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Abstract. Hepatic encephalopathy (HE) is a neuropsy-
chiatric syndrome associated with both acute and chronic 
liver dysfunction. It defines prognosis in acute liver inju-
ry in which patients can succumb with brain oedema and 
intracranial hypertension. In cirrhosis, it occurs insidi-
ously, causing a range of neuropsychiatric disturbances. 
For over a century, we have known that ammonia is 

important in its pathogenesis and astrocytes are the cells 
that have been most commonly found to be affected neu-
ropathologically. In this review we centre on the story of 
the ‘sick astrocyte’, focusing on the molecular pathogen-
esis of HE and the important role that inflammation has 
on its modulation. We describe new developments in this 
area with respect to potential targets for future therapies.
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The foundation stones of hepatic encephalopathy

Hepatic Encephalopathy (HE) was first described by 
Nencki, Pavlov and Zaleski in the 1890s when they 
observed that dogs developed a behavioural syndrome 
following the formation of a surgical shunt diverting 
blood away from the portal vein into the inferior vena 
cava (Eck’s fistula) [1]. This was nicknamed the 6meat 
intoxication syndrome9 and subsequent nitrogen balance 
studies demonstrated raised ammonium salts in the urine 
[2]. After ammonia ingestion, the dog became comatose 
and died. The brain ammonia content was four times that 
found in normal animals. The researchers concluded that 
the cerebral disorders observed in these dogs with porta-
caval fistulas could be attributed to ammonia following 
the failure of its conversion to urea in the liver [3].
Some 50 years later, Gabuzda et al. [4] noted that patients 
with cirrhosis and ascites treated with cation-exchange 
resins that absorbed sodium but released ammonium ions 

developed episodic HE. Phillips et al. [5] then went on 
to describe the behavioural alterations and a syndrome 
of impending hepatic coma in cirrhotics given certain 
nitrogenous substances. The severity of HE was then 
shown to broadly relate to the blood ammonia level in 
two large studies [6, 7]. 

Definitions and syndromes

HE is a neuropsychiatric syndrome which is associ-
ated with liver dysfunction and has quantitatively and 
qualitatively distinct features relating to its severity. It 
defines the prognosis in acute liver injury in which up 
to 30% of patients succumb from brain herniation due to 
brain oedema and intracranial hypertension. In cirrhosis 
(chronic liver dysfunction), it occurs more insidiously 
causing a range of neuropsychiatric disturbances which 
include psychomotor dysfunction, impaired memory, 
increased reaction time, sensory abnormalities and poor 
concentration. In its severest forms, patients may develop 
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confusion, stupor, coma and death [8]. In minimal HE, 
the changes in mental function are subtle and may be 
observed in patients with no overt clinical evidence of 
encephalopathy [9]. The neuropsychological features 
of minimal HE are suggestive of a disorder of executive 
functioning. This primarily affects selective attention 
and psychomotor speed [10], which has a huge impact 
on health-related quality of life and has been shown to 
reduce the ability to drive [11]. Acute-on-chronic liver 
failure defines a group of patients that have chronic liver 
disease and in these patients a severe precipitating event 
such as sepsis, gastrointestinal bleeding (increased am-
monia load) or the creation of portosystemic shunting 
(increased ammonia load) provides a pathophysiologic 
framework in which the patients with a chronic ‘phe-
notype’ can appear clinically indistinct from those with 
acute liver failure [12] (fig. 1).

Neuropathology

In acute liver failure, astrocytes swell and patients 
develop cytotoxic brain oedema. This observation has 
been replicated in cultured astrocytes exposed to high 
concentrations of ammonia [13]. In chronic liver dis-
ease, astrocytes show the characteristic morphological 
features of Alzheimer type II astrocytosis. Astrocytes 
exhibit a large swollen nucleus, prominent nucleolus, mar-
gination of the chromatin pattern and marked enlargement 
of the cytoplasm associated with isolated proliferation of 
cytoplasmic organelles which has also been replicated in 
astrocytes exposed chronically to ammonia [14]. There is 
also an alteration in the expression of key astrocytic pro-
teins including the peripheral-type benzodiazepine receptor 

[15], glutamate transporters [16] and glial acidic fibril-
lary protein [17].
The central nervous system (CNS) neurovascular unit is a 
dynamic structure consisting of vascular endothelial cells, 
pericytes, and closely juxtaposed astrocytes and neurons. 
Contact and communication between these cells modu-
lates cerebral blood flow and influences the permeability 
properties of the blood brain barrier [18]. The blood brain 
barrier remains anatomically intact in HE, but studies us-
ing positron emission tomography reveal an increase in 
the permeability-surface area to ammonia with increasing 
severity of disease [19]. A recent study has shown that the 
removal of astrocytes from culture resulted in increased 
permeability to small tracers across the brain endothe-
lial cell monolayer and an opening of the tight junctions 
which was not accompanied by the loss of tight junction 
proteins such as claudin and occludin [20]. 

Pathogenesis of hepatic encephalopathy

Ammonia has been thought to be central in the pathogen-
esis of HE for the past 100 years, and most of the current 
therapies are based on modulating the circulating levels 
of this neurotoxin. Disturbances in neurotransmission 
due to increased g-aminobutyric acid (GABA) (increased 
neuroinhibition) [21], reduced glutamate (reduced neu-
roexcitation) [22] and increased endogenous benzodi-
azepines and neurosteroids [23, 24] have been thought to 
be important, but current data suggest that at least some 
of these effects may be mediated by ammonia [25]. Al-
tered cerebral blood flow is thought to be important, but 
it is not clear whether this is mediated through ammonia 
or secondary to superimposed inflammation. There is 
emerging literature suggesting that inflammation and its 
mediators may be important in the pathogenesis of HE. 
In this review we will focus primarily on the roles of am-
monia and inflammation in the pathogenesis of HE.

The ammonia hypothesis
Important direct evidence showing that ammonia is taken 
up by the brain in patients with liver disease and hyper-
ammonemia was provided by Lockwood et al [26]. Us-
ing positron emission tomography with 13N-ammonia, he 
elegantly demonstrated that uptake of ammonia into the 
brain of patients with HE was significantly higher than 
in healthy volunteers and that the arterial concentrations 
of ammonia may increase the uptake of ammonia in the 
brain through an increase in the permeability of the blood 
brain barrier to ammonia [19]. In experimental animals 
with acute liver failure, brain ammonia flux may be up 
to 45-fold higher than normal [27]. In acute liver failure, 
arterial ammonia levels of >150 µmol/l predict a greater 
likelihood of dying from brain herniation [28].
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Astrocyte swelling

Increased brain water
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Figure 1. The cell that is most important in the pathogenesis of HE is 
the astrocyte. This diagram shows that acute and chronic liver dys-
function both result in increased brain water and that an acute insult 
on a background of chronic liver disease can result in acute cerebral 
oedema and raised intracranial pressure.
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Ammonia-glutamine brain swelling hypothesis
In the presence of liver dysfunction, urea synthesis is 
impaired and the brain acts as a major ammonia detoxi-
fication pathway. Astrocytes, which provide physical and 
nutritional support for neurons, also eliminate ammonia 
by the synthesis of glutamine through amidation of gluta-
mate. Accumulation of glutamine in astrocytes, induced 
by hyperammonemia, produces osmotic stress and causes 
the astrocytes to swell [29]. Evidence of an increase in 
brain water in minimal HE has been provided in humans 
through studies using magnetic resonance imaging which 
show decreased magnetisation transfer ratio, indicating 
increased brain water. This was shown to correlate with 
neuropsychological function, and the abnormality was re-
versed by liver transplantation [30]. More recently, hyper-
ammonemia induced by oral administration of an amino 
acid solution in patients with cirrhosis was shown to result 
in significant deterioration in neuropsychological function, 
an increase in brain glutamine levels and a reduction in the 
magnetic transfer ratio, suggesting an increase in brain 
water [31]. This study provided further support for the am-
monia-glutamine brain water hypothesis of HE. The effect 
of hyperammonemia is likely to be determined by the abil-
ity of the astrocytes to maintain osmotic equilibrium by 
losing osmolytes such as myo-inositol in response to the 
ammonia-induced increase in glutamine [32]. Therefore, 
patients with co-existing hyponatremia [33] or chronic 
hyperammonemia, which result in depleted myo-inositol 
stores, may be more sensitive to the effects of a sudden 
increase in ammonia levels (fig. 2a, b).

Direct ammonia toxicity
Ammonia, when present in high concentrations, has the 
potential to adversely affect the central nervous system, 
particularly through modulation of inhibitory and excita-
tory neurotransmission [34]. 
In acute liver failure, the manifestation of hyperammon-
emia may be excitatory in nature and result in seizures 
associated with increased synaptic release of glutamate. 
Glutamate is the major excitatory brain neurotransmitter 
and results in the subsequent overactivation of the iono-
tropic glutamate receptors, the N-methyl-D-aspartate re-
ceptors. Acute exposure to ammonia in astrocyte cultures 
results in cytosolic alkalinization, leading to calcium-de-
pendent release of glutamate. Furthermore, a deregula-
tion of glutamate release from astrocytes by ammonia 
could contribute to glutamate dysfunction consistently 
observed in the animal models of acute HE [35].
In chronic liver disease, however, there appears to be a 
shift in the balance between inhibitory and excitatory 
neurotransmission towards a net increase in inhibitory 
neurotransmission. This may be due to a downregulation 
of glutamate receptors, resulting in decreased glutamin-
ergic tone. In patients with HE, cerebral glutamate is de-
creased and downregulation of glutamate binding sites on 

the postsynaptic neurons and astrocytes occurs, resulting 
in decreased neuroexcitation [36]. Furthermore, chronic 
hyperammonemia inactivates the glutamate transporter 
(GLT-1) in astrocytes [37]. 
For over 25 years now, it has been observed that there is 
increased GABAergic tone in patients with HE. GABA is 
the predominant inhibitory neurotransmitter in the brain, 
and it was hypothesised that GABA accumulated in liver 
failure and crossed the blood brain barrier [21]. This hy-
pothesis has not been confirmed in some of the more recent 
studies. Recent hypotheses suggest that hyperammonemia 
may modulate the observed increase in GABAergic tone in 
liver disease. Hyperammonemia has been shown to inhibit 
astrocytic GABA uptake, increase neuronal chloride cur-
rents by a direct action on the GABAA receptor complex, 
and potentiate the binding of GABAA and central benzodi-
azepine receptor agonists to the GABAA receptor complex 
[23, 38]. Recent studies have suggested that alterations 
in brain GABA content or receptor complex function 
may not be as important as the presence of neurosteroids 
with GABA agonist properties, which may explain the 
increased GABAergic tone in HE [39].

Ammonia-glutamine-brain swelling hypothesis
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Figure 2. (a) A diagrammatic representation of the ammonia-
glutamine-brain swelling hypothesis. Astrocytes are the site of am-
monia detoxification in the brain and eliminate ammonia by the syn-
thesis of glutamine through amidation of glutamate. The glutamine 
is retained, and its osmotic effect within the astrocyte causes it to 
take up water, causing it to swell. (b) A diagrammatic representation 
to show the role of myo-inositol as an osmotic regulator within the 
astrocyte. As glutamine accumulates within the astrocyte, myoinosi-
tol exits to try to redress the osmotic balance within the cell and 
prevent cerebral oedema.
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In rat models of chronic liver failure and hyperammon-
emia, it has been shown that ammonia impairs the gluta-
mate-nitric oxide-cGMP pathway, which is activated by 
the NMDA receptor and is important in learning. Moreo-
ver, chronic treatment with sildenafil, an inhibitor of the 
phosphodiesterase that degrades cGMP, normalises the 
function of the pathway and restores learning ability in 
rats with portacaval shunts or with hyperammonemia. 
This may well explain why patients with minimal HE 
have impairment in short-term memory [40].

Ammonia and brain metabolism
Ammonia at millimolar concentrations also has the po-
tential to impair brain energy metabolism, particularly as 
it is known to inhibit the tricarboxylic acid cycle enzyme 
ketoglutarate dehydrogenase [41]. However, brain energy 
metabolism does not appear to be impaired in chronic liver 
disease until the very late stages, when isoelectric electro-
encephalography traces become abnormal [42]. Neverthe-
less, cerebral spinal fluid lactate is increased in patients 
with HE [43] and in animal models of chronic liver disease 
and ammonia-precipitated encephalopathy [44]. 
Using nuclear magnetic resonance studies in the hepatic 
devascularised rat model of acute liver failure, Zwing-
mann et al. [45] demonstrated 2–4.5-fold increase in total 
brain glutamine and lactate in the early pre-coma stages 
of HE. In the more severe coma stage associated with 
brain oedema there was a further significant increase in 
brain lactate. 13C isotopomer analysis showed a selective 
increase of de novo synthesis of lactate from [1-13C] 
glucose resulting in a 2.5-fold increased fractional 13C 
enrichment in lactate [2-13C] Glutamine, synthesised 
through the astrocytic enzyme pyruvate carboxylase, 
increased 10-fold in the pre-coma stages of HE, but 
there was no further increase in the coma stages. 13C-
label incorporation into [4-13C] glutamate, synthesised 
mainly through neuronal pyruvate dehydrogenase, was 
selectively reduced in the coma stages, whilst brain 
GABA synthesis remained unchanged. These observa-
tions indicate that increased brain lactate synthesis and 
impaired glucose oxidative pathways are important in the 
pathogenesis of brain oedema in acute liver failure.

Altered gene expression
Acute liver failure results in altered expression of sev-
eral genes in the brain which code for important proteins 
involved in brain function and are summarized in table 
1. These proteins include the glucose (GLUT-1) and 
glutamate (GLT-1) transporters, the astrocytic structural 
protein glial fibrillary acidic protein, the peripheral-type 
benzodiazepine receptor and aquaporin IV, which is a 
water-channel transmembrane protein. Loss of expres-
sion of GLT-1 results in increased extracellular gluta-
mate. The monoamines serotonin and noradrenaline are 
also increased extracellularly following post-transla-

tional modifications to their receptors [46]. This altered 
monoaminergic function may also be responsible for the 
early neuropsychiatric symptoms of HE [47]. The in-
creased expression and activation of the peripheral-type 
benzodiazepine receptor results in altered brain excit-
ability. As a mitochondrial protein, it plays an important 
role in the maintenance of astrocytic energy metabolism 
and uptake of cholesterol, resulting in the synthesis of 
neurosteroids which have potent neuroinhibitory proper-
ties [48]. Increased expression of aquaporin IV may be 
important in regulation of water transport and hence alter 
brain water [49], and aquaporin IV knockout mice show 
reduced brain oedema and improved neurological out-
come compared with wild-type mice in models of brain 
oedema [50]. Portacaval anastomosis in the rat results in 
increased gene expression of the constitutive neuronal 
isoform of nitric oxide synthase in the brain. This may 
contribute to altered mental states through disturbances 
in cerebral blood flow [51].

Cerebral blood flow
Cerebral blood flow is closely coupled to neuronal ac-
tivity and is modified by afferent projection fibres that 
release vasoactive neurotransmitters in the perivascular 
region, principally on the astrocyte endfeet that outline 
cerebral blood vessels, enabling cerebral blood flow 
autoregulation. Cerebral vasoconstriction induced by 
increased calcium in astrocytic endfeet is generated 
through the phospholipase A2-arachidonic acid pathway 
and 20-hydroxyeicosatetraenoic acid production [52]. 
In acute liver failure, there is a loss of cerebral autoregu-
lation, altered reactivity to carbon dioxide and cerebral 
hyperemia. Arterial concentrations of ammonia, its de-
livery to the brain and its metabolic rate are significantly 
higher in patients with acute liver failure and intracranial 
hypertension, confirming the important role of ammonia 
in the pathogenesis of intracranial hypertension, although 
the underlying mechanisms are unclear [53]. The devel-
opment of increased blood brain volume leads to a rise 
in intracranial pressure, and this may facilitate the move-
ment of water across the blood brain barrier in an osmoti-

Table 1. A summary of the main astrocytic genes which are up- and 
downregulated in acute liver failure.

Upregulation Downregulation

Peripheral-type benzodiazepine  GLT-1 (glutamate transporter)
receptor (PTBR) 

GLUT-1 (glucose transporter) Glial fibrillary acidic protein  
 (GFAP)

Neuronal nitric oxide synthase  GLYT-1 (glycine transporter)
(nNOS) 

Aquaporin IV



CMLS, Cell. Mol. Life Sci.  Vol. 62, 2005 Review Article 2299

cally altered brain [54]. As the astrocyte is involved in the 
normal coupling of neuronal activity with cerebral blood 
flow [55], alterations in astrocyte function either directly 
or indirectly by increased brain ammonia concentrations 
are likely to affect cerebral blood flow. When methods 
are introduced to inhibit brain glutamine synthesis, with 
methionine-sulfoximine [56], a rise in cerebral blood 
flow is prevented. This observation supports the view that 
increased cerebral blood flow may be important in initi-
ating brain swelling in this model. However, in humans 
with acute liver failure, the increase in cerebral blood 
flow is a later event. Patients with acute liver failure that 
have severe encephalopathy and mildly increased intrac-
ranial pressure often have normal cerebral blood flow. 
Marked increases in intracranial pressure are associated 
with a concomitant rise in cerebral blood flow [53].
In contrast, in chronic liver disease, the predominant 
picture is one of cerebral vasoconstriction [57]. Regional 
differences in cerebral blood flow are also seen. Regional 
cerebral blood flow corresponds to functional impairment 
of the frontal cortex and cingulate gyrus [58]. Adminis-
tration of an oral amino acid load to patients with cirrho-
sis that results in increased ammonia is associated with a 
reduction in regional cerebral perfusion in the temporal 
lobes, left superior frontal gyrus and right parietal and 
cingulate gyrus, and deterioration in memory tests [59]. 

The role of inflammatory mediators in modulating the 
manifestation of HE

As is clear from the previous discussion, overwhelm-
ing evidence supports the ammonia hypothesis of HE. 
However, in clinical practice a consistent correlation 

between the concentration of ammonia in the blood and 
the symptoms of HE cannot be confirmed. Sepsis is a 
frequent precipitating factor for the development of HE, 
supporting the view that additional inflammation may 
play a role in the pathogenesis of HE (fig. 3). There is 
a growing body of evidence supporting the role of in-
flammation in increasing the susceptibility of the brain 
to the effects of hyperammonemia. This concept and 
current views on its pathophysiologic basis will now 
be reviewed. 

Cytokines, astrocytes and the blood brain barrier
It is clear from the discussion so far that astrocytes are the 
key cells involved in the pathogenesis of HE, as they have 
been found to be the cells that are most commonly seen 
to be affected neuropathologically. Astrocytes secrete a 
full repertoire of cytokines and neurotrophic factors to 
neurons, consistent with their neurosupportive role. As 
the astrocytes are one of the main components involved 
in the formation of the blood brain barrier and in control-
ling cerebrovascular tone, it is conceivable that astrocyte 
swelling, which is a feature of HE, is likely to affect the 
function of the blood brain barrier. 
In the brain, activated microglial cells and astrocytes 
produce cytokines in response to injury or inflammation. 
One of the early cytokines to be released is tumour necro-
sis factor a (TNF-a). TNF-a is involved in the induction of 
the cytokines interleukin (IL)-1 and IL-6 [60]. It has been 
shown in vitro that the integrity of the blood brain barrier 
is compromised by IL-1b, which is mediated through 
the cyclooxygenase pathway within the endothelial cells 
[61]. In astrocyte cultures, interferon g (IFN-g) upregu-
lates inducible nitric oxide synthase (iNOS) [62]. The 
effect of TNF-a on human brain microvesicular endothe-
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Figure 3. A diagrammatic re-
presentation of the relation-
ship between inflammation 
and cerebral blood flow on the 
development and manifestation 
of HE. Astrocytes are the site of 
ammonia detoxification in the 
brain and eliminate ammonia 
by the synthesis of glutamine 
through amidation of gluta-
mate. The resultant astrocytic 
swelling leads to increased 
brain water and raised intracra-
nial pressure.
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lial cell permeability has the potential to compromise the 
blood brain barrier function [63].
There is considerable evidence that the peripheral im-
mune system can signal the brain to elicit a response dur-
ing infection and inflammation. This response involves 
the expression of proinflammatory cytokines such as IL-
1b, TNF-a and IL-6, both in the periphery and the brain. 
This can occur through direct entry of cytokine into the 
brain across the blood brain barrier by a storable trans-
port mechanism, the interaction of cytokine with circum-
ventricular organs such as the orgnum vasculosum of the 
lamina terminalis and area postrema [64] and activation 
of afferent neurons of the vagus nerve [65]. Sharshar et 
al. [66] showed that in patients dying with septic shock, 
neuronal and glial apoptosis occurs within the brain auto-
nomic centres, which are strongly associated with iNOS 
expression in the endothelial cells. This may alter gluta-
matergic neurotransmission [67] and increase the number 
of peripheral-type benzodiazepine receptors, which may 
alter cellular osmotic homeostasis [68]. Cytokines may 
also modulate ammonia diffusion, and it has been shown 
that TNF-a and IL-6 increase fluid phase permeability 
and ammonia diffusion in CNS-derived endothelial cells 
[69]. Brain endothelial cells have receptors for IL-1b and 
TNF-a. These can transduce signals which can culminate 
in the intracerebral synthesis of nitric oxide and prosta-
noids [64]. Perivascular cells of macrophage origin may 
be a target for these cytokine effects [70]. 
Stimulation of astrocytes in culture with lipopolysaccha-
ride results in upregulation of iNOS whitch culminates 
in increased production of nitric oxide [71]. A similar 
phenomenon is observed with ammonia. Schleiss et al. 
have provided evidence of protein tyrosine nitration in 
ammonia-treated cultured astrocytes and also in vivo in 
brains of rats treated with an ammonia load [72]. Fur-
thermore, the addition of ammonia to astrocyte cultures 
generates reactive oxygen species, a process involving 
the synthesis of glutamine. Treatment of astrocytes with 
glutamine also increases free radical production [73]. If 
phosphate-activated glutaminase is inhibited, free radical 
production is blocked, suggesting that ammonia released 
by the hydrolysis of glutamine may be a factor [74, 75]. 
As most of the glutamine in astrocytes is metabolised by 
mitochondrial phosphate-activated glutaminase, break-
down of glutamine could result in release of high levels 
of ammonia in mitochondria, which is likely to increase 
reactive oxygen species. 
Peroxynitrite is formed from the combination of super-
oxide and nitric oxide. Peroxynitrite in the presence of 
carbon dioxide can modify tissue proteins to form nitro-
tyrosine, which may mediate nitric oxide-induced blood 
brain barrier damage [76]. An increase in the permeabil-
ity of the inner mitochondrial membrane to small solutes 
(mitochondrial permeability transition) results from 
oxidative and nitrosative stress, and ammonia has been 

recently shown to induce similar changes in cultured 
astrocytes [77]. 

Evidence for the role of inflammation 
in acute liver failure
Oxidative stress is important in the pathogenesis of 
ammonia-induced neurotoxicity. In hyperammonemia, 
free-radical production may be mediated by N-methyl-
D-aspartate (NMDA)-receptor activation [78], and am-
monia-induced mitochondrial dysfunction [79] could 
also be a source of reactive oxygen species such as 
peroxynitrite [76]. Furthermore, antioxidants have ben-
eficial effects in experimental animal models of HE and 
hyperammonemia [80, 81]. As previously mentioned, 
hypothermia improves the outcome in acute liver failure. 
Hypothermia reduces free radical production, which may 
account for some of its beneficial effects [82]. Takada et 
al. [83] showed in a pig model of acute liver failure that 
animals administered lipopolysaccharide and amatoxin 
intraportally developed more pronounced intracranial 
hypertension than animals given amatoxin alone, even 
though ammonia concentrations were similar in both 
groups. In another pig model of acute liver failure in-
duced by hepatic devascularisation, improvement in the 
severity of HE following treatment with albumin dialysis 
occurs independently of changes in ammonia [84]. Albu-
min dialysis probably achieves this effect through reduc-
tion in oxidative stress and restoring nitric oxide metabo-
lism. These observations support a role for mechanisms 
other than ammonia in the pathogenesis of HE.
Studies in patients with acute liver failure have shown 
rapid progression to severe HE in those with evidence of 
a systemic inflammatory response, suggesting a possible 
link between inflammation and HE [85, 86]. In addi-
tion, in patients with acetaminophen-induced acute liver 
failure, infection and/or the resulting systemic inflam-
matory response was shown to be an important factor in 
contributing to deterioration in the severity of HE. [87]. 
In the advanced stages of HE in acute liver failure, when 
patients have uncontrolled intracranial pressure, the brain 
produces cytokines such as TNF-a, IL-1b and IL-6 [88, 
89].
In addition, it is likely that one of the mechanisms 
through which inflammation exerts its deleterious effect 
is by inducing alterations in cerebral blood flow through 
its effects on the expression of the NOS proteins. Accord-
ingly, Aggarwal et al. [90] showed that patients with high 
intracranial pressure have elevated cerebral blood flow. 
More recently we showed a direct correlation between 
the severity of inflammation and increased cerebral blood 
flow observed in acute liver failure [53]. Further evidence 
supporting the role of inflammation is derived from ex-
perimental interventions that reduce brain swelling by 
altering cerebral blood flow and inflammatory responses. 
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In patients with uncontrolled intracranial hypertension 
and acute liver failure, moderate hypothermia reduces 
brain flux of TNF-a, IL-1b and IL-6 and cerebral blood 
flow contributing to reduction in intracranial pressure 
[81, 91]. Removal of the necrotic liver in acute liver fail-
ure reduces proinflammatory cytokines such as TNF-a, 
IL-1b and IL-6 and cerebral blood flow, resulting in a re-
duction in the severity of intracranial hypertension [92]. 

Evidence for the role of inflammation in cirrhosis
A distinctive postmortem finding in human brains with 
HE is the presence of Alzheimer type II astrocytosis [13], 
which characteristically contains increased amounts of 
lipofuscin pigment that consists of peroxidized lipids 
compatible with oxidative damage [93]. Nitric oxide has 
also been implicated in the pathogenesis of HE. Nitric 
oxide synthase activity has been shown to be elevated 
in experimental models of HE [94], and increased brain 
nitric oxide production was shown in portacaval-shunted 
rats given ammonia infusions [56] with evidence of nitro-
tyrosine accumulation in astrocytes (fig. 4) [95]. Studies 
in portacaval shunted rats administered an ammonia load 
have demonstrated a rise in cerebral blood flow that par-
allels the increase in intracranial pressure and correlates 
directly with brain water content [56, 96]. 
Direct evidence for the role of inflammation in modu-
lating the severity of HE in patients was observed in a 
recent study. In cirrhosis, the presence of minimal HE 
and its severity were independent of the severity of liver 
disease and plasma ammonia concentrations, but mark-
ers of inflammation were significantly higher in those 
with minimal HE compared with those without [97]. 
Furthermore, we showed a significant deterioration of 
neuropsychological test scores following induced hyper-
ammonemia during the inflammatory state, but not after 
its resolution, suggests that inflammation and its media-

tors may be important in modulating the cerebral effect 
of ammonia in liver disease [98]. Also, it has been shown 
that changes in regional cerebral blood flow lead to dif-
ferences in cerebral ammonia uptake [58]. Cerebral blood 
flow is higher in the basal ganglia and cerebellum, which 
correlates with increased ammonia extraction [59]. 

Conclusions

In conclusion, we have described the current new per-
spectives in the molecular pathogenesis of HE. The 
importance of the role of ammonia has been highlighted 
with respect both to its direct neurotoxicity and on brain 
swelling through its detoxification to glutamine in the as-
trocyte, the cell most often implicated in the pathogenesis 
of HE. In fact one might say that the key to understanding 
the pathogenesis of HE is to explore the story of the ‘sick 
astrocyte’. We have also reviewed the factors that we be-
lieve are critical in modulating the manifest symptoms of 
HE, the most important of which is the synergistic role 
of inflammation in modulating the cerebral effects of 
ammonia. Furthermore, the production of reactive oxy-
gen species and increased protein tyrosine nitration may 
alter astrocyte function and contribute to or precipitate 
episodes of HE. 
The above description of the possible mechanisms in-
volved in the pathogenesis of HE has led to new thoughts 
on possible therapeutic interventions. Targets such as 
nitric oxide, oxidative stress and inflammation have been 
utilized by hypothermia [91], albumin infusion and use of 
extracorporeal detoxification devices [99]. The cytokine 
milieu can be altered by the use of probiotics [100], and a 
better understanding of the role of cytokines may lead to 
the development of anti-cytokine strategies. Prostanoids 
can be targeted with cyclooxygenase inhibitors [101]. 
Better understanding of the role of individual organs 

Glial Fibrillary Acidic
Protein (GFAP)

Nitrotyrosine Colocalization

(a) (b) (c) Figure 4. Slides showing stain-
ing for nitrotyrosine in the 
cerebral cortex of a portacaval 
shunted rat receiving an am-
monia infusion (courtesy of 
Professor Andres Blei, North-
western University Feinberg 
School of Medicine, Chicago 
and published in Seminars in 
Liver Disease 2003; 23: 259–
269). (A) shows glial fibrillary 
acidic protein (GFAP)-positive 
astrocytes in the cerebral cor-
tex; (B) shows nitrotyrosine 
staining in astrocytes; and (C) 
reveals the overlap of GFAP 
and nitrotyrosine staining in 
cortical astrocytes. 
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involved in ammonia and amino acid metabolism will 
allow targeted therapies aimed at individual organs. We 
have so far only uncovered the tip of the iceberg in terms 
of understanding the operative mechanisms involved, but 
very much look forward to moving this exciting area of 
research forward over the next few years.
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