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Abstract. Gabapentin was originally designed as an anti-
convulsant g-aminobutyric acid (GABA) mimetic capa-
ble of crossing the blood-brain barrier. In the present re-
view we show that although gabapentin is not a GABA
mimetic, it has great utility as an add-on therapy for
epilepsy and as a first-line treatment for neuropathic
pain. We summarise the studies that have been performed
which demonstrate that gabapentin appears to interact
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with a novel binding site expressed at high density within
the central nervous system (CNS), namely the a2d volt-
age-dependent calcium channel subunit. The review con-
tinues by examining the effects of gabapentin on calcium
channel function and neurotransmitter release before, in
the latter part of the review, summarising the more re-
cently discovered actions of gabapentin in relation to in-
tracellular signalling.
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Introduction

Gabapentin (Neurontin) was originally designed as an an-
ticonvulsant g-aminobutyric acid (GABA) mimetic capa-
ble of crossing the blood-brain barrier. Although its anti-
convulsant effects within the central nervous system
(CNS) have been well documented both preclinically and
clinically, these effects do not appear to be mediated
through interaction with GABA receptors. Gabapentin is
currently licensed worldwide as an add-on therapy for pa-
tients with partial seizures resistant to conventional ther-
apies and in a number of countries for neuropathic pain.
Gabapentin is also widely used for many other off-licence
indications such as anxiety and sleep disorders due to its
apparent lack of toxicity.

* Corresponding author.

The wide range of therapeutic indications for gabapentin
and its remarkable safety profile have stimulated a large
amount of effort in the pursuit of its mechanism of action,
which continues to be the subject of much speculation. In
the present review we summarise the main findings on
gabapentin, from pharmacological, clinical, molecular
and physiological perspectives.

Preclinical and clinical pharmacology of gabapentin

Effect of gabapentin in animal models

Seizures
Gabapentin (see fig. 1 for structure) has been shown to be
effective in a number of animal seizure models, elicited
by both physical (e.g. electroshock or audiogenic) and
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chemical (e.g. pentylenetetrazol, thiosemicarbamide,
isoniazid, bicuculline, picrotoxin or 3-mercaptopropi-
onate [1–4]) means. From the profile shown in animal
models it can be expected that gabapentin would work
clinically against complex partial and secondary gener-
alised seizures, being especially effective for partial and
tonic-clonic seizures. However, although gabapentin is
effective in several genetic models of seizures, it fails to
prevent spike/wave events in the electroencephalogram
(EEG) of rats with genetic absence seizures, suggesting
that it would not be active in absence seizures [2].
As we shall see, although the anticonvulsant effect of
gabapentin is directly related to its activity at a2d sites, it
has also been shown that the glycine/N-methyl-D-aspartic
acid (NMDA) receptor agonist D-serine reverses the anti-
convulsant actions of gabapentin [5]. suggesting the po-
tential involvement of other sites of action.

Anxiety
Gabapentin has also been shown to have anxiolytic-like
effects in a variety of animal models in several species.
Gabapentin is active in the rat conflict test, the mouse
light/dark box, the rat elevated plus maze and the mar-
moset human threat test [6]. The magnitude of gabapentin
effect in these tests is similar to that of the benzodi-
azepines [7], whilst its wide spectrum of action suggests
that it may be superior to other non-benzodiazepine anxi-
olytic compounds.

Pain
The major therapeutic value of gabapentin has proven to be
its use as an analgesic. Gabapentin does not block physio-
logical pain [8, 9] but is effective against hypersensitivity
induced by tissue damage or neuropathy. Its action seems
to be centrally mediated, as seen from the selective block-
ade of the late phase of formalin test [6] and from its effect
blocking the maintenance of carrageenan-induced sensiti-
sation of dorsal horn neurones [10]. Furthermore, admin-
istration of gabapentin into the paw has no effect [11], but
the compound is active in a number of animal models of
pain when administered intrathecally [12–14]. 
Although gabapentin is very effective in inflammatory
and surgical models of pain [15], the real breakthrough
for the compound is its effect in models of neuropathic
pain. It is effective in the chronic constriction injury
(CCI), Chung and streptozocin models of neuropathic

pain, blocking not only mechanical and thermal hyperal-
gesia, but also allodynia [8, 16] and abnormal neuronal
responses [17]. In contrast to morphine and amitriptyline,
which are only effective against static allodynia, gaba-
pentin also blocks dynamic allodynia [18], thus demon-
strating a superior antiallodynic profile to current thera-
pies. This wide range of action in animal models of pain
makes gabapentin a favourite treatment for chronic pain
syndromes (see below for clinical data).

Clinical efficacy of gabapentin

Epilepsy
Gabapentin is licensed as an add-on therapy for the treat-
ment of partial seizures, with and without generalisation.
Its clinical efficacy as an anticonvulsant is proven and has
been extensively reviewed [19, 20]. In general it is well
tolerated. One main advantage of the compound is its
lack of drug-drug interactions, due to its lack of binding
to plasma proteins and lack of liver metabolism (for re-
view see [21, 22]).

Neuropathic pain
Among the number of nonepileptic uses for gabapentin,
the largest is for the treatment of neuropathic pain. De-
scribed as one of the greatest challenges in pain manage-
ment, neuropathic pain has traditionally been managed
with antidepressants or other anticonvulsants, which have
important adverse effects that limit their use (for review
see [23]). In humans, gabapentin exhibits clinically effec-
tive antihyperalgesic activity against a wide range of neu-
ropathic pain conditions. Numerous open-label case stud-
ies and three large double-blind trials now provide sup-
porting evidence for gabapentin as a useful alternative in
the treatment of pain. Doses ranging from 300 to 2400
mg/day were effective in treating diabetic neuropathy
[24], postherpetic neuralgia [25], trigeminal neuralgia,
migraine and pain associated with cancer and multiple
sclerosis ([26–28; see also [29–31]). Gabapentin is cur-
rently widely prescribed for patients with neuropathic
pain, due not only to its demonstrated efficacy but also 
to its lack of significant adverse side effects (for review
see [32]). However, cost issues and limited experience
presently restrict the use of gabapentin as a first-line op-
tion [30].

Figure 1. Chemical structures showing the similarities and differences between GABA (g-aminobutyric acid), gabapentin and pregabalin
[(SR)-3-isobutyl GABA]. The regions in red indicate the homology of gabapentin and pregabalin to GABA.



Neurologic and psychiatric indications
Together with the therapeutic use of gabapentin in
epilepsy and neuropathic pain, a wide range of neurologic
and psychiatric indications have recently emerged for
gabapentin, including movement disorders, migraine pro-
phylaxis and cocaine dependence [29]. Gabapentin has
been reported to be effective as therapy for bipolar disor-
ders (for review see [33]) and social phobia [34].
Gabapentin has recently been described to improve sleep
[35], suggesting yet another potential therapeutic use for
this versatile compound.

Cellular and molecular aspects of gabapentin action

Gabapentin effects on GABA mechanisms
As a drug, gabapentin was originally designed as a struc-
tural analogue of the inhibitory neurotransmitter g-
aminobutyric acid (GABA; see fig. 1 for structure). Nev-
ertheless, initial studies suggested that gabapentin did not
bind to either GABAA or GABAB receptors [36, 37], nor
was it converted metabolically into GABA [38]. In vitro
and at high concentration, gabapentin is a mixed-type in-
hibitor of GABA-transaminase [39] and increases the ac-
tivity of partially purified glutamic acid decarboxylase
[40]. Since in vivo nuclear magnetic resonance (NMR)
spectroscopic studies have shown that GABA concentra-
tions are elevated in human patients taking gabapentin,
and that this elevation of GABA is related to seizure con-
trol [41, 42], it is possible that these actions are clinically
significant. However, this possibility requires further in-
vestigation.
More recent studies based on the structural similarity be-
tween baclofen (GABAB agonist) and gabapentin, to-
gether with the overlapping CNS distribution of
gabapentin binding with GABAB receptors [43], have led
Ng et al. (2001) to propose that gabapentin is a GABAB

receptor agonist. Using the Xenopus laevis oocyte ex-
pression system, gabapentin has been shown to selec-
tively activate GABAB gb1a-gb2 heterodimers coupled to
Kir 3.1/3.2 inwardly rectifying potassium channels in a
manner that can be blocked by GABAB antagonists. Sim-
ilarly, the same authors have demonstrated that
gabapentin activates potassium currents in CA1 pyrami-
dal neurones and inhibits voltage-dependent calcium
channels in a mouse pituitary cell line via interaction with
GABAB receptors [44]. However, recently published data
suggest that gabapentin action is not mediated via
GABAB receptors [45], since gabapentin displays no ef-
fect upon GABAB(1a,2) or GABAB(1b,2) heterodimers at con-
centrations up to 1 mM when expressed in Xenopus lae-
vis oocytes or mammalian cells. Clearly, these data cast a
shadow on the existence of any gabapentin-GABAB re-
ceptor interaction. Similarly, Lanneau et al. [46] were not
able to reproduce the results of Ng et al. [46a] using sim-

ilar tissue preparations. Also, Martin et al. [47] reported
that gabapentin does not interact with GABAA or GABAB

receptors in cultured dorsal root ganglion (DRG) cells.
Patel et al. [48] have compared the effects of GABAB ag-
onists and gabapentin on mechanical hyperalgesia in rat
models of neuropathic (partial sciatic ligation) and in-
flammatory (Freund’s complete adjuvant) pain. In both
models, whilst the effects of GABAB agonists were
blocked by a selective GABAB antagonist, the effects of
gabapentin were unaffected by this antagonist. Together
with original binding data establishing the very low affin-
ity of gabapentin for the GABAB receptor [37], these re-
sults also seem to suggest that the gabapentin effects
shown in these two models are not mediated by the
GABAB receptor, or at least the mechanism of action of
gabapentin is quite different from that of other GABAB

agonists.
Another possibility that has recently gained interest is
that gabapentin may act to modulate GABA transporter
function. The GAT1 GABA transporter is a plasma mem-
brane protein involved in regulating synaptic levels of
GABA. Whitworth et al. [49] have recently demonstrated
that 2-h preincubation of hippocampal cultures with
gabapentin or the more potent gabapentin mimetic (SR)-
3-isobutyl GABA (pregabalin; see fig. 1 for structure)
caused a two-fold increase in subsequent GABA uptake,
which was concentration and time dependent. This effect
appears to arise from a redistribution of GAT1 protein
from intracellular locations to the plasma membrane. On
the other hand, Eckstein et al. [50] have shown
gabapentin to inhibit the uptake of GABA. Recently, evi-
dence was also given of a low-affinity inhibitory effect of
gabapentin on the L-type amino acid transporter (LAT1;
[51]).
Clearly, these areas of gabapentin research are particu-
larly confused and in need of further study. Recently, a
GABAB null mutant mouse (lacking GABAB1 subunit)
has been reported [52] and shown to exhibit spontaneous
seizures, hyperalgesia, hyperlocomotor activity and
memory impairment. This mouse should provide a
unique opportunity to evaluate the relevance of GABAB

receptors in mediating gabapentin effects.

Gabapentin binding sites
The lack of definitive evidence to support an interaction
between gabapentin and GABAergic pathways has led re-
searchers to consider other possibilities to account for the
therapeutic effects of this compound. Initial radioligand-
binding analysis revealed that gabapentin did not interact
with a wide variety of commonly studied drug, neuro-
transmitter and ion-channel binding sites [53]. However,
[3H]gabapentin was shown to bind with high affinity to a
single population of binding sites present in homogenised
brain membranes from a variety of mammalian species
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(Kd in rat 38 nM; [37, 54]). The ability of a large variety
of neuroactive chemicals to displace [3H]gabapentin from
these binding sites has been examined. Of the wide range
of agents tested, the vast majority were inactive, support-
ing the idea that gabapentin interacts with a unique phar-
macological site [38]. However, potent and stereoselec-
tive displacement of [3H]gabapentin was achieved with
large neutral amino acids [54] and several 3-substituted
analogues of GABA, most notably pregabalin [37]. Sub-
sequent autoradiographical studies with [3H]gabapentin
demonstrated that these binding sites are heterogeneously
expressed throughout the brain and are probably located
on neurones rather than glia ([55], see fig. 2).
The [3H]gabapentin binding protein was subsequently
purified from pig brain and shown to be the a2d subunit
of the voltage-dependent calcium channel complex [56].
Voltage-gated calcium channels are multisubunit com-
plexes found not only in the CNS but also peripheral tis-
sues such as skeletal muscle and heart. These channels
consist of a voltage-sensing a1 pore-forming subunit that
conducts current and modulating accessory subunits, in-
cluding a2d, b and g (in muscles; for review see [57]; 
fig. 3). For each subunit, multiple genes have been iden-
tified, each of which can exhibit multiple splice variants,
providing the potential for enormous molecular hetero-
geneity.
The a2d family consists of three genes. a2d-1 was first
identified from skeletal muscle [58] and is now known to
exist as five tissue-specific splice variants [59]. a2d pro-
teins are synthesised as preproteins that undergo exten-
sive posttranslational modification. The membrane tar-

geting signal is proteolytically removed, whilst further
cleavage generates a small C-terminal fragment (d) that
remains attached to the larger (a2) fragment by a disul-
phide bridge. It is generally believed that the d subunit
forms a single transmembrane-spanning segment which
anchors the wholly extracellular a2 subunit to the calcium
channel complex (for review see [60]), fig. 3). Gaba-
pentin binding appears to be dependent on the presence
of both a and d subunits, since neither individual subunit
appears capable of binding the drug when expressed
alone [61]. Mutational analysis of a2d-1 has led to the
identification of regions 206–222, 516–537 and
583–603 within the a2 subunit that are essential for
gabapentin binding with an arginine residue at position
217 being critical for this interaction [61].
Since these findings, the complexity of the field has in-
creased with the discovery of two novel a2d genes, a2d-
2 and a2d-3 by [62]. Each subunit is widely expressed
throughout the body in a tissue-specific manner [63, 64].
Interestingly, a2d-2 but not a2d-3 has been shown to bind
gabapentin with a similar affinity to that shown by a2d-1
[65]. Analysis of the gene structure of these proteins has
revealed the presence of arginine at position 217 in the
a2d-2 gene and its absence in the a2d-3 gene, further un-
derlining the importance of this residue in gabapentin
binding. The physiological importance of a2d-2 has also
been further underlined by the discovery of the first nat-
ural a2d mutation in the mouse mutant ducky, which ex-
hibits a form of absence epilepsy underlined by a re-
duced calcium current in cerebellar Purkinje neurones
[66].
Further evidence supporting the therapeutic relevance of
the a2d binding site in gabapentin action has been pro-
vided by Taylor et al. [67] who demonstrated that the dif-
fering a2d binding affinities of stereoselective analogues

Figure 2. Autoradiograph showing the localization of [3H]-
gabapentin binding sites in a horizontal section through the rat
brain. Highest levels of binding were found in layers I and II of the
frontal, parietal, entorhinal and occipital cortex, whereas binding in
the white matter was almost nonexistent. The hippocampus, dentate
gyrus and cerebellum also displayed noticeable levels of binding. In
the hippocampus, binding was dense except in the pyramidal cell
layer. In the cerebellum, the molecular layer showed highest density
of binding. Reprinted from [55] with permission from Elsevier 
Science.

Figure 3. Schematic representation of the voltage-dependent cal-
cium channel complex. The primary structures and transmembrane
organisation of the subunits are illustrated. Cylinders represent
probable a-helical segments, and bold lines represent the polypep-
tide chains of each subunit. As shown, gabapentin is believed to in-
teract with the a2d subunit. Modified from [60] with permission
from Taylor and Francis Group.
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of gabapentin correlate well with their structure-activity
relationships in animal models of epilepsy. This has re-
cently shown also to be the case in animal models of pain
[68].

Gabapentin effects on ion channels
Heterologous expression studies have shown that a2d
does indeed functionally interact and modulate a range of
calcium channel a1 subunits (reviewed in [69, 70]). As
the only ligand identified to date that interacts with the
a2d subunit, gabapentin may therefore provide a unique,
alternative candidate for mediating voltage-dependent
calcium influx. 
In 1998, Stefani et al. [71] were the first group to demon-
strate that gabapentin inhibited voltage-dependent cal-
cium channel currents recorded from cortical neurons;
however, the gabapentin-mediated reduction in current
varied between different cell types. For example, electro-
physiological recordings have failed to detect any
gabapentin-mediated change in the calcium channel cur-
rents recorded from hippocampal neurones taken from
patients with temporal lobe epilepsy [72]. Nevertheless,
gabapentin has been shown to prevent increased duration
of seizure discharge in the rat hippocampus in a similar
manner to the L-type voltage-dependent calcium channel
blocker, nimodipine [73].
Recent work using both electrophysiological and cal-
cium-imaging techniques has served to verify and extend
these findings to certain other specific cell types, includ-
ing DRG neurones [47, 74, 75], but not other cell types
such as cardiac myocytes [76].
These studies have shown that the sensitivity of calcium
currents to gabapentin is greatly influenced by the physi-
ological state of the cells and the calcium channel sub-
units subsequently expressed. For example, the relative
amount of a2d messenger RNA (mRNA) present in cells
appears to be an important determinant of gabapentin
sensitivity [47, 76], presumably as a result of increased
incorporation of specific subunits in the expressed cal-
cium channel complexes. Gabapentin sensitivity also ap-
pears to be influenced by the activity of protein kinases
[47], which is also known to be affected by underlying
pathophysiology (e.g. [77]).
Voltage-dependent calcium influx is associated with the
activation of a number of critical intracellular pathways
and contributes to the overall function and development
of many different tissues. Given the ubiquitous and criti-
cal role played by calcium channels, use of channel in-
hibitors as potential therapeutic agents might be expected
to produce potentially serious side effects. Yet gabapentin
exerts relatively specific analgesic actions with only mi-
nor side effects. In addition, gabapentin is not effective in
all patients or cell preparations [30, 78], a finding which
may reflect a biovariability in the pharmacokinetic prop-

erties or target binding interactions of gabapentin. The re-
cent identification of multiple a2d subtypes which differ-
entially bind gabapentin and exhibit a tissue- [62, 63] and
pathophysiology-dependent [79–81] distribution pro-
vides the potential for subunit-specific and localised in-
teractions between gabapentin and calcium channels.
Recent recordings taken from dorsal horn neurons in
spinal cord slices from adult hyperalgesic rats or neona-
tal control slices have confirmed a presynaptic site of ac-
tion for gabapentin [82, 83]. Postsynaptic affects have
also been demonstrated in which gabapentin variably
modulates either NMDA- or a-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid (AMPA)-mediated
synaptic transmission in freshly dissociated rat DRGs,
control slices and in vivo [78, 83, 84].

Gabapentin and neurotransmitter release
Several independent studies have now shown that given
the right conditions, gabapentin can produce a reduction
in calcium influx in presynaptic nerve terminals and in-
hibit the release of excitatory amino acids in a regionally
selective manner [85, 86]. Recent data also describe an
inhibitory effect of gabapentin on K+-stimulated [3H]-no-
radrenaline release from human neocortex [87]. Other
early reports mentioning an inhibitory effect of gaba-
pentin on dopamine release in the rabbit striatum [88] 
and of 5-hydroxytryptamine levels in whole blood of
healthy young men [89] remain anecdotal and have not
been substantiated by further studies. In general, the

Figure 4. High voltage activated (HVA) calcium currents recorded
from dorsal root ganglion (DRG) neurones under two different cul-
ture conditions, illustrating the differential effect of gabapentin
(GBP) under each condition. Representative calcium currents
recorded using barium as the charge carrier from DRG neurons cul-
tured in media 1 [panel A, condition 1: serum and 10 ng/ml nerve
growth factor (NGF-2.5s)] were significantly less sensitive to
gabapentin compared with the calcium currents recorded from
DRG neurons cultured in media 2 (panel B, condition 2: serum-free
and 100 ng/ml NGF-7s). Calcium currents were obtained under
voltage clamp conditions by a step depolarisation from –80 mV to
0 mV for 100 ms. In panels C and D the time course of gabapentin
effect on the peak barium current (PeakBa) is plotted with respect
to time. Reprinted from [47] with permission from Elsevier Science.



gabapentin effects mentioned in these studies are consis-
tent but not very pronounced.
Recent evidence also suggests that the effects of
gabapentin can be stimulus-dependent in certain systems.
For example, in rat caudal trigeminal slices, gabapentin
has no effect on the K+-evoked release of [3H] glutamate
but is able to inhibit the facilitatory effects of substance P
or calcitonin gene-related peptide on glutamate release
[90]. Gabapentin also inhibits the enhancement of K+-
evoked [3H] glutamate release by activators of protein ki-
nase C (PKC) or adenylate cyclase in these slices [91],
suggesting that it may act to modulate calcium influx fol-
lowing phosphorylation.

Gabapentin effects on signal transduction
Recent studies have shown that the onset of pain is asso-
ciated with marked changes in the phosphorylation state
of spinal cord neurones [77, 92]. A key enzyme cascade
which appears crucial in the modulation of this process
and therefore to the induction of pain is the mitogen-acti-
vated protein (MAP) kinase pathway. For example Ji et al.
[77] have demonstrated that intense electrical C-fiber
stimulation increases the number of phosphoERK (extra-
cellular signal-related kinase)-positive neurons in lamina
I and II of the ipsilateral dorsal horn. This increase in ac-
tivity can be blocked by the NMDA receptor antagonist
MK-801 or pretreatment with gabapentin. At present it is
unclear whether the effects of gabapentin on this pathway
contribute to the analgesic effects of this drug or whether
the reduction of phosphoERK immunoreactivity is a con-
sequence of the analgesia produced by gabapentin acting
on some other system.
In relation to this, Greenberg et al. have recently reported
that activation of L-type voltage-activated calcium chan-
nels could lead to activation of transcription factors such
as cyclic AMP response element (CREB) and myogenic
enhancer factor 2 (MEF-2) [93]. Furthermore, it was
shown that binding of calcium-calmodulin complex to
the carboxyl terminus of calcium channel leads to activa-
tion of the RAS/MAP kinase pathway, which conveys lo-
cal calcium signals to the nucleus. It is conceivable that
the high-affinity binding of gabapentin to a2d can modu-
late the interaction between the calcium channel and
calmodulin and hence cause a downstream effect on the
MAP kinase signalling pathway. This is a particularly
provocative hypothesis that is likely to draw considerable
attention in the future.

Conclusions and future directions
in gabapentin research

A large and continuously growing body of preclinical
and clinical data exists which indicates that gabapentin is
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effective in an extraordinarily diverse range of condi-
tions and at the same time exerts only few untoward side
effects. As the list of clinical indications grows, the con-
fusion surrounding the drug’s mechanism of action also
increases. It remains difficult to understand how a chem-
ical with such robust and important therapeutic activity
in vivo can fail to elicit equally robust activity in vitro.
There is little agreement among investigators regard-
ing the exact molecular target of gabapentin. It may be
that there is no one individual target and that gabapentin
has a small modulatory effect on a large number of sys-
tems.
In the current paper we attempted to review the findings
which have led to our present understanding of gaba-
pentin action from the initial observations that this com-
pound was not a simple GABA mimetic, to the discovery
of a unique gabapentin binding site and the more recent
linkage between gabapentin and complex intracellular
signalling pathways. 
Over the years that we have worked with this compound,
both collectively and individually, we have developed the
idea that gabapentin may be an ideal drug that acts selec-
tively on pathophysiological systems. This would explain
the difficulty that exists in finding robust effects of
gabapentin in vitro, where true pathophysiological events
are difficult to replicate.
Indeed, more recent gabapentin literature appears to sup-
port the hypothesis that cells need to be subjected to cer-
tain conditions in order to display gabapentin sensitivity.
Clearly then, a key area of future research will be to un-
derstand the mechanisms that underlie pathology and the
effects these mechanisms have upon putative gabapentin
targets. An obvious first step in understanding gabapentin
action process will be to thoroughly delineate the role of
the a2d subunits in gabapentin-sensitive disease models.
Here, it is likely that a2d subunit knockout animals will
have an important role. Key experiments will include an
examination of the phenotype of various knockouts, their
response to the pathology and the ability of gabapentin to
treat these pathologies.
Recent studies have provided evidence that gabapentin
may not necessarily act via the a2d binding site, and fu-
ture work should also be performed to determine whether
this is truly the case. Once again, the use of the available
knockout models will be important to fully explore these
hypotheses.
In summary, there remain many questions which need to
be answered before we can confidently delineate the
mechanisms by which gabapentin achieves its therapeu-
tic effects.  Solution of these difficult and intriguing ques-
tions will surely continue to offer a greater insight into the
disease process as well as hopefully providing opportuni-
ties for newer and more effective drugs.
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