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Abstract. Efficient clearance of apoptotic cells is re-
quired to control homeostasis in normal and pathological
circumstances, and inappropriate clearance of cell corpses
may lead to autoimmune diseases and inflammation. The
multiplicity of phagocytotic mechanisms points to the 
relevance of removing apoptotic cells. A variety of surface
molecules present in either the apoptotic bodies or phago-
cytes help in attachment and initiation of engulfment.
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Nonetheless, uncontrolled phagocytosis of apoptotic cells
and other particles may lead to tissue injury; therefore,
negative signals are important in balancing phagocytotic
activity. This review aims at a systematic examination of
positive and negative signals that modulate the uptake of
apoptotic bodies and the signaling mechanisms involved
in the clearance of apoptotic cells.
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Introduction: clearance of apoptotic cells

Programmed cell death occurs constantly during both de-
velopment and homeostasis and can generate large num-
bers of apoptotic bodies, i.e. the fragmented pieces of
apoptotic cells, in degenerative diseases. These apoptotic
bodies must be cleared to avoid tissue damage and in-
flammatory responses. The relevance of this process is
highlighted by the large proportion of genes involved in
the clearance of degenerating cells, relative to the total
number of genes affecting programmed cell death (PCD),
in the nematode Caenorhabditis elegans. Of 14 genes
identified as being related to PCD (ced genes), at least 
7 code for products involved in the clearance of dead cells
(ced-1, ced-2, ced-5, ced-6, ced-7, ced-10 and ced-12)
[1–3]. Interaction with apoptotic cells usually produces
an active anti-inflammatory response by macrophages,
which is important in preserving homeostasis [4–6].

* Corresponding author.

Phagocytes constantly monitor cells, which can display
either ‘eat me’ or ‘don’t eat me’ signals. Normal self cells
present molecules that promote detachment from phago-
cytes or that inhibit phagocytic activity. Upon the induc-
tion of apoptosis, cells stop presenting these signals 
or disable them and begin to express surface markers 
that are recognized by phagocytes as positive signals for
engulfment. In turn, phagocytes employ a variety of re-
ceptors and other surface molecules to recognize, attach
and initiate phagocytosis of apoptotic cells.
A large variety of molecules involved in apoptotic cell
phagocytosis have been identified both in cell culture
systems and in vivo. Cultures containing isolated phago-
cytes that are allowed to interact with apoptotic cells are
a major preparation used to identify these molecules.
Recognition or internalization can be modulated by the
addition of competitors or adjuvants of putative recogni-
tion systems, as well as inhibitors of intracellular signal
transduction pathways [7–10]. An additional source of 
information are organisms (usually mice or C. elegans)
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lacking proteins implicated in the clearance of apoptotic
cells, some of which show persistence of apoptotic cells
that are associated with impaired development or certain
diseases [11–13]. 
The mechanisms of phagocytosis depend on the apop-
totic cell type, the means of induction of cell death, the
stage of apoptosis, the type and state of differentiation of
the phagocyte, and the surrounding microenvironment
[7, 14–16]. The present review examines the signals for
phagocytosis of apoptotic cells described in a variety of
experimental models and the major components of their
signaling pathways identified to date. Both the positive
signals driving the process of phagocytosis, which have
been widely discussed in the literature, and the counter-
acting negative signals, which have been shown to be 
critical for this process, will be discussed.

‘Eat me’ signals on the surface of apoptotic cells

Apoptosis triggers changes in dying cells that are required
for the recruitment of phagocytes, for tethering of the
cells to the phagocytes and, finally, for engulfment. The

surface of apoptotic cells exhibits a wide range of mole-
cules that are absent in normal self cells, as well as 
modified versions of ‘normal’ molecules (table 1). The
best-characterized signal of apoptotic cells is the expo-
sure of the anionic phospholipid phosphatidylserine (PS)
[17]. Usually PS is restricted to the inner layer of the
plasma membrane, and this asymmetry is maintained by
two mechanisms: (i) the action of a translocase of amino-
phospholipids, i.e. a Mg2+-ATPase inhibited by Ca2+, which
transfers PS from the external layer to the inner layer, and
(ii) the binding of PS to proteins of the membrane-associ-
ated cytoskeleton, e.g. fodrin. Artificial externalization of
PS via treatment with calcium ionophores generates other
ligands in addition to PS because inhibitors of integrin- or
lectin-recognition systems impair the uptake of the treated
cells. Thus, PS externalization and loss of membrane
asymmetry may involve the exposure of other signals for
phagocytosis apart from PS itself [18].
Exposure of PS is considered an early sign of apoptosis,
but necrotic cells display PS even before the disintegra-
tion of their membranes [19, 20], and normal cells, such
as activated T cells, activated platelets, differentiating
myoblasts, myocardioblasts, megakaryocytes and macro-

Table 1. Molecules involved in promoting recognition or engulfment of apoptotic cells

Phagocyte receptor Apoptotic cell Extracellular signal References

Lectins modified sugar chains [37–41, 85, 86]

PS receptor PS (annexin I) [34, 35]

Scavenger receptor A PS? [46]

Scavenger receptor BI PS? [47, 76]

LOX-1 PS? [48]

CD68 PS?, oxidized sites [42–45]

CD14 ICAM-3 [36, 78, 83, 84]

CD36 PS? [77]

Annexin I, annexin II PS? [80]

CD36 and avb3 integrin thrombospondin, MGF-8 or Del-1 [7, 95–98]

CD36 and avb5 integrin PS? [102, 104]

b1 integrin CD29 [88]

b2 integrins CR3 and CR4 C3, C4, iC3b [51–56]
C1q [57–59, 64, 66]
MBL + C1q [58, 64]

CD91 bound to calreticulin MBL/SP-A/SP-D + C1q [57, 66]
collectins MBL, SP-A, SP-D [57, 58, 64–66]

PS protein S [70]

FcR PS b2GPI [61–63]

FcgRs pentraxins CRP, SAP [67–69]
lysophosphatidylcholine IgM [60]

Receptor tyrosine  PS Gas-6 [12, 81, 82]
kinases Axl/Sky/Mer

Integrins? vitronectin, fibronectin, collagen VI [91]

CD44 [92]
CD44, a4 integrin [93]

SHPS-1 CD47 [145]
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phages, also exhibit PS on their external cell surface [18,
21]. However, these cells are not phagocytosed, indicating
that PS, per se, is not sufficient for promoting engulfment.
Possible explanations for this are: (i) the absence of some
other factor relevant to recognition, (ii) the masking of PS
or (iii) the localization of these cells in sites devoid of com-
petent macrophages [22]. Nonetheless, certain pathogenic
protozoa take advantage of their normal surface exposure
of PS for invading and deactivating macrophages and in-
creasing susceptibility to their own growth [23].
Interestingly, macrophages must also express PS on their
surfaces for the phagocytosis of apoptotic cells to occur
[18]. ABC1, a member of the ATPase membrane trans-
porter family that is also involved in engulfment of apop-
totic cells [24], and Ced-7, the ABC1 homologue of 
C. elegans, were likewise shown to be required in phago-
cytes and target cells [25, 26]. Inhibition of ABC prevents
both exposure of PS and phagocytosis of cells expressing
PS, but not phagocytosis of yeasts or opsonized particles,
which depends on other mechanisms [25]. The mecha-
nism of action for ABC1 may involve lipid translocation,
such as that of other ABC transporters, and facilitate the
recruitment of other signals for engulfment as well as
phagocytic receptors involved in apoptotic cell clearance
[27, 28]. Ced-7, together with Ced-6 and Ced-1, is in-
volved in a pathway that is important for the engulfment
of cell corpses [2, 26, 29, 30] and which is distinct from
another pathway composed of Ced-2, Ced-5, Ced-10 and
Ced-12 [2, 31, 32]. Ced-6 and its mammalian homologue
GULP are adaptor proteins that are able to interact with
the NPXY motifs in the intracellular domains of the re-
ceptors Ced-1 and CD91/LRP, which are both implicated
in the engulfment of cell corpses [33].
Recently, annexin I was found to colocalize with PS in
apoptotic cells and was associated with the efficient teth-
ering and internalization of these cells [34]. Annexin I is
recruited from the cytosol to the cell surface by mecha-
nisms dependent on calcium release and activation of 
caspases. A specific PS receptor (PSR) was identified in
phagocytic cells [35] (see below) and reported to partici-
pate in the recognition of apoptotic cells via annexin I. 
Indeed, the homologue gene of annexin I in C. elegans
was silenced by small interfering RNA (siRNA), and these
mutated worms revealed a defect in the clearance of apop-
totic cells [34].
Parallel to PS-mediated signals, intercellular adhesion
molecule 3 (ICAM-3), a highly glycosylated protein con-
stitutively expressed in leukocytes [36], is somehow mod-
ified during apoptosis such that it switches its affinity for
its counter receptor, leukocyte function-associated antigen
1 (LFA-1), to an alternative receptor on the surface of
other cells. Antibodies against ICAM-3 and macrophage
CD14 inhibit phagocytosis of apoptotic cells in a nonad-
ditive way, suggesting that both molecules may share the
same system of recognition [36].

The pattern of glycosylation of the cell surface is also
modified during apoptosis. This may result from either
desialization, leading to the exposure of sugar residues
that were masked before apoptosis, or fusion of the plasma
membrane with membranes from the endoplasmic reti-
culum and Golgi apparatus that contain incompletely 
synthesized carbohydrates [37, 38]. Sialic acids are ubiq-
uitously expressed at the nonreducing ends of oligo-
saccharide chains and are important in various biological
events. During apoptosis they can be enzymatically re-
moved to expose asialoglycoconjugates, which are rele-
vant in inducing phagocytosis [39–41]. 
Oxidation of proteins and lipids at the apoptotic cell 
surface is also important for engulfment [42–44]. Various
apoptotic stimuli induce oxidative stress, leading to per-
oxidation of membrane lipids. Oxidized low-density
lipoprotein (OxLDL) and apoptotic cells share many re-
ceptors, such as SRA, CD36, CD68, SR-BI and LOX-1,
and compete in binding to macrophages [42, 45–48]. An-
tibodies against oxidized phospholipids label apoptotic
cells and inhibit their engulfment by macrophages [44].
Moreover, it was shown that oxidation of PS is critical for
efficient phagocytosis [49, 50]. 
Opsonization of apoptotic bodies is usually, though not
always, a positive signal for phagocytosis. In addition 
to their recognized role in facilitating phagocytosis of 
invading pathogens, molecules of the complement system
were implicated in the uptake of apoptotic cells [11,
51–59]. Both the classic pathway and the alternative path-
way participate in recognition of apoptotic cells. Deletion
of C1q and C4 in mice leads to an accumulation of apop-
totic cells in glomeruli, high titers of autoantibodies and
a disease similar to systemic lupus erythematosus [11,
59]. Immunoglobulin M (IgM) binds to lysophosphatidyl-
choline in late apoptotic cells and accounts for the removal
of these cells through complement activation [60].
Other opsonins present in serum that have a role in the
phagocytosis of apoptotic cells include b2-glycoprotein I
(b2-GPI) [61–63]; collectins, such as mannose-binding
lectin (MBL) [57, 58, 64] and surfactant proteins SP-A
and SP-D [65, 66]; pentraxins, such as C-reactive pro-
tein (CRP) [67, 68]; serum amyloid P component (SAP) 
[68, 69] and serum-derived protein S [70]. Opsonins are
strongly related to the innate immune response against
pathogens, which leads to inflammation. However, the 
removal of apoptotic cells is usually characterized by sup-
pressed production of inflammatory mediators, which
seems to depend on exposure of PS [71]. 

Apoptotic cell-recognition molecules in phagocytes

Phagocytes, in turn, express a large repertoire of surface
molecules for the recognition of apoptotic cells (table 1).
Some of these molecules are considered tethering recep-
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tors (e.g. CD14), while others are believed to transduce
intracellular signals for the engulfment of apoptotic bod-
ies (e.g. PSR) [72]. 
A cell surface glycoprotein that has at least one potential
site of tyrosine phosphorylation was identified as a spe-
cific PSR in various cells, such as macrophages, fibro-
blasts, epithelial cells and endothelial cells [35, 73]. A 
homologue of PSR, PSR-1, which is also implicated in
apoptotic cell clearance, was recently reported in C. ele-
gans [32]. However, PSR-deficient mice showed contra-
dictory results regarding the requirement of PSR for
apoptotic cell engulfment in both in vivo and in vitro as-
says [73–75]. Besides PSR, various molecules that have
affinity for anionic phospholipids are candidate recep-
tors for PS (CD68, LOX-1, SRA, SRBI and CD36)
[45–48, 76, 77]. CD14, initially included in this list [78],
was recently discarded as a possible PS receptor because
PS showed no specificity for soluble or membrane-an-
chored CD14, it was less active than phosphatidylcholine
and phosphatidylethanolamine in binding to monocyte-
derived macrophages, and PS-containing liposomes did
not inhibit CD14-dependent phagocytosis of apoptotic
cells [79]. Like some apoptotic cells, macrophages display
both annexin I and annexin II, which have affinity for PS,
on their surface. However, annexin I and annexin II cannot
be removed from the macrophage surface by chelation of
calcium, as they can in apoptotic Jurkat cells. It is not clear
how these molecules are present in phagocytes, but they
stimulate phagocytosis of apoptotic cells [80].
Mer is a member of the Axl/Mer/Tyro3 receptor tyrosine
kinase family. Mice expressing a Mer protein that had a

cytoplasmic truncation showed deficient clearance of
apoptotic cells and increased numbers of nuclear autoan-
tibodies [12]. This effect was specific for apoptotic cells,
as opposed to other targets such as bacteria, latex beads
and opsonized particles. Binding of apoptotic cells to
phagocytes was, however, preserved in these mutant mice,
suggesting that only engulfment is dependent on the cy-
toplasmic portion of Mer. Mer and apoptotic cells may 
possibly be bridged by Gas6, a ligand of Mer that has
affinity for PS [81]. In fact, Gas6 enhances the engulf-
ment of apoptotic bodies by phagocytes [82]. 
CD14 is a glycoprotein that is bound to the cell surface 
by a glycosylphosphatidylinositol (GPI) anchor. It binds
various molecules, such as lipids, carbohydrates and pro-
teins, and is broadly known as a receptor for lipopolysac-
charide (LPS). CD14 plays a role in the recognition of
apoptotic bodies by either resident or elicited macro-
phages [78, 83, 84] and possibly participates in a recogni-
tion complex, together with a modified form of ICAM-3,
in apoptotic cells [36].
Several lectins and receptors are also implicated in mech-
anisms of recognition of exposed carbohydrates that vary
according to the type of both apoptotic and phagocytic
cells [37–39, 41, 85, 86]. Table 2 summarizes the results
of assays using a variety of cell types and sugar inhibitors,
which support the role of surface sugars in the control of
phagocytosis. 
CD93, also known as C1qRp, is expressed on macro-
phages and seems to have a positive role in apoptotic cell
phagocytosis, because CD93-deficient mice have an im-
pairment in clearance of these cells. However, the impor-

Table 2. Carbohydrates of apoptotic cells involved in recognition of phagocytes

Apoptotic cell type Inhibitory sugars Non-inhibitory sugars Implied lectin Phagocytes References

Liver cells  GalNAc, Gal, Man, ASGP-R  liver phagocytes of [37]
of neonatal rats ASF, Lac-BSA MR neonatal rats

Lymphocytes Glu, Fuc, GalNAc, BSA 20%, MR  Kupffer cells [38]
methyl-manno- fetuin galactose 
pyranoside, Lac-BSA, receptor
ASF

HT-29 (adenocar- Gal Man, Fuc THP-1 human [39]
cinoma cell line) monocytic cell line

HeLa sialic acid Neu5Ac, GlcNAc, receptors for elicited peritoneal [41] 
derivatives Gal, Man asialoglyco macrophages

moieties

Thymocytes GlcNAc and Chito, Fuc, Man, NANA peritoneal [85]
GalNAc, Gal to a  macrophages
lesser extent

Neutrophils Man, Fuc, Glsa, Glc Glu, Gal, GlcNAc, mannose/ fibroblasts [86]
GlsaNAc fucose lectin

Leukocytes fucoidin, mannan Glu, GlcNAc, Gal, fucoidin endothelial cells [93]
Fuc, Man, mannan receptor

Gal, D-galactose; Glu, D-glucose; Fuc, D-fucose; Man, D-mannose; Glsa, galactosamine; GlsaNAc, N-acetylgalactosamine; Glc, glucos-
amine; GlcNAc, N-acetylglucosamine; ASF, asialofetuin; Lac-BSA, lactosylated bovine serum albumin; NANA, N-acetylneuraminic acid;
Chito, N-N’-diacetylchitobiose; ASGP-R, asialoglycoprotein receptor; MR, mannose receptor.
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tance of this molecule was not confirmed by in vitro as-
says using macrophages of wild-type and CD93-deficient
mice [87].
The b1 integrin (CD29) was associated with recognition
and binding of apoptotic cells to leukocytes, but its ligand
is still unknown [88]. Most integrins recognize various
components of the extracellular matrix (ECM), and 
distinct integrins can interact in modulating phagocytic
responses [89, 90]. b1 integrins are also implicated in 
improving the engulfment of apoptotic neutrophils follow-
ing adhesion of macrophages to fibronectin, vitronectin,
collagen VI (but not collagen I), bovine serum albumin
(BSA) or naked plastic [91]. 
b2 integrins, such as CR3 and CR4, are receptors for iC3b,
which can opsonize apoptotic cells. Antibodies against
iC3b and its receptors inhibit the clearance of apoptotic
cells [53, 55]. FcgRs, usually associated with phagocytosis
of IgG-opsonized particles, can also function as a receptor
for cyclic AMP receptor for C-reactive protein (CRP),
which, together with SAP, binds to both apoptotic and
necrotic cells and enhances the uptake of these cells [68].
The surface molecule of phagocytes, CD91, can bind 
calreticulin, a secreted protein, and together with the op-
sonins C1q and MBL initiate macropinocytosis and uptake
of apoptotic cells tethered to phagocytes [57]. The col-
lectins SP-A and SP-D also bind apoptotic cells, promot-
ing their uptake in a mechanism dependent on calreticulin
and CD91 [66].
CD44, a receptor for hyaluronan, enhances the phagocy-
tosis of apoptotic cells when ligated by specific antibodies
[92]. CD44, as well as the a4 integrin, is also involved in
engulfment of apoptotic leukocytes by endothelial cells,
but only when present in the target apoptotic cell, not in
the phagocyte [93]. Additional evidence of a role for 
this receptor stems from CD44-deficient mice, which are
unable to resolve bleomycin-induced inflammation in the
lung and which show impaired clearance of apoptotic neu-
trophils, accumulation of hyaluronan fragments, and im-
pairment of transforming growth factor b activation [94].

Redundant and complex recognition systems

The preceding sections showed that apoptotic cells dis-
play various signals to be recognized by phagocytes and
that phagocytes can display multiple recognition systems.
Recognition and phagocytosis of apoptotic cells are com-
plex processes, and the molecules employed depend on
the activation state of macrophages [7], the phagocytic
cell type, and the stage of apoptosis, as will be illustrated
in the following section. Furthermore, these systems can
act cooperatively and sequentially.
Nonactivated macrophages can recognize apoptotic bod-
ies by a complex formed by CD36, the integrin avb3 and
secreted thrombospondin. CD36 is a scavenger receptor

that recognizes PS, but the molecules recognized by this
complex in apoptotic cells are still unknown.
Similar to nonactivated macrophages, which secrete
thrombospondin that bridges apoptotic cells and macro-
phages, activated macrophages secrete the glycoprotein
milk fat globule-EGF factor 8 (MGF-E8). This protein
bridges apoptotic cells by recognizing aminophospho-
lipids (such as PS) and phagocytes, probably by binding
to avb3 or avb5 via its arginine-glycine-aspartic acid
(RGD) motif [95]. This mechanism of recognition may 
be particularly relevant during involution of mammary
glands, when suckling and milking ceases and a large
number of epithelial cells degenerate by apoptosis. The
secretion of these proteins by macrophages may explain
how the related integrins participate in recognition of
apoptotic cells without binding directly to PS. Del-1, a
molecule that binds avb3 and that is structurally and
functionally homologous to MGF-E8 also participates in
engulfment of apoptotic cells [96]. Interestingly, distinct
subsets of macrophages seem to express only one or the
other molecule [96–98]. Moreover, it was recently shown
that MGF-E8 and avb5 participate in phagocytosis of
apoptotic cells by dendritic cells [99] and that avb5/MGF-
E8 and MER/Gas-6 act synergistically in the engulfment
of apoptotic cells, thus amplifying downstream intracellu-
lar events [100] (see next section for discussion).
Other systems related to phagocytosis by activated
macrophages involve uncomplexed CD36 as well as other
receptors, such as lectins and CD14 [14]. These data sug-
gest that a combination of PS and other molecules may
have a central role in generating complex signals recog-
nized by various phagocyte receptors [14, 84, 101]. 
Like dendritic cells, retinal pigment epithelium (RPE)
also makes use of avb5 integrin rather than avb3 in the
recognition of apoptotic cells [102] and the outer seg-
ments of photoreceptors [103–105], respectively. CD36
also plays an important role in the phagocytic activities of
both dendritic cells and RPE [102, 106, 107]. Vitronectin
stimulates phagocytosis of the outer segments of pho-
toreceptors by RPE, which seems to be mediated by avb5

integrin [108]. The mannose receptor is also involved in
this system [109, 110]. 
It should be noted that apoptosis is a dynamic, active
process, and the cell surface changes continuously. Dis-
tinct signals for recognition by phagocytes are exposed at
different moments of the apoptotic process. Phagocytes,
in turn, display various molecules that are engaged in
complexes of recognition in a time-dependent manner,
according to the degeneration stage of the target cell. 
Jurkat cells, classified in two distinct stages of apoptosis
according to TUNEL (terminal deoxynucleotidyl trans-
ferase-mediated dUTP-biotin nick end labeling) staining,
are recognized in two sequential mechanisms. An early
stage depends on carbohydrate moieties, and a later stage
depends on exposure of PS [111]. Anoxia-induced apop-
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totic neuronal cells expose PS at their surface only in late
stages of apoptosis, when cells have completely lost their
adhesion properties. These cells are efficiently phagocy-
tosed by microglial cells, unlike early apoptotic neuronal
cells, which are loosely attached to the tissue culture dish
[112]. On the other hand, apoptotic HT-29 cells were clas-
sified in three different stages of apoptosis, related to ex-
position of apoptotic molecules and cell viability, but were
efficiently phagocytosed regardless of their apoptotic
stage. PS externalization and galactose exposed on sugar
chains are involved in recognition of apoptotic cells in all
stages, while the vitronectin receptor is involved only in
the latest stage. The authors suggested that the distinct
complexes of recognition work successively in an effi-
cient mechanism of cell clearance [39]. 
Despite efforts to understand the time course of apoptotic
cell recognition, the wealth of molecules reviewed above
were uncovered through the use of a large variety of 
experimental systems, and too little information is avail-
able from any single system to allow a comprehensive
summary of the time sequence of marker appearance. A
microarray technique was recently used to demonstrate the
sequential patterns of gene expression in macrophages ex-
posed to mycobacteria for different periods of time [113].
This approach may be useful in comprehending the dy-
namic nature of apoptotic cell recognition by phagocytes.

Intracellular signaling for phagocytosis 
of apoptotic cells

One of the requirements for proper phagocytosis is the
polymerization and reorganization of the actin cytoskele-
ton underneath bound particles. Binding of apoptotic cells
induces actin polymerization and protein phosphoryl-
ation at nascent phagocytic cups [10]. This is crucial for
formation of membrane extensions around, and engulf-
ment of, the target particle, irrespective of its nature.
However, distinct particles mobilize different receptors,
which recruit specific sets of intracellular molecules.
Thus, it is likely that specific intracellular mechanisms
mediate phagocytosis of apoptotic cells as compared with
other particles, such as IgG-opsonized cells, comple-
ment-opsonized cells or latex beads.
Galectin-3, a member of the family of b-galactoside-bind-
ing lectins, can be found at the cell surface or inside cells,
or in a secreted form, and was shown to be involved in
actin polymerization and to interfere with phagocytosis.
Galectin-3-null cells are less efficient than wild-type in
clearing IgG-opsonized cells in vitro and apoptotic cells
both in vitro and in vivo. The secreted form of galectin-3
is irrelevant for phagocytosis, as was demonstrated in co-
culture experiments of wild-type and galectin-3-deficient
macrophages. In resting macrophages, galectin-3 seems
to be diffusely distributed inside the cells; it colocalizes

with F-actin soon after the beginning of phagocytosis and
is found in phagocytic cups and in both early and late
phagosomes [114].
Uptake of apoptotic cells by dendritic cells is mediated 
by avb5 integrin and involves early phosphorylation of 
tyrosine residues in several proteins, such as the adaptor
proteins p130Cas and CrkII, and the guanine nucleotide
exchange factor for Rac, Dock180. CrkII binds p130Cas
through its SH2 domain, and Dock180 through its SH3
domain. Disruption of these interactions abrogates
phagocytosis of apoptotic cells. CrkII is recruited to the
limiting membrane of phagosomes and seems to direct
Dock180 to the plasma membrane, influencing the polar-
ity of the cytoskeleton projections in response to stimuli
for migration or signals from apoptotic cells. Dock180
activates the small guanosinetriphosphatase (GTPase)
Rac1 [115], a pathway that was also demonstrated in C.
elegans [31, 116, 117]. It was recently described that the
formation of a p130Cas/CrkII/Dock180 complex and sub-
sequent activation of Rac1 is stimulated by Mer/Gas6.
Activated Mer induces FAKTyr861 phosphorylation, which
is recruited to avb5 integrin. Both receptors act synergis-
tically on this intracellular pathway [100]. The CED-2/
CED-5/CED-10/CED-12 proteins are homologues of the
mammalian proteins CrkII, Dock180, Rac1 and ELMO 1.
In C. elegans, the engulfment pathway involving CED-
5/CED-10/CED-12 can be activated by PSR-1 [32]. Re-
cently, it was described that ELMO interacts with the
small GTPase RhoG through its conserved Armadillo 
repeats. TRIO, the exchange factor for RhoG, was also
implicated in this pathway. This event occurs upstream 
of the Dock-mediated activation of Rac. The C. elegans
homologues of RhoG and TRIO, MIG-2 and UNC-73, re-
spectively, participate in corpse clearance in nematodes
as well, upstream of CED-12 [118].
Small GTPases of the Rho family have a central role in the
reorganization of the cortical actin cytoskeleton during
phagocytosis. Engulfment of apoptotic bodies in mam-
mals requires Rac [10, 115, 119] and Cdc42 [10]. Acti-
vated (GTP-bound) Rac 1, Cdc42 and RhoA accumulate
in EMC cells after activation of Mer by Gas6 stimulation.
This results in tyrosine phosphorylation of the guanine 
exchange nucleotide factor Vav1 and its release from Mer,
leading to replacement of guanosine diphosphate (GDP)
by GTP in Rho GTPase members [120].
Phagocytosis of apoptotic cells is also stimulated by 
glucocorticoid [121, 122], which promotes cytoskeleton
alterations associated with enhancement of Rac levels.
Polymerization of actin filaments by Rho GTPases occurs
through activation of Wiskott-Aldrich syndrome proteins
(WASPs). These proteins recruit the actin-related proteins
Arp2/3 complex to preexisting actin filaments and allow
the nucleation of new filaments [123, 124]. Clearance 
of apopotic cells by WASP-deficient macrophages is 
delayed both in vitro and in vivo [125].
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Also implicated in actin polymerization during phagocy-
tosis of apoptotic cells is 12/15 lipoxygenase (12/15-LO).
In peritoneal macrophages, this enzyme translocates
from the cytosol to the plasma membrane, close to re-
gions of contact with apoptotic cells. It colocalizes with
emerging filopodia, and inhibition of its activity dimin-
ishes actin polymerization. The activity of this enzyme
seems to correlate with the differential phagocytic ability
of macrophages among a heterologous population. Only
phagocytes expressing this enzyme are able to bind and
phagocytose apoptotic cells [126].
Activation of phosphoinositide 3-kinase (PI3K) is also
required for the phagocytosis of apoptotic cells, as well as
other particles [10, 127]. Inhibition of PI3K does not 
inhibit binding of apoptotic cells, actin cup formation, 
accumulation of phosphotyrosine in actin cups [10] or
translocation of 12/15-LO to the plasma membrane [126].
However, activation of PI3K seems to be relevant down-
stream of the activation of Rho GTPases [10]. Examina-
tion of distinct PI3K isoforms revealed that class I PI3K
p110 is the major isoform required for phagocytosis of
apoptotic cells, but a distinct class of PI3K may also be
involved [128]. 
Protein kinase C (PKC) is implicated in phagocytosis of
diverse particles, and also apoptotic cells [25, 127, 129].
Specifically, tissue macrophages were shown to require
PKC II in order to engulf apoptotic thymocytes. It was
suggested that the expression level of this isoform is 
related to the differential efficiency of phagocytosis ob-
served between alveolar and peritoneal macrophages: the
former present reduced levels of PKC II compared with
the latter [129]. PKC activation also enables binding 
and subsequent engulfment of apoptotic cells by specific
receptors, such as avb5 (but not avb3), and is involved in
the association of avb5 with the actin cytoskeleton [103]. 

Negative regulation of phagocytosis

The large number of molecules involved in promoting
phagocytosis and the redundancy of systems testify to the
importance of removal of apoptotic corpses. Nevertheless,
either too little or too much phagocytosis can produce 
undesirable results for the organism. Intense phagocytic
response is associated with the production of reactive 
oxygen species and tissue injury [130]. Circulating mono-
cytes must have a limited phagocytic capacity that is en-
hanced only following migration to inflamed sites [131].
Alveolar macrophages as well as monocytes recruited to
the lung show limited phagocytosis of apoptotic cells
compared with peritoneal macrophages, which possibly
helps preserve lung tissue from inflammatory destruction
[132, 133]. In addition, phagocytosis of apoptotic lym-
phocytes has been shown to be beneficial in the growth of
pathogenic parasites within macrophages [134, 135].

Once triggered, phagocytosis must be restricted to sites
where it is required, controlled and eventually finished.
Although little is known concerning the negative regula-
tors of phagocytosis, recent studies have contributed in
clarifying how phagocytosis can be limited or terminated.

‘Don’t eat me’ signals and intracellular brakes 
for phagocytosis

Normal cells display molecules for signaling that they
should not be eliminated. Macrophages establish interac-
tions with leukocytes that will determine the fate of 
the latter, i.e. whether they will be phagocytosed or not.
One major intracellular mechanism for inhibiting cell re-
sponses occurs through receptors containing immuno-
receptor tyrosine-based inhibitory motifs (ITIMs). ITIMs
are present in the cytoplasmic portion of inhibitory re-
ceptors that contain a consensus sequence of six amino
acids (Ile/Val/Leu/Ser-X-Tyr-X-X-Leu/Val). These recep-
tors attenuate activation signals initiated by other re-
ceptors [136]. Activation of ITIM receptors results in
phosphorylation of tyrosines, generating recruitment sites
for phosphatases containing SH2 domains, such as SHP-1,
SHP-2 and SHIP, which then transduce inhibitory signals
[137–139]. Some systems of recognition of normal cells
by phagocytes use this general mechanism.
CD31 (platelet-endothelial cell adhesion molecule-1,
PECAM-1) is a membrane glycoprotein that has ITIMs
and that is expressed by leukocytes and macrophages.
Homophilic ligation of CD31 from normal cells and
macrophages promotes their detachment by an active and
temperature-dependent mechanism. Apoptotic cells also
express CD31, but signaling mediated by this molecule is
disrupted. In contrast to CD31 from normal cells, CD31
from apoptotic cells shows reduced constitutive associa-
tion with the cytoplasmic signaling molecule SHP-1, 
reduced pervanadate-mediated recruitment of SHP-2
and reduced CD31 tyrosine phosphorylation. Binding of 
antibodies fails to induce calcium transients. Thus, ho-
mophilic interaction of CD31 serves to avoid inadequate
engulfment of healthy cells, and apoptosis disables this
mechanism of repulsion [140].
Sialization of glycoproteins is another strategy used to
mark viable cells. Sialized molecules are recognized by
receptors known as Siglecs (sialic acid-binding Ig-like
lectins), but their desialated forms are not recognized.
Siglecs are transmembrane proteins, and their cytoplas-
mic portion contains ITIMs. These receptors seem to 
inhibit engulfment of normal cells, but not apoptotic cells
that have lost sialic acid, as well as microbes that do not
synthesize sialic acid [141]. 
CD47 is a surface marker recognized by signal regulatory
protein (SIRP) that also displays an ITIM in its cytoplas-
mic domain. Interaction of these molecules impairs phago-
cytosis. Expression of CD47 is downregulated during
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senescence of erythrocytes and platelets, which enables
clearance of these senescent cells [142]. Phagocytosis of
opsonized erythrocytes and platelets is negatively modu-
lated by SIRP [143, 144], and CD47 has a recognized role
in the negative modulation of phagocytosis of red blood
cells. In sharp contrast, a requirement of CD47 was re-
ported for efficient phagocytosis of lymphocytes [145].
The authors suggested that ligation of CD47 and SHPS-1
acts in the tethering of apoptotic cells to macrophages and
that discrepancies with other studies may be related to 
either cell specificity or distinct conformations adopted by
CD47 at the plasma membrane of the cell types studied
[145]. Importantly, CD47, also known as IAP (integrin-
associated protein), can interact with integrins and modu-
late phagocytosis negatively [90].
Integrins were also associated with negative modulation
of the uptake of apoptotic neutrophils following previous
ingestion of apoptotic neutrophils. This effect is mimic-
ked by ligation of avb3, a6b1 and a1b2 integrins and does
not seem to be due to the overload of macrophages. Inte-
grins b1 and b2 may negatively modulate the function of
avb3 [146]. It was suggested that after ligation with apop-
totic neutrophils, integrin avb3 negatively regulates adhe-
sion of macrophages and facilitates migration of these
cells to lymphatic organs. 
CD200 and its counter receptor, CD200R, are implicated in
macrophage and myeloid cell regulation. CD200 is widely
expressed in various cell types, whereas CD200R is re-
stricted to myeloid cells. Macrophage lineage cells of
CD200-deficient mice are more numerous and show an 
activated phenotype compared with their counterparts in
wild-type mice. In in vivo models of nerve injury, CD2000/0

macrophages and microglia are more readily activated.
This indicates that CD200R transmits a negative signal that
regulates macrophage responses [147–149].
The Rho GTPase RhoA is implicated in the negative
modulation of apoptotic cell phagocytosis, opposite the
promoting role of other Rho family enzymes, such as Rac
and Cdc42 [150]. GTP-bound RhoA binds to and acti-
vates Rho-kinase (ROK), which is probably a primary 
effector in mediating this regulatory effect. ROK most
likely acts upon contractility at the center of the cell,
since its inhibition destabilizes the formation of stress
fibers but does not alter the formation of protrusions at
the cell’s periphery [150].
Increased levels of cAMP inhibit phagocytosis of apop-
totic lymphocytes, an effect that seems to be related to
changes in macrophage adhesion. cAMP leads to altered
distribution of cytoskeleton elements in contact with the
substrate, such as actin, talin, vinculin and paxillin, and
macrophages assume a round morphology with reduced
numbers of membrane projections [151]. Also, the per-
meant cAMP analogue 8-Br-cAMP inhibits, whereas the
PKA inhibitor Rp-cAMP mimics, the enhancing effect of
lipoxin upon apoptotic cell phagocytosis [152]. 

Regarding negative signals from the extracellular milieu,
it was shown that the long pentraxin PTX3 inhibits the 
internalization of late apoptotic neutrophils by dendritic
cells [153]. The inhibitory effect of PTX3 was also attrib-
uted to inhibition of binding of late apoptotic neutrophils
to the surface of monocyte-derived macrophages [154].
PTX3 is produced in response to inflammatory signals,
such as LPS, IL-1 or tumor necrosis factor a [153]. PTX3
binds to C1q, which has a role in the positive regulation
of apoptotic cell phagocytosis. Protein S, a blood glyco-
protein that has a positive role in engulfment of apoptotic
cells [70], can act negatively when complexed with C4b-
binding protein (C4BP) [155]. These findings underscore
the complexity of phagocytosis, with its multiple levels
and possibilities of regulation. 

PrPc, a novel negative modulator of phagocytosis

The cellular prion protein (PrPc) has an unexpected nega-
tive effect upon phagocytosis. Recently, we showed that
phagocytes derived from mice devoid of PrPc are more 
active than phagocytes from wild-type mice [156]. The
negative regulation exerted by PrPc upon phagocytosis was
observed in various models combining distinct phagocytes
(peritoneal macrophages and Müller glial cells) and targets
(neuronal cells, thymocytes and neutrophils, as well as
zymosan). Such an effect in several distinct experimental
models indicates that PrPc may have a conserved role in
phagocytosis. The negative modulation of phagocytosis
by PrPc was observed when apoptotic cells were offered
in low proportion relative to macrophages, suggesting a
role in circumstances that are not characterized by mas-
sive cell death [156].
PrPc is a GPI-anchored surface molecule. Similar to
many engulfment receptors, such as CD36, CD44, SR-
BI, CD14 and FcgRIII, PrPc is present in lipid rafts
[157], where these molecules may form multireceptor
complexes. Interactions of GPI-anchored proteins with
their ligands may modify the threshold for cellular ac-
tivation or, alternatively, relocate receptors to lipid
rafts. Such a mechanism is present in the nonopsonic
phagocytosis of Mycobacterium kansasii, a phenome-
non mediated by CR3 associated with GPI-anchored
proteins [158]. 
Inflammatory responses in PrP0/0 mice were also altered.
These mice recruited more monocytes and fewer neu-
trophils than wild-type mice after injection of zymosan
[156]. In the central nervous system (CNS), inflamma-
tion is limited [159], and activation of microglia must be
well regulated because these cells produce both cytotoxic
and inflammatory mediators. The ability to downregulate
phagocytosis, and possibly other activities of activated
microglia, would be an advantage in a tissue rich in PrPc,
such as that of the CNS. In vitro cultures of wild-type 
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microglia seem to be more activated than those of PrP0/0

microglia because of augmented production of superox-
ide after stimulation with LPS or concanavalin A [160]
and PrP106–126 [161], and also of nitrite after stimulation
with the PrP peptide PrP106–126 [161]. Phagocytosis is
negatively modulated by superoxide [162] and the super-
oxide derivative H2O2 [163–166] (but see [167]), as well
as nitric oxide [168–170] and its derivative, nitrite [171].
These data are consistent with the observation of higher
phagocytic activity in PrP0/0 macrophages [156]. 
Neuronal cells can produce negative signals to avoid 
inadequate phagocytosis and to promote a macrophage

response that allows tissue repair [172]. Preliminary re-
sults indicate that apoptotic neutrophils derived from
wild-type or PrPc null mice are phagocytosed with similar
efficiency. Nevertheless, PrPc-null macrophages are more
effective in phagocytosing either type of neutrophil, as
well as other types of apoptotic cells [C. J. G. de Almeida
and R. Linden, unpublished results]. A similar control
mechanism for phagocytosis may also be active within the
nervous system. Interestingly, it was recently shown that
the fibrillar prion peptide PrP106–126 and the scrapie form
of the prion protein (PrPSc) also have negative effects on
phagocytosis by microglial cells [173]. In summary, the

Figure 1. Positive and negative signals that regulate the recognition and engulfment of apoptotic cells. Phagocytosis of apoptotic cells is
stimulated by various molecules displayed on the surface of both cell types. Some molecules present in viable cells avoid recognition by
phagocytes and are modified during apoptosis, allowing clearance of degenerating cells. Besides the many molecules involved in the 
stimulation of phagocytosis, phagocytes also display molecules that counteract positive signals for engulfment and are relevant in controlling
this process. ICAM-3, intercellular adhesion molecule 3; ABC-1, ATP-binding cassette transporter 1; PS, phosphatidylserine; LPC,
lysophosphatidylcholine; CD44, receptor for hyaluronic acid; CD29, integrin b1; CD47, integrin-associated protein (IAP); CD31, platelet/
endothelial cell-adhesion molecule (PECAM1); ANX I, annexin I; ANX II, annexin II; IgM, immunoglobulin M; Del-1, developmental 
endothelial locus-1; MGF-E8, milk fat globule-EGF factor 8; TSP-1, thrombospondin 1; iC3b, complement protein iC3b; SAP, serum 
amyloid P component; CRP, C-reactive protein; C1q, complement protein C1q; SP-A, surfactant protein A; SP-D, surfactant protein D;
MBL, mannose-binding lectin; PTX3, long pentraxin 3; C4BP, C4b-binding protein; CD14, lipopolysaccharide receptor; FcR, Fc 
fragment of immunoglobulin G receptor; Mer, a receptor tyrosine kinase; PSR, phosphatidylserine receptor; CD68, macrosialin; SR-A;
scavenger receptor class A; SR-B1, scavenger receptor class B1; LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1;
CD36, thrombospondin receptor; avb3 and avb5, integrins that bind vitronectin; CR3 and CR4, complement receptors 3 and 4; CD91, a2

macroglobulin receptor; SHPS-1, SHP protein-tyrosine phosphatases substrate-1; Siglec, sialic acid-binding immunoglobulin-like lectin;
PrPc, cellular prion protein; SIRPa, signal regulatory protein a.
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cellular prion protein adds to a growing list of negative
modulators, which may be essential in balancing the
threshold of phagocytic responses (fig. 1).

Conclusion: balancing the signals for and against
phagocytosis of apoptotic cells

Studies of apoptotic cell phagocytosis began more re-
cently than those of the uptake of IgG- and complement-
opsonized particles. The search for understanding the
mechanisms and consequences of apoptotic cell clearance
has attracted considerable attention, and information on
this issue is continuously growing. Nonetheless, many
unanswered questions remain, such as what the links be-
tween the silent removal of apoptotic cells are and the
roles of some of the molecules involved in inflammatory
responses. Further studies are also needed to identify
undisclosed molecules involved in the recognition of
apoptotic cells by macrophages, as well as the intracellu-
lar mechanisms initiated by the interaction of phagocytes
with apoptotic cells. 
In particular, evidence that, despite the benefits of re-
moving apoptotic bodies, uncontrolled phagocytosis 
may lead to tissue injury and inflammation has prompted
the search for attenuation mechanisms of phagocytosis
(table 3). Studies of the balance between positive and neg-
ative modulators of apoptotic cell phagocytosis should
help in both understanding and managing inflammatory
and autoimmune, as well as degenerative, diseases. 
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