membrane that ensures the maintenance
of a unique internal ion and proton composition. The
same membrane imposes a barrier for proteins that are
synthesized in the cytosol but function outside the cell.
Various transport mechanisms have evolved to allow pro-
teins to cross membranes without compromising the bar-
rier function. 
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In bacteria, the major route of protein translocation
across the cytoplasmic membrane is the so-called general
secretion pathway (Sec-pathway). Most of the compo-
nents that function in bacterial protein translocation were
originally identified by genetic studies in Escherichia
coli [1, 2]. The pathway involves a membrane embedded
enzyme complex called translocase (fig. 1) that consists
of a peripheral adenosine triphosphatase (ATPase) SecA
[3] that acts as a molecular motor, and a large integral
membrane domain that constitutes the protein-conduct-
ing channel. The core of this channel is formed by the
SecY [4] and SecE [5] proteins that can associate with the
additional integral membrane subunit SecG [6–8], or
with another heterotrimeric complex composed of the
SecD, SecF and YajC proteins [9–11]. The SecYEG com-
plex is highly conserved, and homologs have been found
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in the cytoplasmic membrane of archaea, the chloroplast
thylakoid membrane and the eukaryotic endoplasmic
reticulum (reviewed in [12–15]). 

Mechanistic and structural insight in protein
targeting

A first step in the translocation of preproteins across or in-
tegration of inner membrane proteins into the cytoplasmic
membrane is their targeting to the translocase. E. coli con-
tains two major targeting routes mediated by the molecu-
lar chaperone SecB and the signal recognition particle
(SRP). Secretory proteins are synthesized as precursor
proteins (preproteins) with N-terminal signal sequences
(for a review see [16]) that generally comprise 18 up to 
30 amino acids. The signal sequence contains a positively
charged N-terminal domain (N-domain), a nonpolar 
hydrophobic core (H-domain) and a more polar C-do-
main. The C-domain contains the cleavage site for signal
peptidase, a membrane-bound protease that removes the
signal peptide from the preprotein during the translocation
reaction. Inner membrane proteins often do not have a sig-
nal peptide, and instead their hydrophobic transmembrane
domains function as an internal signal. After translation,

preproteins and inner membrane proteins are recognized
by the targeting factors that direct them to the transloca-
tion site. Secretory proteins are preferentially targeted via
the SecB pathway, while some preproteins with a very hy-
drophobic signal peptide and most inner membrane pro-
teins (IMPs) are targeted by SRP. The divergence between
the two targeting pathways occurs when preproteins
emerge from the ribosome [17]. The strength of the inter-
action with SRP is dependent on the hydrophobicity of the
H-region [18]. An increased hydrophobicity of the signal
sequence enhances the SRP dependency of preprotein
translocation, while the requirement for SecB is reduced
[19]. SRP binds the signal sequence of short nascent pre-
proteins [18, 20], whereas SecB seems to bind only to long
nascent chains (>200 residues ) [21]. SRP is proposed to
compete with trigger factor for binding of the signal se-
quence domain of the nascent chain [22]. Trigger factor is
a cis-trans proline isomerase that scans the newly synthe-
sized proteins while bound at the ribosome [23]. Interest-
ingly, deletion of the gene-encoding trigger factor (tig) re-
sults in acceleration of protein export, and preproteins ap-
pear no longer dependent on SecB for targeting [24]. This
suggests a model in which trigger factor prevents secre-
tory proteins from entering the SRP-dependent cotransla-
tional pathway [22]. Binding of trigger factor to a large
portion of the nascent presecretory chain may obstruct
early recognition by the translocase, whereupon molecular
chaperones such as SecB are needed for stabilization and
targeting [24].

SecB-mediated protein targeting
SecB is protein of 17 kDa [25] (for recent reviews see [26,
27]) that is a homotetramer, organized as a dimer of
dimers [28, 29]. Biochemical evidence has shown that the
SecB tetramer contains two types of preprotein binding
sites [30]: one that interacts with polypeptides with ex-
tended b-sheet stretches [31, 32] and another that interacts
with hydrophobic polypeptide regions [30, 33–36]. In the
crystal structure of the Haemophilus influenza SecB (fig.
2), the putative peptide-binding groove consists of a 70-Å-
long surface-exposed channel at each side of the tetramer
[28]. Consistent with the biochemical data, each peptide-
binding groove seems to contain two subsites that are in-
volved in recognition of distinct features of the preprotein
[28]. One subsite is a deep cleft lined with mostly con-
served aromatic residues that might play a role in binding
of hydrophobic and aromatic regions of the polypeptides
[28], while the other subsite forms a shallow open groove
with a hydrophobic surface that might be involved in the
binding of b-plated sheets [28]. Since only a single pre-
protein is bound by the SecB tetramer, the polypeptide is
presumably wrapped around SecB to occupy the peptide-
binding groove on both sides of the tetramer. As SecB has
been crystallized without a peptide substrate in its binding

Figure 1. Schematic overview of the components of bacterial
translocase. After a preprotein has emerged from the ribosome, it
can be targeted to the translocase via two distinct pathways that in-
volve either the molecular chaperone SecB or the signal recognition
particle (SRP) and FtsY. Trigger factor competes with SRP for the
binding of the nascent polypeptide. Proteins are translocated across
the membrane through a membrane-integrated pore complex that
consists of the SecY, SecE and SecG proteins. Protein translocation
is driven by the hydrolysis of ATP by SecA, and once translocation
has been initiated at the expense of ATP, the proton motive force can
drive further translocation. During translocation the signal se-
quence can be removed by signal peptidase (Lep). YidC and the
SecDFYajC complex are other components involved in protein
translocation, but their exact function is not yet known.
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groove, the exact location of the preprotein binding sites
still remains to be established.
The mechanism by which SecB differentiates between se-
cretory and nonsecretory proteins is not well understood.
It is generally believed that the signal sequence does not
contribute directly to the interaction of preproteins with
SecB and that SecB mainly recognizes the mature part of
a preprotein (see [36] and references therein). In a model
where binding selectivity is based on kinetic partitioning
between folding and association with SecB [37], the sig-
nal sequence could indirectly affect the SecB binding
through retarding the folding of the mature domain of the
preprotein [38]. This hypothesis is supported by the neg-
ative correlation between the rate of folding of the pre-
cursor of maltose-binding protein (MBP) and its ability to
associate with SecB [39]. Other studies, however, have
shown that the rate of association of SecB with polypep-
tide substrates is much faster than polypeptide folding
and limited only by the rate of collision [33, 35, 40].
Therefore, interaction between SecB and the ribosome
emerging preprotein may be limited by the rate of chain
elongation rather than the rate of folding [33]. Since in
vivo translocation becomes more SecB dependent when
the signal sequence of the preprotein is omitted [41], the
signal sequence and the retardation of folding are not
necessary for the SecB interaction per se. Various me-
thods have been used to identify SecB binding sites in
preproteins (reviewed in [26]). A screen of a peptide li-
brary for SecB binding activity revealed that peptides
with a length of about nine residues are preferentially

bound when enriched in aromatic and basic residues,
whereas acidic residues were strongly disfavored [42].
These peptide sequences occur regularly but are found
with a similar frequency in both cytoplasmic and secre-
tory proteins. Selectivity might be provided by the inter-
action of SecB and the signal sequence with the other
components of the translocase, in particular SecA [42]. 
SecB targets preproteins to the translocase via a high-
affinity interaction with SecYEG-bound SecA (Kd 10–
30 nM) [43]. The SecB binding domain in SecA consists
of a highly conserved region comprising only the C-ter-
minal 22 amino acyl residues [44]. This region is rich in
glycine residues and basic amino acids and contains three
cysteines and a histidine residue that together coordinate
a zinc atom [45]. These cysteines are not essential to sup-
port preprotein translocation [46], but are needed for an
interaction between SecA and SecB [45]. Zinc presum-
ably stabilizes the fold of the highly positively charged 
C-tails of SecA, which are in close proximity within the
SecA dimer [47] and are both needed for the high-
affinity binding of SecB [44]. Site-directed mutagenesis
of SecB indicated that the SecB-SecA interaction is af-
fected by mutations in the well-conserved amino acids
Asp20, Glu24, Leu75 and Glu77 [31, 48]. These residues
are clustered on a solvent-exposed region on both sides of
the SecB tetramer [28], and provide a negatively charged
surface that may interact electrostatically with the posi-
tively charged SecB-binding C-terminus of SecA [44].
While the mature domain of the secretory protein is
bound by SecB, the signal sequence is exposed for down-

Figure 2. Relative sizes of key components of the bacterial translocase. Solvent accessible surfaces are shown of the H. influenza SecB
tetramer (pdb entry: 1FX3) [28], B. subtilis SecA dimer (pdb entry: 1M74) [83] and a schematic representation of the dimensions of the
membrane-integrated SecYEG dimer [126]. A membrane composed of 1-palmitoyl 2-oleoyl phosphatidyl choline.



stream interactions. Association of the signal sequence
with the SecYEG-bound SecA causes an increased SecA-
SecB binding affinity [44]. This in turn elicits the disso-
ciation of the preprotein from SecB, while SecB release
from the membrane occurs upon the binding of ATP to
SecA. This process completes the targeting reaction and
allows SecB to re-bind a newly synthesized nascent se-
cretory protein.

SRP-mediated protein targeting
SRP-mediated protein targeting has been extensively
studied in the endoplasmic reticulum (ER) of mammals
(for a detailed description see [49]). The mammalian SRP
consists of a complex of six proteins that are assembled
on a 7S RNA scaffold. Interaction with the hydrophobic
signal sequence of nascent polypeptide chains occurs via
the 54-kDa guanosine triphosphatase (GTPase) subunit.
After membrane targeting, the ribosome-nascent chain
(RNC) complex binds in a GTP-dependent fashion to the
SRP receptor that is composed of the peripheral GTPase
SRa and the transmembrane GTPase SRb. SRP-depen-
dent targeting in prokaryotes appears to follow a similar
mechanism as in eukaryotes (for a review see [50]), but
the components involved have a less complex subunit
composition. E. coli SRP is composed of a complex of a
4.5 S RNA and a 48-kDa GTPase called P48 or Ffh (for
fifty-four-homolog) [51] that interacts specifically with
the signal sequence of nascent preproteins and hydropho-
bic regions of nascent membrane proteins [20, 52]. In eu-
karyotes, this interaction retards synthesis of the nascent
chain [53], but translational arrest has not been observed
in bacteria. SRP from Gram-negative bacteria lacks the 5¢
and 3¢ RNA domains [54] and the interacting eukaryotic
SRP9 and SRP14 subunits that are essential for transla-
tional arrest [55]. It has been suggested that the shorter
traffic distances and the faster translocation rates in bac-
teria overcome the need for translation arrest [56]. How-
ever, translocation arrest may occur in Gram-positive
bacteria. Bacillus subtilis contains the 5¢ and 3¢ RNA do-
mains that are essential for translation arrest in eukary-
otes, and also a possible homolog of the eukaryotic
SRP9/14 called HBsu has been identified [54]. 
RNC-bound SRP interacts with FtsY [57], a prokaryotic
homolog of the a subunit of the SRP receptor. FtsY can
bind to membranes via interaction with phospholipids
[58]. It has also been argued that this association in-
volves a yet unidentified membrane protein that may
function as a receptor [59], but a bacterial homolog of
SRb has not been found in bacteria. This has led to the
suggestion that FtsY fulfills the functions of both the
SRa and SRb subunits [60]. The interaction between
FtsY and Ffh changes the nucleotide binding affinity of
both proteins and allows them to bind GTP. Upon GTP
hydrolysis by both SRP and its receptor, the RNC-SRP-

FtsY complex dissociates, and the released RNC com-
plex is transferred to the translocase. Cross-linking data
have shown that the release of SRP from the RNC com-
plex and association of the RNC complex with the
translocase are linked [61]. It is essential that the RNC
complex is released close to the translocase, but the ex-
act regulation of this event and the role of GTP hydroly-
sis have not been clearly defined.
Ffh is composed of a so-called NG domain (N, amino
terminal; G, GTPase) that contains the GTP binding site
and a methionine-rich C-terminal M-domain that is im-
plicated in the binding of signal sequences and SRP
RNA [62]. The central G-domain is closely related to the
p21Ras GTPase family [57]. Nucleotide occupancy of
the G-domain is sensed or controlled by the closely as-
sociated N-domain via an interdomain contact, and this
event could be part of the regulatory steps that control
GTP binding and hydrolysis [63]. FtsY contains a simi-
lar NG-domain and a strongly acidic N-terminal domain
that is involved in its membrane targeting [64]. In both
proteins, the N-domain is closely associated with the G-
domain, and the interface between both domains is
highly conserved [65, 66]. The interaction between Ffh
and FtsY appears to occur mainly via their structurally
related NG-domains [65, 67]. The NG-domain of FtsY is
fully functional in the targeting of Ffh to the membrane
when it is fused to an unrelated membrane protein [60].
The 4.5 S RNA and the M-domain of Ffh are not re-
quired for the stimulation of GTPase activity in vitro [68,
69]. However, the binding of 4.5 S RNA to Ffh seems to
control the association and dissociation of SRP and FtsY
[68]. 
Cross-linking and functional studies have demonstrated
that the signal sequence binding site of Ffh is localized in
the M-domain [70–72]. This domain consists of a deep
groove that is lined almost exclusively with the side
chains of conserved hydrophobic residues [73]. The di-
mensions and the hydrophobic character of the groove
suggest that it forms the signal sequence-binding pocket
of SRP [73]. A conserved feature of the M-domain is an
unusually high content of methionine residues. These 
methionines were proposed to be arranged in so-called
methionine bristles that are involved in signal sequence
binding [57]. The position of these methionines in the
crystal structure of Thermus aquaticus showed that these
residues indeed line the putative hydrophobic signal 
sequence binding groove [73]. Also, the M-domain 
recognizes the conserved RNA domain IV. As part of 
the RNA lies adjacent to the groove that has been impli-
cated in signal sequence binding [74], the functional 
signal sequence binding site may consist of both pro-
tein and RNA. Determination of the precise localization
of the signal sequence binding site may require a cocrys-
tal of the M-domain-RNA complex and a bound signal
peptide.
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Mechanism and structural insights in preprotein
translocation

The SRP and SecB-mediated targeting routes converge at
the translocase [61]. The core of the translocase consists
of the motor protein SecA and the integral membrane
subunits SecY and SecE. Together they suffice for the re-
constitution of preprotein translocation in vitro [75, 76].
In the cell, the SecYE complex is associated with a small
integral membrane protein named SecG that although not
essential for protein translocation per se, enhances the
translocation rate in particular in vitro. SecD, SecF and
YajC are integral membrane proteins that form another
heterotrimeric complex that can associate with the Sec
YEG complex [77]. The exact role of these proteins is not
known, but in their absence, pleiotropic translocation de-
fects occur. The following section discusses the structure
and function of the translocase and its subunits.

SecA, an ATP-dependent motor protein
The ATPase SecA functions as the ATP-dependent motor
that drives the translocation reaction. SecA is a homod-
imeric protein with 102-kDa subunits [47, 78]. 
Biochemical evidence has indicated that SecA contains
two nucleotide binding sites (NBSs) [79] that are respon-
sible for the high (NBS-I, Kd =  0.13 mM) and low-
affinity (NBS-II, Kd = 340 mM) binding of ATP [79].
Both NBSs contain a Walker A (GXXXXGKT) and a
Walker B (hXhhD) motif [80]. NBS-I is present in the N-
terminal domain of SecA [79]. Its Walker B domain
shows homology to the DEAD-box sequence that is
found in a subclass of SF-II helicases [81], and is atypi-
cal as it is present as a tandem repeat [82]. Recently, the
crystal structures of B. subtilis SecA and Mycobacterium
tuberculosis SecA1 were solved [83, 84]. In the B. subtilis
SecA structure, Mg2+-ADP is bound at the interface be-
tween two F1-type nucleotide binding folds (NBF-I and
II) that show resemblance to the tandem motor domains
in superfamily I and II helicases [83]. The Walker A mo-
tif of NBF-I forms the P-loop which is part of the binding
pocket for the a- and b-phosphate of the bound nu-
cleotide [83]. The NBF-I Walker B domain forms a 
hydrophobic b strand that terminates at Asp207, and this
residue contacts the Mg2+ cofactor [83]. Mutational
analysis indicates that the aspartate of the second Walker
B motif of this NBF-I is also involved in coordination of
the Mg2+ [85]. Experiments suggested that the conserved
Asp133 plays a role as a catalytic carboxylate to activate
a water molecule to attack the g-phosphate [86]. How-
ever, in the crystal structure of B. subtilis SecA Glu208
appears to be the catalytic base in the ATP hydrolysis re-
action, as it makes a H-bond to a water molecule that is
positioned to make a hydrophilic attack on the g-phos-
phate of ATP [83]. Other direct contacts to the nucleotide

are made by helicase motifs V and VI, which are located
in a different region of NBF-II than the topological equiv-
alents of the Walker A and B motifs [83]. 
NBS-II was mapped at a more C-terminal position than
NBS-I. The use of bifunctional photo-activatable ATP
analogs indicates that NBS-II is located at or near the sub-
unit interface of the SecA dimer [87]. The structures of
Mg2+-ADP-bound B. subtilis SecA and Mg2+-ADP-b-S-
bound M. tuberculosis SecA1, however, lack indications
for the binding of a second nucleotide [83, 84]. 
Biochemical evidence indicates that both NBS-I and II
are needed for the preprotein-stimulated SecA ATPase
activity and preprotein translocation [79, 82, 86, 88].
Since in vitro translocation can be driven by ATP con-
centrations far below the Kd of NBS-II [89], a regulatory
role of NBS-II in protein translocation appears more ap-
parent. A recent study suggests that NBS-II and a con-
served C-domain sequence called the intramolecular reg-
ulator of ATP hydrolysis (IRA-1) regulate the ATP hy-
drolysis at NBS-I [90]. In this mechanism, NBS-II does
not function as a true ATP hydrolytic site. IRA-1 is pro-
posed to downregulate the ATPase activity of cytoplasmic
SecA and to permit ATP hydrolysis by SecYEG-bound
SecA upon translocation [90]. NBS-II is located within a
second IRA domain (IRA-2) in the N-terminal 65-kDa
domain that is proposed to control ADP release and opti-
mal ATP catalysis by binding to NBS-I [91]. 
SecA localizes both to the cytosol and the cytoplasmic
membrane [92]. The association with the membrane oc-
curs via a low-affinity interaction with negatively
charged phospholipids [93] and a high-affinity interac-
tion with the SecYEG complex [43]. The C-terminus of
SecA appears to be involved in the low-affinity electro-
static interaction with anionic lipids [94]. The SecA do-
mains that interact with the major channel subunit SecY
are unclear. Ligand affinity blotting identified the C-ter-
minal third of SecA as the interacting domain [95]. In
contrast, studies with isolated domains of SecA indicated
that the N-terminal domain is responsible for the interac-
tion with the SecYEG complex, while the C-terminal do-
main interacts with phospholipids [96]. Ligand affinity
blotting indicated that SecA binds to the first 107 amino
acid residues of SecY [95]. This region covers the first
three transmembrane segments (TMSs) of SecY and can
also be cross-linked to SecA in vivo [97]. In addition, mu-
tational studies suggest that cytoplasmic loops 5 and 6
(i.e. C-5 and C-6) of SecY are important for a functional
SecY-SecA interaction [98]. SecG is not needed for the
high-affinity interaction between SecA and SecYE [77,
99], but SecA can be cross-linked to SecG when actively
involved in the translocation reaction [100]. During the
catalytic cycle of SecA-mediated protein translocation,
the two transmembrane domains of SecG undergo a re-
markable topology inversion (see below) [101]. A par-
tially functional SecA truncate that lacks the first eight N-
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terminal amino acid residues is defective in the SecG
topology inversion [102]. These studies suggest that
SecA and SecG interact at a later stage of the transloca-
tion reaction, but that SecG is not needed for the initial
binding of SecA to the SecYE complex. 
The structure of the SecA dimer that was proposed to be
the active form of M. tuberculosis, SecA1, shows a cen-
tral elliptical pore with a size of 10 ¥ 35 Å [84]. This
SecA pore was suggested to align with the integral mem-
brane channel that is formed by the SecYEG complex
(see below) [84]. A recent electron micorscopy study pro-
poses that also E. coli SecA forms ringlike structures
[103]. The ringlike E. coli SecA structures are, however,
only observed after prolonged (more than 6 h) incubation
in the presence of negatively charged phospholipids
[103], and their physiological role remains to be estab-
lished.
When SecA is bound to the SecYEG complex, it is
primed for the high-affinity interaction with SecB-pre-
protein complexes [43]. As outlined before, this interac-
tion is enhanced by binding of the signal sequence to
SecA [48], which in turn causes the release of the mature
preprotein domain from SecB. SecA can interact both
with the signal sequence and mature domain of the pre-
protein [93]. Cross-linking studies have shown that the N-
terminal residues 219–244 of SecA are essential for
binding of a synthetic signal peptide [104]. Mutations
that allow the translocation of preproteins with a defec-
tive signal sequence (prlD suppressor mutations) are scat-
tered throughout the entire SecA structure [83]. Many of
these prlD mutations coincide with azi mutations that
render SecA resistant to azide, an inhibitor of the translo-
cation ATPase [105, 106]. prlD or azi mutations alter the
conformation of SecA, lower the affinity for ADP and in-
crease the membrane ATPase activity [107]. This sug-
gests that signal sequence suppression is caused by an al-
tered turnover of SecA rather than a restoration of the de-
fective signal sequence recognition event. Cross-linking
studies indicate that the preprotein binding region is lo-
cated just adjacent to NBS-I between amino acid residues
267 and 340 [108]. Mutagenesis of Tyr-326 results in
strong translocation defects and abolishes SecA ATPase
activity, possibly as a result of a defect in preprotein re-
lease [109]. In the B. subtilis SecA structure, the putative
preprotein binding region is composed of two closely as-
sociated subdomains that are inserted in the first nu-
cleotide-binding fold [83]. A similar domain was identi-
fied in the M. tuberculosis SecA1 structure [84]. In addi-
tion to these so-called preprotein cross-linking domains
(PPXDs), two other sites in B. subtilis SecA were pro-
posed that could be involved in substrate binding [83].
One region forms a weakly packed, methionine-rich, con-
served hydrophobic interface between NBF-II and the N-
terminus of a C-terminal a-helical domain termed the 
a-helical scaffold domain (HSD). This region has been

assigned as ‘methionine canyon’ and possibly functions
as a binding site for phospholipids or preproteins. The
other putative preprotein binding site is a groove with a
conserved hydrophobic surface at the interface of NBF-I
and the N-terminal PPXD. The surface of this site is sur-
rounded by a conserved acidic environment that may
electrostatically attract the positively charged N-terminus
of the signal sequence. Since both B. subtilis and M. tu-
berculosis SecA were crystallized without the preprotein
bound, the exact location of the preprotein binding site re-
mains to be determined.

SecYEG complex, the protein-conducting channel
The protein-conducting pore of the translocase is formed
by a complex of the SecY, SecE and SecG proteins. The
heterotrimeric organization of the translocation pore is
conserved throughout the three kingdoms of life. The
translocon of the eukaryotic ER membrane, the Sec61p
complex, consists of three subunits, i.e. Sec61a, Sec61b
and Sec61g, of which Sec61a and Sec61g (Sss1p in Sac-
charomyces cerevisiae) are homologous to SecY and
SecE, respectively. Sec61b, which is called Sbh1 in yeast
[110], has no sequence similarity to SecG. Archaeal
Sec61a, Sec61g and Sec61b are more closely related to
the eukaryotic counterparts than to the bacterial proteins
[111, 112]. 
SecY is the largest subunit of the translocation channel
and interacts with SecA, SecE and SecG. SecY is a poly-
topic membrane protein with a mass of 48 kDa. Hy-
dropathy analysis predicts 10 TMS [113]. Large domains
of the primary sequence of SecY are highly conserved.
All conditional lethal mutants identified so far map in the
conserved regions. Dominant loss-of-function mutations
in SecY have only been identified in the C-5 loop, which
has been implicated in SecA binding [98, 114]. SecY
forms a stable complex with SecE that does not dissoci-
ate in vivo [115]. The association with SecE protects
SecY from degradation by the membrane-bound protease
FtsH [116] that is involved in the degradation of
unassembled membrane protein complexes. E. coli SecE
is a 14-kDa protein with three TMSs [117], of which only
the C-terminal part including the third TMS appears to be
essential for protein translocation [118]. Genetic and bio-
chemical studies have identified several domains that are
involved in the SecY-SecE interaction. Many prl muta-
tions that suppress secretion defects of signal sequence-
defective mutants map to SecY and SecE. Interestingly,
specific combinations of prl mutations in SecY and SecE
result in synthetic lethality, and it has been proposed that
these represent sites of interaction. According to this hy-
pothesis, the first periplasmic loop (P1) of SecY interacts
with P2 of SecE, and TMS3 of SecE interacts with TMS7
and TMS10 of SecY [119]. Cysteine-scanning mutagen-
esis studies have confirmed the close proximity of the
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periplasmic domains [120], and identified contacts be-
tween SecE TMS3 and SecY TMS 2, 7 and 10 [121–
123]. In addition, mutations in C-4 of SecY [124] and the
C-2 loop and TMS3 of SecE [125] destabilize the SecY-
SecE interaction. Recently, an 8-Å resolution, three-di-
mensional (3D) map of the SecYEG complex was recon-
structed from two-dimensional (2D) SecYEG crystals
[126]. In this crystallographic dimer, a highly tilted helix
is present at the contact interface. These data are consis-
tent with cysteine-scanning mutagenesis studies that
identified the third TMS of SecE at the contact interface.
Cysteine-scanning mutagenesis indicated that TMS3 of
SecE must be highly tilted while contacting TMS 2, 7, 10
and possibly TMS 5 of SecY [123]. Remarkably, most prl
mutations in SecY and SecE cluster in this set of TMSs.
The prlA mutations in SecY point away from the sites of
contact with TMS 3 of SecE, and thus likely affect the
overall SecYE conformation.
Although SecG is not essential for protein translocation,
it stimulates protein translocation in vitro, in particular at
lower temperatures [127] and when the proton motive
force (PMF) is low or absent [128]. SecG is a 12-kDa pro-
tein with two TMSs that are connected via an apolar cy-
tosolic segment [101]. Co-immunoprecipitation studies
suggest that SecG interacts only with the SecY subunit
[129]. Cysteine-scanning mutagenesis demonstrated that
SecG is in close proximity to the C-2 and C-3 domains of
SecY [130]. 
Recent biochemical and structural analysis of the bacte-
rial SecYEG complex and the eukaryotic Sec61p com-
plex has provided insight on how these proteins form a
translocation pore. Electron microscopic studies on the
eukaryotic Sec61p complex [131] show the formation of
ringlike structures upon the addition of ribosomes or 
after coreconstitution with the yeast Sec62-63 complex.
These structures are quasi-pentagonal oligomers com-
posed of three to six Sec61p complexes [131]. A 3D re-
construction of the structure of the mammalian Sec61p
complex bound to a nontranslating ribosome suggests
that the central cavity or pore of Sec61p aligns with the
protein-conducting channel of the large ribosomal sub-
unit [132]. Quasi-pentagonal structures were also ob-
served with the purified B. subtilis SecYE complex, but
these appeared only as a small fraction [133]. The E. coli
SecYEG complex was also visualized by electron mi-
croscopy. In the absence of translocation ligands, Sec
YEG exists as particles with a length of 8.5 nm and a
width of 6.5 nm, and a weakly stained central indentation
[134]. From mass analysis, these particles were assigned
to represent dimeric forms of SecYEG, and their size
corresponds with the structure of the SecYEG dimer as
analyzed from 2D crystals. Upon addition of SecA in the
presence of a nonhydrolysable ATP analog AMP-PNP, or
ATP and a preprotein trapped in the translocation chan-
nel, the repurified SecYEG complex appeared to be as-

sembled into a much larger structure with a width and
length of 10.5 nm and a central stain-filled depression of
about 5 nm [134]. Size and mass measurements suggest
that this large structure corresponds to a SecYEG
tetramer. The putative pore size corresponds to the val-
ues determined for the active conformation of the eu-
karyotic translocon [135]. 
A chemical cross-linking approach failed to detect 
SecYEG oligomers [136], and it was suggested that 
SecYEG functions as a monomer, while oligomers were
attributed to an artifact due to the overexpression and 
purification of the SecYEG complex. Recent data
demonstrates that chemical cross-linking interferes with
SecYEG oligomerization [137], while cysteine-scanning
mutagenesis has provided compelling evidence that the
SecYEG complex is at least organized as a dimer [121]
even when SecYEG is present at wild-type levels [122].
The exact number of SecYEG heterotrimers within the
active translocase complex is still a topic of debate. Sed-
imentation analysis supported the notion that SecYEG
can assemble into tetramers [138], but Blue Native Page
analysis indicated that after SecA has been removed, a
trapped preprotein translocation intermediate associates
only stably with SecYEG dimers and not with tetramers
[137]. The 3D structure reconstituted from 2D SecYEG
crystals indicates the presence of a deep cavity at the 
SecYEG dimer interface [126]. Since this cavity is
closed at the periplasmic side of the membrane, it was
proposed the structure represents the ‘closed state’ of the
translocation channel  that would be converted into the
‘open state’ when the complex is actively involved in
translocation [126]. According to this scenario, the Se-
cYEG dimer would represent the functional form of the
SecYEG complex. The cavity is closed at the periplas-
mic side of the membrane by the tightly interacting
TMS3s of two neighboring SecE molecules. Cysteine-
scanning mutagenesis indicates that the contact persists
during protein translocation or when a preprotein
translocation intermediate is trapped in the channel [121,
122]. This strongly suggests that the cavity does not
‘open’ to form a translocation channel. An alternative
hypothesis is that the cavity forms a binding site for
SecA, thus allowing domains or loops of SecA to deeply
penetrate the membrane as suggested by biochemical
studies. According to this hypothesis, the channel will be
localized at the contact interface of two SecYEG dimers
that are recruited by the SecA dimer to form a SecYEG
tetramer.  
The SecYEG dimer structure indicates per monomer the
presence of 13 tightly packed TMSs and two TMSs that
are localized more distal [126]. Since SecG is not re-
quired for translocation, the more distant TMSs were sug-
gested to represent SecG [126]. Alternatively, the distal
TMSs might represent the nonessential transmembrane
segments of SecE.
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The heterotrimeric SecDFyajC membrane protein
complex optimizes secretion
The SecYE complex can also associate with another het-
erotrimeric membrane protein complex consisting of the
SecD, SecF and YajC proteins [77]. In E. coli SecD and
SecF are integral membrane proteins each with 6 TMSs
and a large periplasmic domain [139], while in B. subtilis
and some other bacteria, SecD and SecF are fused into
one large polypeptide with 12 putative TMS domains
[140]. YajC is a membrane protein with a single TMS and
a large cytosolic domain. Except for the observation that
YajC associates with SecDF, it is not needed for protein
translocation nor for viability. In contrast, cells lacking
SecD and SecF are cold sensitive for growth and display
severe protein translocation defects [141]. Coreconstitu-
tion studies of SecY and SecE with the SecDF complex
did not reveal any catalytic activity of SecD and SecF in
vitro [142], but membranes depleted from SecDF or con-
taining SecD and SecF mutants are severely compro-
mised in in vitro protein translocation [N. Nouwen, un-
published results]. The exact function of the SecDFYajC
complex remains unresolved. SecDFYajC has been pro-
posed to regulate the catalytic cycle of SecA, thereby
controlling the movement of the translocating polypep-
tide (see later section). It is unclear whether this is a di-
rect effect of this complex, as Archaea contain SecD and
SecF homologs while a SecA homolog is absent [14,
143]. It has also been suggested that SecD and SecF are
required to maintain the PMF [144], but later studies
showed that the lack of a PMF was due to an artifact
caused by a reduced expression of succinate dehydroge-
nase under the growth conditions used for the SecDF de-
pletion [145]. The SecDFYajC complex might be in-
volved at later stages in translocation, as none of the

known prl mutants map in these secD and secF genes.
SecD has been suggested to be involved in the release of
proteins once they have been translocated across the cy-
toplasmic membrane [146]. SecD and SecF show simi-
larity to resistance-nodulation-cell division (RND)-type
multidrug resistance pumps with 12 TMSs (i.e. AcrB)
[147, 148]. The large periplasmic domains of the RND-
type transporters interact with the outer membrane pore
TolC to form a continuous transport pathway from the cy-
tosol to the external medium. However, such a function
has not yet been demonstrated for the periplasmic do-
mains of SecDF.  Other possible functions might relate to
the removal of the signal peptide or phospholipids from
the aqueous protein-conducting pore formed by the
translocase, or regulation of pore formation.

Mechanism of protein translocation

The driving force for protein translocation is provided by
ATP hydrolysis at SecA [149] and the PMF [150–154].
These energy sources function at different stages
[155–157]. ATP is essential for the initiation of preprotein
translocation [154], and the cycle of events during ATP-
dependent translocation has been partially resolved. Se-
cYEG-bound SecA has a low endogenous ATPase activity
that is stimulated by the presence of a translocation-com-
petent preprotein. This activity is termed SecA transloca-
tion ATPase as it is associated with the preprotein translo-
cation reaction. The binding of the preprotein initiates a
series of events that result in complete translocation (fig.
3). At the initiation stage, SecA is presumably in an ADP-
bound form as binding of the preprotein stimulates SecA
for ADP/ATP exchange [158, 159]. ATP binding to SecA

Figure 3. Model for ATP-driven preprotein translocation. At the initiation stage, SecA is presumably in an ADP-bound form (1). The pre-
protein is targeted to the translocase via the molecular chaperone SecB that binds SecYEG bound SecA with high affinity. Binding of the
SecB-preprotein complex is accompanied with the transfer of the signal sequence to SecA. This causes an increase in the SecA-SecB bind-
ing affinity and results in dissociation of preprotein from SecB (2). Preprotein binding stimulates SecA for the exchange of ADP for ATP.
Binding of ATP results in the release of SecB (3) and causes a conformational change in SecA that allows translocation of approximately
2.5 kDa of precursor protein (4). ATP hydrolysis causes the release of bound preprotein from SecA, and this step is inhibited by azide. Sub-
sequently, SecA can either dissociate from the membrane (5) or rebind to the partially translocated preprotein. Rebinding results in the
translocation of another 2–2.5 kDa of preprotein (6) and allows a new round of ATP binding and hydrolysis (7). In this way, SecA can drive
the translocation of preproteins in a stepwise manner.



is thought to result in translocation of the signal sequence
to the extent that it can be processed by signal peptidase at
the periplasmic face of the membrane [160]. The initiation
step can be stimulated by the PMF, which affects binding
and insertion of signal sequences into the cytoplasmic
membrane ([161] and references therein). ATP hydrolysis
[162, 163] subsequently causes the release of bound pre-
protein from SecA [160], after which SecA can either dis-
sociate from the membrane or rebind to the partially
translocated preprotein. Rebinding results in the translo-
cation of another 2–2.5 kDa of polypeptide mass [160,
164, 165] and allows a new round of ATP binding and hy-
drolysis. In this way, SecA can drive the translocation of a
preprotein in a stepwise manner, where each catalytic 
cycle drives the translocation of roughly 5 kDa in two con-
secutive steps [164]. The exact step size is, however, not
known, nor is it clear how the step size is influenced by the
secondary structure of the translocatable polypeptide seg-
ment. Under conditions where the SecA function becomes
limiting, stepwise translocation is accompanied by the ac-
cumulation of distinct translocation intermediates [160].
For the translocation of the precursor of outer membrane
protein A (proOmpA), the major translocation intermedi-
ates are determined by short hydrophobic stretches in its
mature domain [166]. Deletion or relocation of these hy-
drophobic segments significantly alters the pattern of sta-
ble intermediates that accumulate in time [166]. The in-
termediate stages of translocation are reversible [160], and
reverse movement can occur in the absence of SecA, ATP
and the PMF [167]. 
Once preprotein translocation has been initiated, the PMF
can further drive the reaction and in the late stages even
complete translocation in the absence of ATP [156, 160,
168]. Studies with translocation intermediates indicate
that the PMF drives preprotein translocation only effi-
ciently when SecA is no longer associated with the
translocating preprotein [160, 164]. High SecA concen-
trations shift the translocation reaction into an ATP-de-
pendent cycle and reduce the requirement for the PMF
[169, 170]. Even though PMF driven translocation seems
SecA independent, the two modes of translocation are in-
terrelated. The PMF affects several aspects of the ATP-
driven reaction, e.g. it optimizes the SecA reaction cycle
by stimulating the rate-limiting release of ADP from
SecA [170] and accelerates the conformational changes
of SecA during translocation [171] (see below). The PMF
has been speculated to modulate the opening or even the
formation of the translocation channel, as it is required
for the translocation of a protein containing a disulfide
bridge stabilized intramolecular loop [155, 156]. Interest-
ingly, protein translocation is less PMF dependent when
SecY carries a prlA mutation [172, 173]. PrlA mutants no
longer require the PMF for the translocation of proOmpA
with a stabilized loop structure [172]. It has been sug-
gested that in prlA and prlG strains, the translocation pore

is in an open state due to a looser association between the
SecY and SecE subunits [174]. In such a model, prl mu-
tations could reduce PMF dependency via an altered gat-
ing of the translocase. Some prlA mutations have been
shown to cause an increased affinity for SecA [175, 176].
ATP-dependent translocation may be optimized by the
tight association of SecA to the SecYEG complex,
thereby reducing the requirement for a PMF. Strikingly,
the translocation of normal preproteins is much more ef-
ficient in prlA strains. This has, at least in vitro, been
shown to result from reduced rejection of the preprotein
by the translocase at the stage of initiation of transloca-
tion which has been attributed to the tighter association of
the ATP-bound state of SecA with the translocation site
[175]. The possible alteration of the gating thus may re-
late to increased SecA binding affinity, which likely sta-
bilizes the actual translocation pore. In this respect, the
PrlA4 mutant shows a different oligomerization behavior
in detergent solution with a shift of the monomer-dimer
equilibrium towards the dimer [138].
The mechanism by which the energy of ATP hydrolysis at
SecA is converted into the movement of preproteins
across the membrane is still largely unclear. SecA is a
highly dynamic protein. Each SecA monomer contains
two domains, which fold independently and whose inter-
actions are influenced by nucleotide binding [162]. Ther-
mal titration of E. coli SecA monitored by steady-state
tryptophan fluorescence anisotropy spectroscopy sug-
gested that the endothermic conformational transition of
soluble SecA [162, 177] is accompanied by a domain dis-
sociation within each SecA protomer [83]. A C-terminal
domain called the a-helical wing domain (HWD) was
proposed to dissociate from the core of SecA, and this
event was proposed to be coupled to a reduction in the nu-
cleotide binding affinity [83]. In addition, a tryptophan in
the HSD becomes more solvent exposed during the en-
dothermic transition, and similar conformational changes
occur upon interaction with phospholipids or signal pep-
tides [178]. Hunt et al. hypothesized that the endothermic
transition of SecA gates the interaction with the SecYEG
complex [83]. According to this model, nucleotide-free
SecA is in a domain-dissociated conformation with high
affinity for the SecYEG complex, while ADP and ATP
binding result in similar compact conformations that have
a low affinity for SecYEG [83]. ATP-bound SecA was
speculated to have a higher thermodynamic stability than
ADP-bound SecA, and as a consequence, the complex
would be weakened upon ATP hydrolysis [83]. This event
would facilitate nucleotide release and shift the equilib-
rium to the domain-dissociated conformation that has a
high affinity for SecYEG [83]. Withdrawal of SecA from
the SecYEG complex after completion of translocation
could then be driven by ATP binding [83]. 
Biochemical studies showed that the preprotein-stimu-
lated exchange of SecA-bound ADP for ATP [158, 159]
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renders a C-terminal 30-kDa domain and a N-terminal
65-kDa domain of SecA resistant to high concentrations
of trypsin and proteinase K [179–181]. The 30-kDa frag-
ment corresponds to segments of the HSD domain and
the HWD [83]. Mutations in SecY can reduce the degree
of protease protection [171, 182, 183], and the stability of
the fragments is influenced by the SecDFyajC complex
and the PMF [171, 184, 185]. Since protease resistance is
lost upon membrane disruption by freeze-thaw, sonica-
tion or detergent solubilization and is susceptible to a
chase by an excess of cold SecA [179, 181], the frag-
ments were proposed to represent domains of SecA that
insert into the membrane during the translocation cycle
[179, 181]. This led to a model where preprotein translo-
cation across the membrane is mediated by coinsertion
with SecA [179].  Although SecA protease protection and
protein translocation appear to be correlated, the hypoth-
esis that the 65- and 30-kDa fragments represent full
membrane insertion with nearly the entire mass of SecA
is highly unlikely. Certain domains of SecYEG-bound
SecA are accessible for proteases and chemical reagents
added from the periplasm side of the membrane [46,
186], but this accessibility does not require SecA to be ac-
tively engaged in translocation [187]. These reactive
agents possibly gain access to SecA via the translocation
pore. The protease-protected fragments of SecA are
formed in a similar mode in the presence of detergent-
solubilized SecYEG [188, 189], whereas under these
conditions SecY is proteolyzed to fragments smaller than
6 kDa [188]. The SecA monomer has a size of about 10
by 6 by 4 nm [83]. Both the dimensions of the tetrameric
(or dimeric) SecYEG complex [134] and the thickness of
the lipid bilayer are insufficient to accommodate the en-
tire SecA (dimer) molecule (see also fig. 2). In this re-
spect, the observed cavity in the SecYEG dimer [126]
may form a membrane-embedded binding site for SecA,
which would explain the increased protease-resistant
conformation of SecA when associated with SecYEG,
and observations that show that inserted preprotein seg-
ments can be cross-linked to SecA and SecY simultane-
ously [190]. 
Based on the structure of M. tuberculosis SecA1, Sharma
et al. proposed a macromechanical translocation model
that does not require the membrane insertion cycle of
SecA [84]. According to this model, ATP binding would
result in a movement of the putative preprotein binding
region away from the central pore of the M. tuberculosis
SecA dimer [84]. This movement would be caused by the
translation of the long a helix that forms a connection be-
tween the motor and translocation domains of SecA [84].
Upon ATP hydrolysis the preprotein binding region
would return to its original position. Such movements of
the preprotein binding region likely are directed towards
the SecYEG pore, thus allowing polypeptide transloca-
tion to occur.

The nucleotide binding folds of B. subtilis and M. tuber-
culosis SecA show a strong resemblance to the tandem
motor domains in superfamily I and II helicases [83, 84].
It has been hypothesized that the mechanism by which
SecA mediates protein translocation resembles the mech-
anism by which these helicases mediate unwinding of nu-
cleic acid duplexes [191, 192]. For helicases two distinct
mechanisms, called the inch-worm model and the active
rolling model, have been proposed. In the inch-worm
model, a monomeric helicase translocates unidirectionally
along the DNA (reviewed in [193, 194]). During translo-
cation the helicase contacts the polymer via two distinct
domains, which bind the DNA with high and low affinity.
ATP binding within the cleft between the two domains re-
sults in closure of the cleft and changes the binding affini-
ties of the subdomains. Concomitantly, the helicase
translocates along the nucleic acid strand. Helicases func-
tion as monomers, while SecA has previously been
demonstrated to exist [78] and function [47] as a dimer.
Specifically, studies using fluorescence resonance energy
transfer (FRET) suggest that the SecA dimer bound to the
membrane vesicle-embedded SecYEG complex does not
dissociate during translocation, while SecA heterodimers
composed of an inactivated and active subunit are inactive
with protein translocation [47]. The SecA dimeric struc-
ture in the absence of translocation ligand appears confor-
mationally dynamic, and extensive exchange of subunits
has been demonstrated in solution [195]. Using chemical
cross-linking, Or et al. found that in the presence of acidic
phospholipids, detergents and synthetic signal peptides,
SecA could no longer be cross-linked as a dimer [192].
This study was conducted with SecYEG proteoliposomes,
but under the conditions employed the majority of the
SecA is lipid bound and not associated with SecYEG [J.
Swaving, unpublished]. Lipid-bound SecA is thermola-
bile and readily inactivates [93]. Based on the observation
that a mutant of SecA that is defective in dimerization re-
tains a minor translocation activity, it was suggested that
SecA functions as a monomer that undergoes similar con-
formational changes as a monomeric helicase, driving
translocation by an inch-worm-like mechanism [192].
However, it is impossible to rule out that the low residual
activity of the mutant resides from a small fraction of re-
maining dimeric SecA that has escaped detection. The
mutations in the C-terminal domain of SecA likely shifted
the dimer-monomer equilibrium towards the inactive
SecA monomer [191]. In addition, monomerization of
SecA induced by long-chain phospholipids and certain
detergents was also observed by tryptophan fluorescence
anisotropy and sedimentation velocity experiments [191],
but unlike the observation of Or et al. [192] these experi-
ments did not reveal a change in the oligomeric state of
dimeric SecA upon addition of synthetic signal peptides.
In contrast, signal peptides caused redimerization of lipid-
induced SecA monomers [191]. Furthermore, signal pep-
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tides seemed to induce polymerization of SecA [191]
when added to SecA at a temperature above the endother-
mic transition [191]. At this temperature, SecA is in the
domain-dissociated conformation that was previously
proposed to interact with SecYEG [83]. Based on these re-
sults it was suggested that a preprotein-bound SecA re-
cruits additional SecA molecules to mediate translocation
of the C-terminal segments of the preprotein [191]. This
mechanism resembles the rolling model for helicases,
where a DNA-bound helicase protomer recruits another
protomer to bind an upstream DNA segment and where
translocation of the helicase along the nucleic acid strand
is achieved by the alternating binding of helicase subunits
to the DNA [196]. Concomitant with the recruitment of a
new SecA protomer, the bound preprotein segment could
be donated to the SecYEG complex. The release and re-
cycling of SecA subunits could be mediated by the lipid-
induced monomerization of SecA [191], but this remains
to be demonstrated in an authentic protein translocation
reaction.
The membrane-embedded subunits of the translocase
also seem to undergo extensive reorganization during the
translocation reaction. Electron microscopy indicates that
activation of the translocase results in assembly of a
tetrameric translocation pore from monomeric or dimeric
SecYEG complexes [134]. Certain flexibility between
and within the SecYEG complexes of the oligomeric
channel appears to be essential for the functionality of the
translocase, since translocation is inhibited by the forma-
tion of thiol-stabilized SecY-SecE and SecE-SecE con-
tacts [121, 122]. Cysteine-scanning mutagenesis identi-
fied enhancement of the interhelical SecE contact at the
initiation of translocation, suggesting that translocation
results in a rearrangement of SecE molecules within the
SecYEG oligomer [121]. In the yeast Sec61p complex,
initiation of translocation allowed cross-linking of the
signal sequence of a preprotein to TMS2 and TMS7 of the
SecY homolog Sec61a [197]. As this region partially
overlaps with the region of Sec61a that was implicated in
the contact with the SecE homolog Sss1p [198], Sss1p
was proposed to function as a mock signal sequence that
is displaced by the signal sequence of an inserting pre-
protein at the initiation of translocation [197]. In the bac-
terial SecYEG complex, however, initiation of transloca-
tion does not affect the contact between TMS3 of SecE
and TMS2 and TMS7 of SecY [121, 122]. Current evi-
dence argues against a complete displacement of SecE
TMS3 by the signal sequence at the stage of the initiation
of translocation. 
SecG has been proposed to undergo a remarkable topol-
ogy inversion that is coupled to the SecA membrane cy-
cle [100, 101]. Based on the observation that the cold-
sensitive growth defect of a DsecG strain can be sup-
pressed by mutations in genes involved in phospholipid
biosynthesis [199–201], it has been suggested that this

topology inversion facilitates membrane insertion of
SecA, in particular at lower temperature when the micro-
viscosity of the membrane is high. Several observations
point at a correlation between the conformational
changes in SecG and SecA. The SecA36 mutant [182],
which is independent of SecG for membrane insertion
and efficient translocation activity, suppresses the cold-
sensitive phenotype of a secG null strain [183]. In con-
trast, a cold-sensitive SecA mutant that appears defective
in preprotein binding (CsSecA) strictly requires SecG for
membrane insertion and translocation [202]. Further-
more, SecG function is required for expression of azide-
resistant and signal sequence suppressor activities of azi
and prlD alleles of secA [203]. Azide resistance is a cold-
sensitive property [203]. In turn, the azi and prlD alleles
suppress cold sensitivity and export-defective pheno-
types of a secG null mutant [203]. Tryptophan fluores-
cence indicates that azi and prlD mutations shift the first
endothermic transition of SecA to a lower temperature,
suggesting that these mutations confer a more relaxed
conformation to SecA [107]. Unfolding into the relaxed
conformation has been proposed to gate the binding of
SecA to the SecYEG complex [83]. In such a model, azi
and prlD mutations could facilitate the functional binding
of SecA at the SecYE complex without assistance of
SecG [107]. In the presence of SecG, this may result in
increased translocation activity and suppression of signal
sequence mutations. The structural basis for this phe-
nomenon is, however, unresolved.

Integration of IMPs

Initially, IMPs were assumed to insert into the cytoplas-
mic membrane of E. coli independent of the translocase,
which was only thought to facilitate the translocation of
large periplasmic loops.  The phage M13 procoat and Pf3
coat proteins indeed seem to insert into the membrane in
the absence of SRP and translocon [204, 205]. On the
other hand, cross-linking studies in the ER system
demonstrated that transmembrane regions of certain
IMPs are in the vicinity of components of the eukaryotic
translocase [206–208]. After the improvement of condi-
tional translocase mutant strains and the development of
in vitro assays that access the initial stages of IMP inser-
tion, it became apparent that also E. coli possesses a Sec-
dependent membrane integration pathway. The proper in-
sertion of the polytopic membrane proteins MalF, MtlA
and leader peptidase is affected by depletion of SecE or
SecY [209–211]. Also, mutations in SecY can affect the
topology [212] and insertion [213] of some membrane
proteins. Furthermore, the inner membrane proteins
MtlA, FtsQ and YidC could be cross-linked to SecY dur-
ing the initial stage of membrane integration [22, 214,
215]. 
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ence of positive charges around a hydrophobic domain
may cause such a translocation arrest [235]. In E. coli
synthetic stop-transfer regions introduced within
proOmpA induce the release (or deinsertion) of SecA
from the membrane, after which the hydrophobic domain
may partition into the membrane [236]. The movement of
hydrophobic segments into the lipid bilayer could be a
passive process, but an active process that requires addi-
tional enzymes is also conceivable. Studies on the mem-
brane integration of eukaryotic membrane proteins sug-
gest that transmembrane segments may laterally leave the
translocation pore formed by the Sec61p complex [237].
Photo-cross-linking indicates that this movement occurs
via a mechanism that involves the sequential passage of
Sec61a and the translocating chain-associating mem-
brane protein (TRAM) [206, 208], although the involve-
ment of the latter seems to be dependent on the hy-
drophobicity of the transmembrane segment [208].
TRAM has therefore been suggested to allow retention of
TMSs that are not sufficiently hydrophobic to partition
into the lipid bilayer [208]. In E. coli, the movement of
the transmembrane segments from the translocation
channel into the lipid bilayer may be assisted by YidC, for
example by forming an assembly site for polytopic mem-
brane proteins [225]. Another possibility is that E. coli
transmembrane segments are released into the lipid bi-
layer after dissociation of the oligomeric SecYEG pore
complex once SecA is deinserted. It is possible that the
oligomeric structure of the SecYEG complex may differ
for secretory proteins and IMPs. Possibly, the SecYEG
dimer suffices to form a site for membrane insertion,
while protein translocation would require the formation
of a water-filled pore formed upon the SecA-mediated re-
cruitment of two SecYEG dimers. 

Conclusions

The last decade has seen a major advance in the study of
the bacterial translocase, a multimeric membrane protein
complex whose protein-conducting channel is conserved
throughout all kingdoms of life. Genetic and biochemical
studies have provided detailed insight in the mechanism
of preprotein translocation, and the insight in the struc-
ture of the translocase is increasing. Recently, the atomic
structures of SecB [28] and SecA [83, 84] have been
solved, and a medium-resolution structure has been ob-
tained for the SecYEG dimer [126]. In the next years it
will be possible to relate function to structure permitting
a detailed knowledge about the way in which proteins
cross and integrate into the cytoplasmic membrane. How-
ever, many interesting questions remain for future re-
search. For instance, How SecA does generate a macro-
mechanical force to drive proteins across the membrane?
How do inner membrane proteins integrate into the mem-
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The requirement for the composition of the insertion site
seems to vary with different classes of IMPs. Many IMPs
integrate independent of SecA [210, 216–218], while
SecA seems to be essential for the proper insertion of
other membrane proteins such as AcrB [219]. Nascent
FtsQ can be cross-linked not only to membranous com-
ponents of the translocase, SecY and SecG, but also to
SecA [61]. Also, the assembly of MalF was reported to
require SecA [209, 216], although SecA dependency
varies with the reporter protein used to analyze mem-
brane translocation of the large periplasmic loop of MalF
[220]. 
Sec-dependent membrane insertion may be assisted by
other components that do not play a role in protein
translocation. Recently, a homolog of the mitochondrial
inner membrane protein Oxa1p and the chloroplast thy-
lakoid membrane protein Alb1 (see [221] for a review)
was identified in E. coli. In mitochondria, Oxa1p is pro-
posed to be involved in the assembly of a variety of both
nuclear and mitochondrial encoded IMPs [222, 223].
Likewise, recent studies indicate that this novel compo-
nent YidC plays a role in IMP membrane insertion. Cross-
linking studies with nascent IMPs indicate that YidC is at
least temporarily localized in the vicinity of the SecYEG
complex. The association seems to occur via the SecD
and SecF, with which YidC interacts to form a heterote-
trameric YidC-SecDFYajC complex [224]. Site-specific
photo-cross-linking studies have demonstrated that YidC
interacts with transmembrane segments of nascent inner
membrane proteins [225–228], and the initial stages of
YidC-dependent FtsQ insertion via the SecYEG complex
can be reconstituted in proteoliposomes containing puri-
fied SecYEG and YidC [229]. In vivo, however, YidC de-
pletion has little effect on the membrane insertion of
these Sec-dependent IMPs [227], while it strongly affects
the membrane integration of the Sec-independent phage
M13 and Pf3 coat protein [230–232]. The transmem-
brane region of Pf3 coat protein could be cross-linked to
YidC and Ffh [232]. Together, these results suggest that
YidC is also involved in the membrane integration of
Sec-independent proteins without associating with the
translocation channel. Its exact role with Sec-dependent
membrane proteins remains to be determined.
How hydrophobic transmembrane domains partition
from the translocation pore into the membrane is still
largely unresolved. It has been suggested that this is a ki-
netically controlled phenomenon in which slow translo-
cation of hydrophobic sequences is critical for partition-
ing. Moderate hydrophobic regions may escape mem-
brane insertion as a result of rapid translocation [233].
Hydrophobic sequences in preproteins serve as stop-
transfer sequences that result in a translocation arrest to
allow integration into the lipid bilayer [233, 234]. The
stop-transfer function of these sequences is correlated to
their mean hydrophobicity [234]. In addition, the pres-



brane and assemble into multisubunit complexes? And
how is this process linked to nonprotein cofactor inser-
tion?
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