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Abstract. Lactoferrin (LF) is a member of the transfer-
rin family that is expressed and secreted by glandular 
epithelial cells and is found in the secondary granules 
of neutrophils. Originally viewed as an iron-binding 
protein in milk, with bacteriostatic properties, it is be-
coming increasingly evident that LF is a multifunctional 
protein to which several physiological roles have been 
attributed. These include regulation of iron homeostasis, 
host defense against a broad range of microbial infec-

tions, anti-infl ammatory activity, regulation of cellular 
growth and differentiation and protection against cancer 
development and metastasis. While iron binding is likely 
central to some of the biological roles of LF, other ac-
tivities, including specifi c interactions with mammalian 
receptors and microbial components, also contribute to 
the pleoitropic functional nature of this protein. In this ar-
ticle, recent advances in the understanding of these func-
tions at the cellular and molecular level are discussed.
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Introduction

Lactoferrin (LF) is an 80-kDa member of the transferrin 
family of iron-binding glycoproteins [1]. The three-di-
mensional structure of LF has been precisely defi ned by 
X-ray crystallographic analysis, which revealed a globular 
protein folded into two highly homologous iron-binding 
lobes [2, 3]. Each of these lobes can bind one ferric ion 
tightly, but reversibly, with the concomitant binding of a 
bicarbonate anion [1, 4]. Expression of LF is fi rst detected 
at the two- to four-cell stage of embryonic development 
and continues until the blastocyst stage of preimplanta-
tion development. LF expression does not resume until 
the latter half of gestation, where it is detected in neu-
trophils and in epithelial cells of the developing digestive 
and respiratory tracts [5]. In the adult, LF is synthesized 
by glandular epithelial cells and secreted into mucosal 
fl uids that bathe the body surface. Highest levels of LF 
are detected in colostrum and milk, with lower levels de-
tected in tears, nasal fl uids, saliva, pancreatic, gastrointes-
tinal and reproductive tissue secretions [6, 7]. In addition 

to constitutive expression at the mucosal surface, LF has 
been shown to be differentially regulated by hormones 
and transcription factors in a tissue-specifi c manner. For 
example, LF expression is under the control of prolactin 
in the mammary gland, whereas in the reproductive tract, 
the expression of this protein can be induced by the ster-
oid hormone estrogen [8]. In the hematopoietic system, 
LF is expressed specifi cally in developing neutrophils 
during the myelocyte stage of maturation and is stored in 
the secondary granules of this cell type [9–12]. 
Several biological functions have now been described 
for LF, including iron homeostasis, cellular growth and 
differentiation, host defense against microbial infection, 
anti-infl ammatory activity and cancer protection [7, 13, 
14]. As an evolutionarily conserved iron-binding pro-
tein, metal chelation would be expected to be a property 
central to at least some of LF’s functions. Nonetheless, 
the diverse physiological effects ascribed to LF are 
undoubtedly also related to its ability to interact with 
other molecules, including lipopolysaccharide [15, 16], 
glycosaminoglycans [17] and cell-type-specifi c receptors 
that have been identifi ed on a wide range of epithelial and 
immune cells [13, 14, 18, 19]. The heterogeneous nature 
of these receptors, coupled with the fact that many have * Corresponding author.
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other known ligands, including the lipoprotein receptor-
related protein [20], a 136-kDa glycophosphatidylinosi-
tol (GPI)-anchored intestinal receptor [21], and nucleolin 
[22], have added to the complexity in elucidating the bona 
fi de physiological roles of this protein that may be recep-
tor-mediated. However, mounting evidence suggests that 
LF binding to target cells impinges on cellular signalling 
pathways, including the mitogen-activated protein kinase 
(MAPK) and the nuclear factor-kB (NF-kB) pathways, 
resulting in altered gene expression [23–28]. There have 
also been reports that LF enters the nucleus and activates 
target genes directly, although further work is warranted 
in this area [29-31]. This article will provide an overview 
of the salient functions of LF, in addition to providing an 
update on our current understanding of the cellular and 
molecular mechanisms of action that are responsible for 
the biological activities of LF. 

LF and intestinal iron homeostasis 

Tight regulation of iron homeostasis is essential, as while 
iron is required for many metabolic functions in the body, 
it can be harmful in excess, promoting microbial growth 
and free radical-induced cellular damage. Iron homeos-
tasis is regulated primarily at the site of absorption in the 
small intestine in response to body iron requirements 
[32–34]. It has long been proposed that LF is involved 
in intestinal iron delivery, although this has been the sub-
ject of much debate over the years [7, 35–37]. The high 
iron bioavailability and abundant concentrations of LF in 
breast milk suggested that LF may play a role in intesti-
nal iron absorption in the neonate [7, 36]. In addition, LF 
has been shown to be relatively resistant to proteolysis in 
the gastrointestinal tract [38], and specifi c receptors have 
been identifi ed for LF in the brush border membrane of 
enterocytes from many species [36]. Furthermore, Caco-
2 intestinal cells transfected with a human LF enterocyte 
receptor demonstrated an increased uptake of LF-bound 
iron [21]. However, the physiological role of this receptor 
in vivo remains to be established and will likely be clari-
fi ed further by gene knockout studies in mice. 
It is now understood that the recently elucidated divalent 
metal transporter 1 (DMT-1) pathway is a major mecha-
nism for non-heme iron uptake in the gut [34, 39, 40]. This 
suggests that milk-derived LF may have functions alterna-
tive to intestinal iron delivery. In this regard, it has been 
proposed that the iron-binding properties and stability of 
LF function to sequester and remove free iron at the intes-
tinal mucosal barrier [37]. In support of this, it was shown 
that human infants fed on LF-containing breast milk had 
a lower rate of iron absorption compared with those fed 
on LF-free breast milk [41]. Further, recent studies using 
a genetic mouse model of lactoferrin defi ciency (LFKO 
mice) have demonstrated that LF is not required for iron 

delivery to the neonate [42]. Rather, comparison of post-
natal offspring derived from LFKO intercrosses to wild-
type intercrosses (both in a mixed 129/SvEv X C57BL/6 
mouse strain) showed that ablation of LF was associated 
with a mild iron overload. While genetic background may 
infl uence the postnatal iron overload phenotype observed 
in LFKO pups [42], the increased iron levels observed dur-
ing the suckling period may also be due, at least in part, 
to the lack of LF in the milk, and more profound effects 
may be evident under conditions of dietary iron stress. 
Taken together, this argues against an essential role of LF 
in intestinal iron delivery and suggests that the iron-bind-
ing activity of LF may function primarily to sequester free 
iron in the gut, thus controlling microbial pathogenesis 
and iron-induced cellular oxidative damage [37, 43, 44]. 

Role of LF in the host defense response against 
microbial infection 

The prominent localization of LF in external secre-
tions has long prompted speculation that this protein 
may play a critical role in maintaining a pathogen-free 
environment at the mucosal surface [7, 37]. Further, as 
an abundant neutrophil-derived protein [11], LF can be 
rapidly mobilized to aid in the host defense response at 
sites of infection throughout the body. The antimicrobial 
properties of LF have been well-documented by in vitro 
data and an increasing number of in vivo studies [45–47]. 
It now appears that the ability of this protein to act as a 
broad-spectrum antimicrobial agent is due to a posses-
sion of several distinct antimicrobial properties. 
The fi rst antimicrobial property described for LF was 
bacteriostasis. The strong iron-binding properties of LF, 
coupled with its relatively iron-free state in body secre-
tions and neutrophils, allow the protein to sequester free 
iron and maintain an environment refractory to microbial 
growth [7, 43, 48, 49]. Subsequently it was shown that 
LF exerted a direct bactericidal activity against pathogens 
which was independent of its iron sequestration function 
[50]. In vitro experiments by Ellison and colleagues 
demonstrated that this bactericidal activity was related to 
the ability of LF to bind directly to the outer membrane 
of Gram-negative bacteria, causing the rapid release of 
lipopolysaccharides (LPSs) with an associated increase 
in membrane permeability and damage [51]. It has been 
hypothesized that a highly cationic domain located in 
the N-terminus of LF is responsible for the bactericidal 
activity of LF, and subsequently it was shown that this 
isolated peptide, lactoferricin (LFcin), has more potent 
bactericidal activity than the native protein and is effec-
tive against a wide range of microorganisms, including 
Gram-negative and Gram-positive bacteria, yeast, fungi, 
viruses and protozoa [52, 53]. However, how LFcin func-
tions in the context of the intact protein and/or whether 



2542 P. P. Ward, E. Paz and O. M. Conneely Multifunctional roles of lactoferrin

substantial amounts of this peptide are released at sites of 
infection in vivo, remains to be established. 
In the past decade or so, several additional properties 
have been described for LF which likely contribute to its 
versatility as a physiologically important antimicrobial 
agent in mucosal host defense. A recent elegant study by 
Singh and colleagues demonstrated that iron sequestra-
tion by LF was inhibitory to bacterial biofi lm formation 
[54]. LF was shown to prevent Pseudomonas aeruginosa 
biofi lm formation in continuously cultured mammalian 
fl ow cells by stimulating a specialized bacterial motion 
called twitching. Twitching prevents the bacteria from 
attaching to the surface of the mammalian cells and form-
ing the microcolonies that ultimately give rise to biofi lm 
formation. Although dependent on the iron-binding 
properties of LF, the anti-biofi lm activity was observed 
using extremely low concentrations of LF (0.02 mg/ml), 
which is fi vefold less than that required to inhibit the 
growth of this bacterium by bacteriostatic mechanisms 
[54]. Interestingly, LF is proteolytically degraded in the 
airway secretions of cystic fi brosis (CF) patients, who 
are particularly susceptible to chronic infection and biofi lm 
formation with P. aeruginosa [55]. Further, in vitro studies 
confi rmed that proteolytic degradation of LF resulted in 
a loss of its anti-biofi lm activity [56]. Collectively, these 
studies suggest that the anti-biofi lm property of LF may 
have physiological relevance and contribute to the host 
defense response against P. aeruginosa and possibly other 
bacterial biofi lm infections at the mucosal surface. 
Studies have also demonstrated that LF can protect 
epithelial cells against microbial infection by inhibiting 
intracellular invasion by pathogenic bacteria, presumably 
by binding to surface bacterial and/or mammalian pro-
teins and blocking their adhesion to host cells [57–59]. 
This mechanism appears to also account for most of the 
anti-viral activity described for LF. In this regard, LF 
has been shown to inhibit the initial stages of infection 
by several viruses, including human immunodefi ciency 
virus, human hepatitis C virus, rotavirus and respiratory 
syncytial virus, by binding directly to the virus particles 
and/or binding to docking or receptor sites for the virus 
on target mammalian cells [60–62]. 
Intriguingly, LF may protect against microbial patho-
genesis by a recently uncovered proteolytic activity of 
the protein. LF has been shown to degrade and inactivate 
proteins that are required for bacterial colonization by 
enteropathogenic Escherichia coli, Shigella fl exneri 
and Haemophilus infl uenzae [63–66]. This activity was 
blocked by serine protease inhibitors, and subsequent 
studies characterized a serine protease catalytic domain 
in the N-terminal domain of the LF protein that can 
cleave arginine-rich bacterial sequences [67]. While 
the signifi cance of this proteolytic activity to microbial 
protection in vivo remains to be established, the highly 
conserved nature of the proteolytic site between LF spe-

cies strongly suggests that it may contribute to the physi-
ological host defense response of LF [67]. 
Evidence suggests that LF may also protect against mi-
crobial pathogenesis indirectly through the stimulation of 
the host immune system. For example, the upregulation 
of T helper type 1 (TH1) immune responses were associ-
ated with Staphylococcus aureus clearance in lactoferrin 
transgenic mice [68] and a T cell-dependent stimulation 
of natural killer (NK) cell activity was shown to contrib-
ute to the antiviral effect of LF against murine cytomega-
lovirus in a mouse model of infection [69].
Finally, it is noteworthy that, although the multitude 
of antimicrobial activities ascribed to LF suggest that 
it plays a critical role in the protective innate immune 
response to microbial infection, in certain instances LF 
can be rendered inactive by the invading pathogen or 
can even enhance microbial pathogenicity. For example, 
the pneumococcal surface protein A of Streptococcus 
pneumoniae can bind to LF and protect the bacteria from 
the killing action of LF [70], whereas Neisseriaceae and 
Moxarella species may utilize LF-bound iron required 
for their growth by synthesizing specifi c LF receptors 
that can bind and extract iron from LF [71]. 

Anti-infl ammatory role of LF

In addition to controlling bacterial burden by direct an-
timicrobial action, evidence suggests that LF may limit 
the infl ammation associated with microbial challenge. 
In support of this, animal studies have shown that LF 
administration protects against gastritis induced by 
Helicobacter pylori [72], gut mucosal integrity induced 
by LPS challenge [73], and endotoxemia and lethality 
in response to systemic challenge with E. coli or LPS 
[74–76]. Both in vitro experiments in mononuclear cells 
and in vivo studies in mice suggest that the protective 
effect of LF may involve an inhibition of production 
of several pro-infl ammatory cytokines, including tumor 
necrosis factor alpha (TNFa), interleukin-1b (IL-1b) and 
IL-6 [27, 77–79]. This may be mediated in part by the 
ability of LF to sequester molecules that interact with the 
Toll-like receptor signalling cascade that plays a key role 
in the ensuing host infl ammatory response to microbial 
infection [80]. In support of this, LF has been shown to 
directly bind and attenuate the immunostimulatory re-
sponse of LPS, soluble CD14 (sCD14) and unmethylated 
CpG bacterial DNA [16, 19, 81]. Finally, in vitro studies 
in monocytic cells suggest that the anti-infl ammatory 
activity of LF in response to LPS challenge may also 
involve inhibition of pro-infl ammatory cytokine synthe-
sis following LF translocation to the nucleus, where it 
prevents NF-kB activation [27]. 
It is becoming increasingly evident that the anti-infl am-
matory role of LF extends beyond attenuation of microbi-
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al-induced infl ammation. LF is known to be upregulated 
in infl ammatory disorders, including neurodegenerative 
disease [82–84], infl ammatory bowel disease [85–87], 
allergic skin and lung disorders [88, 89], and arthritis 
[90, 91]. Moreover, a number of animal studies have 
shown that LF administration can alleviate experimental 
infl ammation in these tissues. For example, LF protects 
against chemical and IL-1b-induced cutaneous infl am-
mation in humans and mice [92–95], chemically induced 
infl ammatory bowel disease in rats and mice [96–98], 
non-steroidal anti-infl ammatory drug (NSAID)-induced 
intestinal injury [99] in rodents and infl ammation in a rat 
model of rheumatoid arthritis [100]. In many cases, this 
protection was associated with a decrease in proinfl am-
matory cytokines, in particular TNF-a and IL-1b and/or 
an increase in anti-infl ammatory cytokines, including IL-
10. While mechanistically poorly understood, the ability 
of LF to interact with specifi c receptors on many immune 
cells, including neutrophils [101], monocytes [102], 
macrophages [103] and lymphocytes [104], in addition 
to epithelial cells [13, 21, 105], suggests that the anti-
infl ammatory activity of LF may be a result of a direct 
effect on modulating cytokine production by these cells 
via receptor-mediated signalling pathways. 
Various other mechanisms whereby LF may downregu-
late the infl ammatory response have also been suggested, 
including prevention of iron-catalyzed free radical dam-
age at sites of infl ammation [106] and abrogation of the 
late phase airway obstruction and hyperresponsiveness in 
a sheep model of allergic asthma secondary to tryptase 
destabilization [107]. 

Protection against cancer development and metastasis

A growing number of rodent studies have demonstrated 
a protective effect of LF against chemically induced car-
cinogenesis, tumor growth and/or metastasis in several 
organs, including the esophagus, tongue, lung, liver, co-
lon and bladder [108–121]. Moreover, it appears that like 
many of the biological functions of LF, the anti-cancer 
role of this protein may be multifaceted. A direct effect 
on tumor cell growth was fi rst suggested by the observa-
tion that LF and a splice variant thereof are downregu-
lated or absent in many cancer cell lines and in experi-
mental tumors [122–127]. This was further supported by 
tissue culture studies with human breast carcinoma cells 
as well as head and neck cancer cell lines demonstrating 
that LF blocked the G1 to S transition of the cell cycle. 
The negative effect on cellular proliferation appears 
to be due to LF-induced alterations in the expression 
and/or activity of critical cell cycle regulatory proteins 
including the Cdk inhibitors p21 and p27, which may be 
mediated in part by modulation of the Akt and MAPK 
pathways [23, 128]. In vivo studies also suggest that the 

inhibition of tumor cell growth by LF may be related to 
the ability of this protein to induce apoptosis of cancer 
cells by activating the FAS signalling pathway in cancer-
ous cells [129, 130]. Interestingly, LF has recently been 
shown to activate the NF-kB signalling cascade in HeLa 
cervical carcinoma cells, which resulted in upregulation 
of the tumor suppressor protein p53 and its target genes, 
mdm2 and p21, although the implications for cellular 
growth were not addressed in this study [28].
Accumulating evidence also suggests that immunomodu-
lation may be critical to the anti-cancer function of LF. In 
vitro studies have shown that LF stimulates the produc-
tion and/or activation of several immune cells, including 
lymphocytes and NK cells [131–133], in addition to 
increasing the target cell sensitivity to NK lysis [134]. 
An early study by Bezault et al. implicated enhanced 
NK cell activity as a mechanism by which LF prevents 
carcinogenesis. In these experiments, it was shown that 
intraperitoneal administration of human LF to mice in-
hibited the growth of solid tumors and prevented against 
lung metastasis by melanoma cells, an effect which 
was lost upon depletion of the NK cell function using 
antibody blocking experiments [108]. In addition, the 
inhibitory effect of LF on tumor cell growth was reported 
to be greater in immunocompetent compared with immu-
nodefi cient mice [109]. Moreover, it has now been shown 
that the protective effect of oral administration of LF in 
several rodent cancer models is associated with enhance-
ment of the local intestinal mucosal immune response. 
In this regard, upregulation and/or enhanced activation 
of NK cells, CD4+ T lymphocytes and CD8+ T-lym-
phocytes were observed upon LF administration [110, 
113, 121]. Interestingly, enhancement of the systemic 
immune response was also observed despite a reported 
low absorption of this protein from the intestine [110, 
113, 120, 121]. 
Recent studies suggest that the mechanism underlying 
the immunoprotective effects of LF against cancer cell 
development may be mediated in part by interleukin-
18, a cytokine with pleiotropic effects on immune cell 
activation and function [135]. In this regard, it has been 
shown that LF strongly upregulates IL-18 expression in 
intestinal epithelium, possibly secondary to the activation 
of caspase-1, which is required for enzymatic cleavage of 
the active form of IL-18 [120, 121, 136]. The presumption 
is that secreting IL-18 locally in the intestine and into the 
serum may be central to the coordinated upregulation of 
the mucosal and systemic immune responses [114, 137]. 
Although the molecular pathway leading to caspase-1/
interleukin-18 activation is unknown, conceivably this 
may occur by LF signalling through specifi c receptors on 
intestinal and/or local immune cells to regulate cytokine 
production. LF was also shown to inhibit tumor-initiated 
angiogenesis in vitro and in vivo, which may relate to the 
anti-angiogenic properties of IL-18 [111, 112, 138]. 
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LF as a regulator of organ morphogenesis

One of the most recent novel activities described for LF 
is its regulatory function in bone morphogenesis. LF was 
shown to prevent bone resorption in a rabbit mixed bone 
cell culture [139]. Subsequent experiments using cultured 
rodent tissue and organ cultures showed that LF pro-
motes the growth and development of osteoblast cells by 
stimulating proliferation and decreasing apoptosis [140]. 
In addition, LF was shown to enhance osteoblast dif-
ferentiation and inhibit osteoclastogenesis. The growth-
promoting effects demonstrated for LF were far more 
potent than the response seen by established bone growth 
factors, including epidermal growth factor. Importantly, 
the anabolic effects on bone growth were substantiated 
by in vivo studies where subcutaneous administration of 
LF (4 mg daily for 5 days) to mice resulted in a fourfold 
increase in bone mass [140]. In a follow-up study, it was 
shown that the mitogenic response of LF in osteoblasts 
is mediated in part by binding and signalling through 
the low-density lipoprotein receptor-related protein-1 
(LRP-1) [26]. The molecular events downstream of LF 
interaction with LRP-1 that result in osteoblast prolifera-
tion have begun to be unravelled by the fi nding that the 
p42/p44 MAPK signalling pathway is involved. Interest-
ingly, while LRP1 also mediates LF endocytosis into 
these cells, uptake of LF is not required for the mitogenic 
function of this protein, as LF promotes the growth of 
osteoblasts under conditions where endocytosis is ab-
rogated. Although the physiological relevance of these 
fi ndings during normal bone development is unknown, 
these novel fi ndings suggest that LF administration may 
have potential therapeutic implications for osteoporosis 
treatment [26]. 
LF has also been demonstrated to have mitogenic effects 
on other cell types, including rat and human enterocytes 
[141–144], B and T lymphocytes [104, 145] and macro-
phages [146]. However, the involvement, if any, of LRP1 
and/or the MAPK pathway in transducing the prolifera-
tive signal in these cell types has not been addressed. 

Summary and future perspectives

It is now emerging that LF is a multifunctional protein 
that impinges on several physiological and pathological 
processes, including iron homeostasis, organ morphogen-
esis and host defense against infection, infl ammation and 
cancer. It appears that for each of the functions described 
for LF, several distinct mechanisms of action are involved 
which may act in unison to augment the biological effect 
of this protein in vivo. One of the emerging themes un-
derlying the morphogenic, anti-infl ammatory and cancer 
protective functions of this protein is the ability of LF to 
regulate cellular signalling pathways. Presumably, this is 

mediated in large part by the ability of LF to bind to a 
wide range of epithelial and immune cells. However, the 
cellular localization and downstream molecular events 
following LF engagement with these receptors is, for the 
most part, still largely unknown. 
Originally supported by in vitro data, the functions as-
cribed to LF are now being by an increasing number of 
in vivo studies. Nonetheless, these studies do suggest that 
this protein may have potential therapeutic use in micro-
bial, infl ammatory and cancer disease prevention and/or 
treatment. Finally, the availability of genetic models of 
LF ablation and tissue-specifi c LF transgenic mice will 
clearly be invaluable tools to rigorously investigate the 
essential physiological and/or therapeutic functions of 
this protein in vivo. However, caution must be exected in 
the interpretation of some of these fi ndings, in particular 
where high doses of non homologous LF of unknown 
purity was used.
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