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Abstract. The telomere is composed of telomeric DNA
and telomere-associated proteins. Recently, many telom-
ere-associated proteins have been identified, and various
telomere functions have been uncovered. In budding
yeast, scRap1 binds directly to telomeric DNA, and other
telomere regulators (Sir proteins and Rif proteins) are re-
cruited to the telomeres by interacting with scRap1.
Cdc13 binds to the most distal end of the chromosome
and recruits telomerase to the telomeres. In fission yeast
and humans, TTAGGG repeat binding factor (TRF) fam-
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ily proteins bind directly to telomeric DNA, and Rap1
proteins and other telomere regulators are recruited to the
telomeres by interacting with the TRF family proteins.
Both organisms have Pot1 proteins at the most distal end
of the telomere instead of a budding-yeast Cdc13-like
protein. Therefore, fission yeast and humans have in part
common telomeric compositions that differ from that of
budding yeast, a result that suggests budding yeast has
lost some telomere components during the course of evo-
lution.
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Introduction

The telomere is a specialized heterochromatin composed
of telomeric DNA and various telomere-associated pro-
teins. Telomeric DNA contains specific G-rich repeat se-
quences, such as TG2–3(TG)1–6 in budding yeast,
TTACAG2–5 in fission yeast, TTTAGGG in many plants
and TTAGGG in humans [1–4]. Most of the telomeric
DNA is duplex, but the most distal end of the telomere
contains a single-stranded 3¢-overhang called the G tail.
Because protein-free DNA ends are vulnerable to degra-
dation by nucleases and are the target of DNA end fusion
by DNA repair, telomere-associated proteins provide a
sort of protective cap to the ends of linear chromosomes.
In addition to this role, telomeres also function at meiosis
[see Bass, this issue]. For example, telomeres cluster to-
ward the SPB (spindle pole body) or in the vicinity of the
centrosome at a specific stage in meiosis, and at least in
fission yeast, this clustering is prerequisite for the normal
pairing of homologous chromosomes [5–9]. This dy-
namic change of the nuclear localization of chromosomes
is realized by interactions between telomere-associated
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proteins and components of the nuclear structure. Fur-
thermore, the telomere is a specific heterochromatin, and
therefore a gene located near the telomere is transcrip-
tionally repressed by the heterochromatin structure
(telomere silencing or telomere position effect) [see Per-
rod and Gasser, this issue]. Recent studies have revealed
that the composition of telomere is conserved among eu-
karyotes to some extent. Here, the functions of telomere-
associated proteins in budding yeast, fission yeast and
humans will be described.

Telomere-associated proteins in budding yeast

The budding yeast, Saccharomyces cerevisiae, is a well-
characterized organism for the study of telomeres (fig. 1).
S. cerevisiae Rap1 (scRap1, repressor/activator protein 1)
was identified as a protein that binds to the UAS (upstream
activation sequence) of genes for ribosomal proteins, trans-
lational components and glycolytic enzymes, as well as to
mating-type silencer elements and telomeres [10–14].
scRap1 is essential for normal cell growth. It binds directly
to DNA through its DNA binding domain, which com-
prises two Myb motifs located in the central region.
scRap1 regulates the transcription of genes through its



transactivation domain, located C-terminal to its Myb mo-
tifs [15]. scRap1 also has a BRCT (BRCA1 C-terminal)
domain in the N-terminal region, which is well conserved
among Rap1-related proteins in other organisms.
scRap1 regulates telomere length and the formation of
telomeric heterochromatin by recruiting two groups of
proteins to its RCT (Rap1 C terminus) domain [16, 17].
The first group, scRif1 (Rap1-interacting factor 1) and
scRif2, primarily regulates telomere length [18, 19].
Deletion of either scRif1 or scRif2 causes moderate elon-
gation (200–600 bp in the scrif1 mutant, ~100 bp in the
scrif2 mutant) of telomeric DNA, and the deletion of both
causes marked elongation (600 bp–2.5 kb) of telomeric
DNA, which is the same as that observed in the rap1-17
mutant. According to the “protein-counting model,” cells
count the number of scRif1 and scRif2 molecules at the
telomeres to regulate telomere length [19, 20]. The sec-
ond group, Sir3 (silent information regulator 3) and Sir4,
is mainly involved in heterochromatin formation [21, 22].
Sir2, a nicotinamide adenine dinucleotide (NAD+)-de-
pendent histone deacetylase, forms a complex with Sir3
and Sir4 by interacting mainly with Sir4 [23]. Sir3 and
Sir4 interact not only with scRap1 but also with the N-ter-
mini of histones H3 and H4, which are hypoacetylated by
Sir2 [24, 25]. Thus, the Sir2/Sir3/Sir4 complex spreads
over the nucleosomes proximal to the telomeres from the
nucleation sites with scRap1 at the telomeres. The Sir
complex is also localized at the silencer of the HM mat-
ing-type loci with scRap1 to repress the expression of
HM genes [21] [see also Perrod and Gasser, in this issue].
Furthermore, the Sir complex is recruited to DSB (dou-
ble-strand break) sites produced by DNA damage and is
involved in the Ku-dependent nonhomologous end-join-
ing (NHEJ) pathway [26, 27]. Sir2 also forms a complex
with Net1 and Cdc14, and the Sir2/Net1/Cdc14 complex
is required for transcriptional repression at ribosomal
DNA (rDNA) repeats [28, 29].
Cdc13 protein binds to the single-stranded G tail and inter-
acts with Est1 (ever shorter telomere 1), which associates
with Tlc1 (the RNA template subunit of telomerase), to re-
cruit the catalytic subunit of telomerase (Est2) to the
telomeres [30–35]. Furthermore, Cdc13 prevents the
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degradation of the C-rich strand at the chromosome end
[see Wei and Price, this issue]. The function of Cdc13 is
regulated by two interacting proteins, Stn1 and Ten1
[36–39]. The Cdc13/Stn1/Ten1 protein complex is re-
quired for telomere end protection and telomere length
control. All the temperature-sensitive mutants (cdc13, stn1
and ten1) accumulate single-stranded DNA in telometric
regions and exhibit abnormally elongated telomeres.
Budding yeast Ku heterodimer (yKu70/yKu80) binds to
the distal end of the telomere. Generally, Ku binds to the
DNA ends of DSBs with the Sir2/Sir3/Sir4 complex and
mediates NHEJ [27]. Therefore, yKu70/yKu80 at the
telomere should be regulated so as not to ligate telomere
ends for telomere maintenance. yKu regulates telomere
structure, telomere length, telomeric silencing and telom-
ere localization to the nuclear periphery by interacting
with other regulatory factors [27, 40–43]. Recently, it has
been suggested that yKu helps to recruit or activate
telomerase by interacting with the stem-loop of Tlc1 [44].
Furthermore, yKu interacts with Mlp2 protein, which
forms a complex with Mlp1 that associates with Nup60,
a component of the nuclear pore complex [45]. These in-
teractions might permit the localization of telomeres near
the nuclear pore, but recent study has shown that yKu, but
not Mlp1 and Mlp2, is necessary for anchoring telomeres
at the nuclear envelope (NE) in interphase and that in-
creased telomeric repression of transcription is correlated
with increased anchoring of telomeres to NE [46]. Sir
proteins also contribute significantly to telomere anchor-
ing specifically in S phase [46].

Telomere-associated proteins in fission yeast

Recent studies have shown that the components of the
telomere in fission yeast, Schizosaccharomyces pombe,
differ from those in budding yeast (fig. 2). First, the 
S. pombe protein Taz1, which contains a Myb motif but is
not a homologue of scRap1, binds directly to telomeric
DNA [47]. Taz1 is bound to telomeres both in mitotically
growing cells and in meiotic cells. Taz1 contains a single
Myb motif at its C terminus and a TRFH (TRF homol-

Figure 1. Telomere-associated proteins in budding yeast. Arrows indicate physical interactions. 



ogy) domain of approximately 200 amino acids in the
central region. The deletion of taz1+ was found not to be
lethal but to cause severe defects in telomere function
[47, 48]. The taz1 mutant has extensively elongated
telomeric DNA (up to ~5 kb) and is defective in telomere
silencing like that in the swi6 mutant, in which the hete-
rochromatin protein Swi6 (HP1 homologue) is lost. Fur-
thermore, the taz1 mutant has a defect in telomere clus-
tering toward SPB in the premeiotic horsetail stage,
which causes abnormal spore formation. Taz1 therefore
plays important roles in at least three major telomere
functions: regulation of telomeric DNA length, telomere
silencing and telomere clustering toward SPB in meiosis.
S. pombe Rap1 (spRap1) has a BRCT domain and a Myb
motif [49, 50]. It also has a Myb-like motif that has simi-
larity with the second Myb motif in scRap1 but contains
different residues at the positions of the hydrophobic core
of the three-helix bundle. The physiological significance
of this motif is not known. spRap1 contains no apparent
RCT domain, so the mechanism of protein-protein inter-
action between spRap1 and putative spRap1-binding pro-
teins may be different from that between scRap1 and Rif
or Sir proteins. spRap1 interacts with Taz1 in a two-hybrid
system and is localized at the telomeres by its binding to
Taz1 in mitotically growing cells, so spRap1 does not bind
directly to telomeric DNA and is basically bound to telom-
eres by interaction with Taz1. In the premeiotic horsetail
stage, however, spRap1 is localized at the telomeres in
about 30% of the cells in the absence of Taz1, so spRap1
may have an intrinsic tendency to be localized near SPB,
which is colocalized with telomeres at the horsetail stage,
or spRap1 may bind inefficiently to telomeres in a Taz1-
independent manner. The deletion of sprap1+ causes telo-
mere-deficient phenotypes as severe as those observed in
the taz1 mutant. Among them, the frequency of telomere
clustering toward SPB at the horsetail stage in the sprap1
mutant is much lower than that in the taz1 mutant, so
spRap1 plays a major role in telomere clustering.
S. pombe Rif1 (spRif1) shares homology with scRif1
throughout the amino acid sequence, although it does not

contain any currently characterized protein motifs [50].
Database searches reveal that some proteins from
Drosophila melanogaster and Homo sapiens show signif-
icant homology with the limited N-terminal region of
spRif1, but the functions of these proteins are not known.
Like spRap1, spRif1 is localized at the telomeres by in-
teraction with Taz1. Furthermore, spRif1 does not inter-
act with spRap1, and they are bound to the telomeres in-
dependent of each other, so protein interactions in the two
yeasts are quite different. spRif1 is not essential for nor-
mal vegetative growth. The sprif1 mutant has slightly
longer telomeric DNA than the wild type, indicating that
spRif1 plays a role in the regulation of telomeric DNA
length. The sprif1 mutant does not exhibit any other sig-
nificant defects in telomere function. It is not known
whether there is a functional homologue for Rif2 in fis-
sion yeast. Neither spRap1 nor spRif1 is required for the
telomere localization of Taz1.
Collectively, three telomere functions, namely telomere
length control, telomere silencing and telomere cluster-
ing toward SPB at the horsetail stage, are severely im-
paired in sprap1 cells, in which Taz1 remains associated
with the telomeres. Therefore, telomere-associated Taz1
by itself cannot fulfill these telomere functions, and the
primary role of Taz1 is to recruit telomere regulators to
the telomeres.
Sir3 and Sir4 seem to have no homologue in fission yeast,
but an as-yet uncharacterized protein, spSir2, shares ho-
mology with budding yeast Sir2 [51]. In place of Sir3 and
Sir4, fission yeast has the Swi6 protein, which is respon-
sible for the heterochromatin structure. Swi6 contains a
chromo domain and a chromo-shadow domain that medi-
ate the formation of protein complexes and their associa-
tion with chromatin [52, 53]. Swi6 has been shown to
play important roles at the centromeres and the silent
mating-type loci. Swi6 binds to the outer repeat se-
quences (otr) in the fission yeast centromeres and acts to
recruit cohesin to the centromeres. In the swi6 mutant, the
centromeres lag on the spindle during anaphase, and the
chromosomes are lost at high rates [54–57]. These results
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Figure 2. Telomere-associated proteins in fission yeast. Localization of Swi6 is speculative. spPot1 may regulate the access of telomerase
(Trt11) to the telomeres.



indicate that Swi6 plays a role in realizing the proper
function of the kinetochore. At the silent mating-type
loci, Swi6 is localized at the K region containing the re-
peat sequences called ‘dg’ or ‘dh’ that also exist in the otr
of the centromere, and it plays a critical role in the inher-
itance of silencing and the regulation of the efficiency of
mating-type switching [58–60]. Although Swi6 is well
studied in terms of its functions at the centromeres and at
the mating-type loci, little is known about its function at
the telomeres. The swi6 mutant shows a defect in telom-
ere silencing, and microscopic studies have showed that
Swi6 is localized at the telomeres in vivo [61, 62]. There-
fore, Swi6 plays a role at least in telomeric heterochro-
matin, although the physiological significance of telom-
eric heterochromatin is not well characterized in fission
yeast, as in humans.
Similar to yKu70/yKu80 in budding yeast, the fission
yeast yKu70/yKu80 homologues, pKu70 and pKu80, are
involved in telomere maintenance [63–66]. The pku70+-
or pku80+-deleted strain has slightly shorter telomeric re-
peat DNA than the wild type, and deletion of pKu70 or
pKu80 causes rearrangement of telomere-associated se-
quences (TASs) that are located proximal to the telomeric
repeat sequences [67], so pKu inhibits the degradation
and recombination of chromosome ends. Taz1 has been
shown to protect pKu-dependent telomere fusion under
nitrogen depletion intended to induce sexual develop-
ment [68]. pKu is not involved in telomere silencing, in
contrast to yKu [64, 66].
S. pombe Pot1 (protection of telomeres 1) protein is
thought to be associated with telomeric DNA at the most
distal end of the telomere [69]. Recombinant spPot1 pro-
tein binds to single-stranded telomeric DNA (G strand) in
vitro, and the deletion of spPot1 causes immediate loss of
telomeric DNA, indicating that spPot1 plays a critical
role in protecting chromosome ends. spPot1 may also

play a role in recruiting telomerase to the chromosome
ends, like Cdc13 in budding yeast [reviewed by Wei and
Price, this issue].

Telomere-associated proteins in humans

The known telomere-associated proteins are summarized
in fig. 3. In humans, Tazl has two homologues, TRF1 and
TRF2, both of which bind directly to telomeric DNA
[70–72]. Each has a TRFH domain in its central region
and a single Myb-like motif in its C-terminal region. Like
Tazl, they form homodimers by means of their TRFH do-
mains to bind to duplex telomeric DNA by means of their
Myb-like motifs [72–74], but TRF1 and TRF2 do not
form a heterodimer, and their N-terminal regions are
quite different: the N-terminus of TRF1 is acidic, whereas
that of TRF2 is strongly basic. Overexpression of TRF1
or TRF2 results in a gradual decrease of telomere DNA
length [75, 76]. The truncated forms of TRF1 induce ab-
normal elongation of telomeric DNA, whereas those of
TRF2 induce loss of G tails and chromosome end fusions
[75–78]. Electron microscopy has demonstrated that
TRF2 acts to remodel linear telomeric DNA into duplex
loops (T loops) in vitro [79, 80] and has also suggested
that the T loops are formed by the invasion of the G tail
into the duplex telomeric repeat array and that TRF2 
is preferentially present at the loop-tail junction. Cur-
rently TRF1 is thought to be a negative regulator of
telomeric DNA length and TRF2 is thought to protect
telomeric DNA ends in the T loop by masking the G tail
from cellular activities, such as nucleases and DNA 
repair.
Two proteins, tankyrase and TIN2, are localized at the
telomeres by interaction with TRF1 [81, 82]. Tankyrase
interacts with the acidic domain of TRF1 through its
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Figure 3. Telomere-associated proteins in human. Relationship between hPot1 and telomerase is not known. 



ankyrin-related domain, which contains 24 ankyrin re-
peats. Tankyrase is a poly(ADP-ribose) polymerase. ADP
ribosylation of TRF1 by tankyrase inhibits binding of
TRF1 to telomeric DNA in vitro. Overexpression of
tankyrase in the nucleus induces ADP ribosylation of
TRF1 and releases TRF1 from the telomere. It also in-
duces the gradual elongation of telomeric DNA [83].
Thus, tankyrase-mediated ADP ribosylation of TRF1
would give telomerase access to the telomeric complex.
TIN2 interacts with the TRFH domain of TRF1, so the re-
gions in TRF1 that bind to tankyrase and to TIN2 do not
overlap. TIN2 has no protein motifs and shares no ho-
mology with known proteins. The truncated forms of
TIN2 induce abnormal elongation of telomeric DNA in a
telomerase-dependent manner, so TIN2 is an essential
mediator of TRF1 function and may recruit telomerase
inhibitors to telomeres.
Human Rap1 (hRap1) was identified in a screen for
TRF2-interacting proteins [84]. hRap1 has a BRCT do-
main in its N-terminal region and a single Myb motif in
its central region, as spRap1 does. The Myb motifs of
scRap1, spRap1 and hRap1 constitute a subfamily with
respect to the residues at the hydrophobic core of the
three-helix bundle and the length of turns connecting the
first and second helices [85]. Furthermore, hRap1 has an
RCT domain at its C terminus, suggesting that other pro-
teins interact with it. Neither spRap1 nor hRap1 has a
transactivation domain, so they play no role as transcrip-
tion factors. Gel-shift analysis suggested that hRap1 by
itself has no telomeric DNA binding ability, but it binds
to telomeric DNA when it is associated with TRF2. In
fact, a microscopic study showed that hRap1 is localized
at the telomeres in a TRF2-dependent manner [84].
Therefore, hRap1 is localized at the telomeres by interac-
tion with TRF2. Overexpression of hRap1 causes gradual
elongation of telomeric DNA, indicating that hRap1
plays a role in the regulation of telomere length.
Human Pot1 (hPot1) binds to single-stranded telomeric
DNA (G strand) in vitro and is colocalized with TRF2 and
hRap1 in vivo [69, 86]. Although the precise in vivo func-
tion of hPot1 remains to be determined, it may directly
protect the telomere end and may recruit telomerase to
the telomeric end [see Wei and Price, this issue].
The human Ku70/Ku80 heterodimer is involved in NHEJ
and telomere maintenance as in yeast. It has been sug-
gested that the Ku70/Ku80 heterodimer interacts with
TRF1 or TRF2 in vivo [87, 88]. Because X-ray crystal-
lographic analysis reveals that Ku is an end-loading ring,
Ku70/Ku80 may be directly loaded onto the telomere
end [89, 90]. Ku80-deficient mouse embryonic fibrob-
lasts exhibit high levels of telomere fusion [87]. On the
other hand, NHEJ is required for telomere fusion in-
duced by the overexpression of the truncated form of
TRF2 in mouse embryonic fibroblasts [78]. Although
the in vivo telomere function of Ku70/Ku80 in human

cells remains to be determined, Ku apparently plays dual
roles at the telomeres: one is to prevent end fusion, and
the other to fuse chromosome ends in the absence of
functional TRF2. Furthermore, Ku70 may interact with
HP1a (heterochromatin protein 1a) [91]. In humans, the
telomere position effect (TPE) is observed, although pro-
teins involved in TPE have not been identified so far
[92]. The interaction of Ku70 with HP1a may provide a
clue to the nature of telomeric heterochromatin in hu-
mans.

Conclusions

The mechanism of loading of telomere-associated pro-
teins is well conserved among eukaryotes. First, the pro-
tein (scRap1, Taz1, TRF1 or TRF2) that recognizes
telomeric repeat sequences binds directly to telomeric
DNA. Next, telomere regulators are recruited to the
telomeres by interaction with those telomeric DNA-bind-
ing proteins, but species differ in the nature of their
telomere-associated proteins. scRap1, in budding yeast,
has two Myb motifs and binds directly to telomeric DNA,
whereas spRap1 and hRap1 are recruited to the telomeres
by interaction with Taz1 or TRF2. Each of Taz1, TRF1 or
TRF2 has a TRFH dimerizing motif and a single Myb
motif. Thus, they bind to telomeric DNA as a homodimer.
Fission yeast and humans have Pot1 proteins in common
as well. Therefore, the compositions of telomere-associ-
ated proteins in fission yeast and in humans are similar
but differ from those in budding yeast. Because spRap1
has relatively weak ability to associate with telomeric
DNA in the absence of Taz1 in meiosis, we speculate that
the common ancestor had both Rap1 and TRF proteins
and that budding yeast has lost TRF proteins in the course
of evolution. The telomeric repeat sequence has probably
changed in budding yeast during the course of evolution
and thereby eliminated the ability of TRF proteins to bind
to telomeric DNA. In fact, the telomeric repeat sequence
of budding yeast [TG2–3(TG)1–6] has a pattern different
from those of fission yeast and humans. Telomeric re-
peats in plants are also known (TTAGGG), but the pro-
teins there are not yet characterized.
Although many telomere regulators have been identified
in eukaryotes, we do not know the molecular mechanisms
underlying their roles. For example, spRap1 has been
shown to play roles in at least three telomere functions:
telomere length control, telomere silencing and telomere
clustering toward SPB in meiosis. Like scRap1, spRap1
may have associating molecules that execute each telo-
mere function. More telomere regulators are expected to
be identified in eukaryotes in the future.
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